

Advanced Software Protection:
Integration, Research and Exploitation

D5.06
Preliminary ASPIRE Online Protection Tool Chain
Report

Project no.: 609734
Funding scheme: Collaborative project
Start date of the project: 1st November 2013
Duration: 36 months
Work programme topic: FP7-ICT-2013-10

Deliverable type: Deliverable
Deliverable reference number: ICT-609734 / D5.05 / 1.0
WP and tasks contributing: WP 5 / Task 5,1
Due date: November 2015 – M24
Actual submission date: 26 November 2015

Responsible Organization: NAGRA
Editor: Brecht Wyseur
Dissemination Level: Public
Revision: 1.0

Abstract:
This report documents deliverable D5.05, which is the preliminary ASPIRE Compiler Tool
Chain (ACTC) that is delivered at M24 and implements support of several ASPIRE online
protection techniques.
Keywords:
ACTC, online protections

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 PUBLIC I

Editor
Brecht Wyseur (NAGRA)

Contributors (ordered according to beneficiary numbers)
Bart Coppens, Bert Abrath, Jens Van den Broeck, Bjorn De Sutter (UGent)

Rémi Cohen-Scali (NAGRA)

Ronan Le Gallic (EDSI)

Mariano Ceccato (FBK)

Werner Dondl (SFNT)

Jerome d’Annoville (GTO)

The ASPIRE Consortium consists of:

Ghent University (UGent) Coordinator & Beneficiary Belgium

Politecnico Di Torino (POLITO) Beneficiary Italy

Nagravision SA (NAGRA) Beneficiary Switzerland

Fondazione Bruno Kessler (FBK) Beneficiary Italy

University of East London (UEL) Beneficiary UK

SFNT Germany GmbH (SFNT) Beneficiary Germany

Gemalto SA (GTO) Beneficiary France

Coordinating person: Prof. Bjorn De Sutter
E-mail: coordinator@aspire-fp7.eu
Tel: +32 9 264 3367
Fax: +32 9 264 3594
Project website: www.aspire-fp7.eu

Disclaimer
The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 609734.
The information in this document is provided as is and no guarantee or warranty is given that
the information is fit for any particular purpose. The user thereof uses the information at its
sole risk and liability.

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 PUBLIC II

Executive Summary
This report documents all the work that has been done in Task 5.1 since M18, which is the
development on the ACTC and the integration of the ASPIRE protection techniques into the
ACTC. This report documents prototype deliverable D5.05, which corresponds to the ACTC
tagged as version 1.5.0.

The major achievements during this period include

• The integration of protection techniques such as the ASPIRE Common
Communication Logic (ACCL), the code mobility technique, additional data
obfuscation techniques, additional white-box tools, the anti-debugging technique, and
several more.

• Additional support has been implemented in the ACTC such as for example support
for self-profiling

• The ACTC core itself has been improved to include for example shared library
support, and

• Addition configuration options have been implemented.

With these improvements, the project consortium has met almost all of the requirements for
Milestone 11.

The ACTC has also been deployed on the ASPIRE use-cases. For this, some adaptations to
the use-cases were needed. In particular, each of the industrial partners detailed the assets
of their use-cases. This was done much more fine-grained than the initial description as in
the ASPIRE Deliverable D1.01, and included references to the code sections, concrete
requirements on concrete assets in the code, and advice on which techniques may help to
meet these requirements. Based on this, annotations were written in the use-case source
code such that the ACTC could parse these and as a result, relevant protection techniques
can now be deployed by the ACTC on the ASPIRE industrial use-cases.

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 PUBLIC III

Contents

Section 1 Introduction .. 1

1.1 Content of the document .. 1

1.2 Overall status .. 1

Section 2 Evolution of the ACTC framework .. 3

2.1 Major Evolutions in M19-M24 ... 3

2.2 ACTC Releases .. 3

Section 3 Source-level ACTC components .. 6

3.1 Data obfuscations ... 6

3.2 Client-server code splitting ... 6

3.3 White Box Cryptography Tools ... 8

3.4 Anti-Cloning .. 8

3.5 Remote Attestation ... 8

Section 4 Binary-level ACTC components ... 12

4.1 Communication and Protection Libraries .. 12

4.2 Updates for client-side code splitting (BLP01,02,03,04,05) 14

4.3 Updates for other protections (BLP04) ... 15

4.4 Support for metrics and self-profiling .. 16

4.5 Support for profile-guided protections .. 16

Section 5 Application of ACTC on Use cases .. 18

5.1 NAGRA use case ... 18

5.1.1 Annotations ... 18

5.1.2 Adaptations to meet requirements of source-level ACTC components 18

5.2 SFNT use case ... 19

5.2.1 Annotations ... 19

5.2.2 Adaptations to meet requirements of source-level ACTC components 19

5.3 GTO use case .. 20

5.3.1 Application description .. 20

5.3.2 Annotations ... 20

5.3.3 Adaptations to meet requirements of source-level ACTC components 22

5.3.4 Adaptations to meet requirements of the binary-level ACTC components 22

5.3.5 Adaptations to the target platform ... 22

Section 6 List of Abbreviations ... 23

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 CONFIDENTIAL Page 1 of 23

Section 1 Introduction
Section Authors: Brecht Wyseur (NAGRA), Ronan Le Gallic (EDSI)

1.1 Content of the document
This report describes the advances made on the ASPIRE Compiler Tool Chain (ACTC) during
the M18-M24 period. A first report on the initial progress in the first year has been presented
by ASPIRE Deliverable D5.03 “Offline Tool Chain Report” which reflect the ACTC release that
has been delivered in M12. That release was tagged as version 0.3.0. Progress made in the
M12-M18 period was reported in Deliverable D5.04 with the prototype delivery tagged as
version 0.8.0. This report corresponds to the M24 delivery of the prototype deliverable D5.05
which is tagged as version 1.5.0.

We present in this report the advances made on the ACTC itself, details on the tools that have
been integrated and how this integration advanced, and the deployment of the ACTC onto the
use-cases. This is based on the architecture design and API descriptions of the ACTC as
presented in ASPIRE Deliverable D5.01 “Framework Architecture, Tool Flow, and APIs of the
ASPIRE Compiler Tool Chain and Decision Support System”, and on ASPIRE Working
Document WD5.02 which is an internal working document that is based on D5.01 in which all
partners keep up to date the latest definitions of their annotations and specifications of the
APIs throughout the project. This WD5.02 document serves as the reference document for all
partners in the project and reflects at all times the state of the ACTC. WD5.02 is an essential
part of the continuous integration process in the ASPIRE project.

1.2 Overall status
With D5.06, the aim is to meet milestone MS11, which is defined as follows in the DoW:

Anti-tampering is integrated from WP2, together with server-side execution and mobile
code from WP3.

This milestone is to be interpreted on top of previous milestones such as MS08 of M18. Below,
we present a list of tools that have been delivered in WP2 and WP3 and have been actually
integrated and validated in the ACTC. This can be split over

Support tools:

• Annotation Extraction tool (SLP04) [FBK]
• GrammaTech CodeSurfer (SLP05.01)
• Standard compiler, assembler and linker (patched with UGent's patches, see D5.01)

Tools related to offline protection techniques:

• WBC Annotation Extraction Tool (SLP03.01), WBC Tool (SLP03.02) and WBC Source
Rewriting Tool(SLP03.05) [FBK,NAGRA]

• Data Obfuscation (SLP05.02) [FBK]
• Native code Extractor (Diablo BLP01) [SFNT, UGent]
• Native code to binary code X-Translator (BLP02) [SFNT]
• SoftVM Integration Tool (Diablo) (BLP03-04) [SFNT, UGent]
• Anti-Debugging (BLP03-04) [UGent]
• Binary code obfuscation (BLP03-04) [UGent]

Tools related to online protection techniques

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 CONFIDENTIAL Page 2 of 23

• Client-Server Code Splitting (SLP06) [FBK]
• Code Mobility (BLP003-04) [UEL, UGent]
• Remote Attestation (SLP07, BLP03-04) [POLITO, UGent]

The references presented for each of these tools are related to the steps as described in
ASPIRE WD5.02. Those references are also used in the implementation of the ACTC and in
the directories that contain intermediate protection and compilation results as produced by the
ACTC. We refer to D5.03 and D5.04 for more details regarding protection techniques that
were integrated before M19.

For the delivery of each of the tools, the project partners provided extensive documentation to
support the integration process. As an example, the document that supports the integration for
BLP03-04 will be made available to the reviewers for the year 2 review.

With respect to the milestone delivery, almost all the tools as presented in the ASPIRE
Description of Work have been integrated, except for

• Multi-threaded crypto [GTO]
• Anti-cloning [NAGRA]

As such, the project consortium has met almost all of the requirements for MS11.

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 CONFIDENTIAL Page 3 of 23

Section 2 Evolution of the ACTC framework
Section Authors: Brecht Wyseur (NAGRA), Ronan Le Gallic (EDSI)

2.1 Major Evolutions in M19-M24
The ACTC has evolved significantly in the second half of the second year of the ASPIRE
project. Not only have protection technique tools been integrated, but a lot of additional
support and features have been implemented to facilitate the deployment of the ACTC on test
samples and the ASPIRE use cases, and to increase the usability of the tool chain such that
all project partners can use the tool chain efficiently. To further facilitate development, an
ASPIRE bug tracking tool was also put in place.

The majority of this work was executed by EDSI.

Below, we present a high level overview the major evolutions. A more complete detailed
overview can be found in the change log that is presented in the next Section and in the
ASPIRE bug tracking tool.

• Integration of tools. This was the core activity of the work on the ACTC in the M19-
M24 period. There were a number of improvements on the tools that were already
delivered in the first year of the project that required additional integration work. New
tools that were integrated included

o The ASPIRE Common Communication Logic (ACCL), to allow for
communication with the ASPIRE server

o Code Mobility
o Additional Data Obfuscation components
o Client-Server Code Splitting
o Additional White-Box Tools
o Remote Attestation
o Anti-Debugging
o The SoftVM interpreter as a part of the client-side code splitting protection
o Additional techniques in the Diablo framework

• Additional support tools, such as
o an FTP upload feature to facilitate file management for integrating server-side

generated files
o Support for self-profiling
o Adding annotation files merge

• Improvements to the ACTC core, such as
o graph generation based on .dot files

• Additional configuration options, such as
o for invoking features such as the graph generation, or
o platform configuration

2.2 ACTC Releases
Table 1 contains the change log of the various releases of ACTC delivered since M18.
Numbers refer to defaults logged in the ASPIRE bug tracker tool, and as tagged in the
releases that have been committed into the ASPIRE SVN.

The last version reported upon was tagged as version 0.8.0 and reported in D5.04. We
present the releases since, spanning the M18-M24 period.

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 CONFIDENTIAL Page 4 of 23

Releases Change Log

1.0.0

May 22,
2015

- core
 - added POST processing task (#107)
 - fixed task SLP03_04 adding include path (#109)
 - fixed task SLP03_MERGE filtering server files (#113)
 - fixed task SLP03_02 filtering empty files (#116, #122)
 config
 - added POST processing parameters (#107)
- tools/diablo
 - updated interface with "dots" folders (#124)

1.1.0

July 10,
2015

- core
 - added pragma reverse conversion in task_SLP03_05 (#131)
 - added AID generation and invocation by compilers (#133)
 - added AID option for diablo (#133)
 - added processing graph generation (using dot)
- config
 - added codesurfer tool (#132)
- tools/wbc
 - added PragmaConverterReverse tool (#131)
- tools/codesurfer
 - added Initialiser and Analyser tools (#132)

1.2.0

August 27,
2015

- core
 - added client/server code splitting steps (#139)
- tools/splitter
 - added client_server_splitter tools (#139)

An additional minor update version 1.2.1. has been delivered on September
16th, which fixes additional compilation issues.

1.3.0

October 16,
2015

1.3.0a
- core
 - added AID.txt creation
 - updated steps with "platform" paths
 - reworked client/server code splitting steps
 - fixed C compilation (#141)
- config
 - added "platform" option
- tools/diablo
 - added "-CMO" option in DiabloObfuscator tool

1.3.0b
- core
 - added offline needed object files in task_BLP03_LINK
 - fixed order of object files in linker command (#144)
- config

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 CONFIDENTIAL Page 5 of 23

 - added "accl" & "code_mobility" tools

1.3.0c
- core
 - fixed task_BLP03_LINK parameters
- tools/wbc
 - added "-l logfile.json" option to WbcSourceRewriter tool

1.3.0
- config
 - added "third_party" option
 - added "UPLOAD" options
- core
 - added task_UPLOAD
 - updated task_BLP03_LINK parameters adding OpenSLL libraries
 - reworked graph generation
- tools/splitter
 - added "–l logfile.json" option to SplitterClientGenerator tool
- tools/data
 - added "-a logfile.json" option to DataObuscator tool
- tools/ftpupload
 - FTPUpload - new

1.4.0

October 21,
2015

- config
 - added "SERVER" options
- core
 - added task_SERVER_PXX to manage server files
 - reworked task_SLP04_MERGE & task_BLP03_LINK to link only
necessary libraries

1.5.0

(ongoing)

- core
 - added task_SLP04_COPY
- tools/__init__
 - fixed folder creation
- tools/splitter.py
 - patched SplitterNormalizer command line
- tools/remote attestation

Table 1: ACTC change logs

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 CONFIDENTIAL Page 6 of 23

Section 3 Source-level ACTC components
Section Authors: Mariano Ceccato (FBK), Brecht Wyseur (NAGRA)

3.1 Data obfuscations
During the second year of the ASPIRE project, the activity on task T2.1 consisted in enhancing
the Data Obfuscation component by means of the following major extensions:

• Opaque Obfuscation Parameters: constant parameters involved into
encoding/decoding functions do not appear as literal values in the code, anymore.
They are instead encoded as opaque constants, i.e., their values are computed
dynamically at runtime. Opaque Obfuscation Parameters are generated by functions
whose code is resistant to static analysis. In fact, the analysis to be successful requires
an NP-complete problem (the k-clique problem) to be solved.

• Dynamic XOR masking: in the previous version of the Data Obfuscation component,
the parameter (mask) used in the XOR masking technique was established at
obfuscation time. In the new version, a random value for the mask is generated at each
execution. Obfuscated data observed in multiple runs are unlikely to have same values
hardening the task of the attacker to perform statistical analyses.

Annotations related to data obfuscation were extended to accommodate the set of new
configuration parameters required by the extension listed above. Consequently the annotation
parser is extended. This extended version of Data Obfuscation has been described in Section
2 of Deliverable D2.08.

3.2 Client-server code splitting
The ACTC integrates client/server code splitting tools as component SLP06 (see Figure 1).

The technique applies barrier slicing to identify the portions of the application to move, and a
set of transformations to generate the new client application and its trusted server. The two
new components will then execute these portions of code in a synchronous way to preserve
the original functionalities of the application (see deliverable D3.04 for further details).

The component (SLP06.01) responsible for the computation of the barrier slice is implemented
by means of CodeSurfer. The code in input is analyzed with a custom slicing algorithm that
performs the extraction of the barrier slice (indicated as D06.02 in Figure 1). Other data are
also extracted at this stage, to apply later code transformations in the correct way. Additional
CodeSurfer scripts perform the extraction by generating a set of fact files (D06.01).

Component SLP06.02 and component SLP03.03 generate the protected client application and
the server-side code to run the slice, respectively. The two components both apply on the pre-
processed code of the original application, while the facts (D06.01) and the barrier slice
(D06.02) extracted with CodeSurfer are used as input for the code transformations. Client
generation (SLP06.02) and server code generation (SLP06.03) are implemented in TXL. They
apply code transformations to produce the protected client application (SC07) and the server-
side sliced code (SCS01).

Integration with the ACTC works with the main splitting components described earlier, but also
with several other support steps that are required to run the whole client/server code splitting
tool in the correct way.

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 CONFIDENTIAL Page 7 of 23

Figure 1 - Client/server code splitting tool (overview)

The integration process has been conducted in incremental steps. We started by integrating
CodeSurfer and its analysis scripts, along with few other preparation steps. Preparation steps
are necessary to extract and handle information required by CodeSurfer and its scripts for
code analysis. To verify the correctness of this early stage of integration, we tested it on small
examples, to verify a) the capability of CodeSurfer to run in the integrated environment, and b)
the capability of CodeSurfer custom scripts to correctly extract data from pre-processed code.

Integration progressed by integrating the other major components of the client/server splitting
tool, SLP06.1 (client generator) and SLP06.2 (server code generator). Preparation steps have
been also integrated for components SLP06.1 and SLP06.2. At this stage, we tested the
integrated tools on examples to check the correctness of the transformations applied at
source-code level. This allowed us to discover and solve few issues (some of them are
reported in the ASPIRE bug tracking systems).

At current stage of development, the client/server code splitting tool can be used with the
examples provided by the ACTC maintainer. The tools support also annotation logging
capabilities. Annotation logging can be activated by using the flag “-l” and it produces a log file
to report all the annotations that the tool processed during its application.

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 CONFIDENTIAL Page 8 of 23

3.3 White Box Cryptography Tools
In Year 2 of the ASPIRE project, the White-Box Tool for ASPIRE (WBTA) has been improved
to support additional cryptographic primitives and mode of operations, and several white-box
implementations have been delivered. These include fixed-key white-box AES
implementations (encryption and decryption) and dynamic-key white-box AES
implementations (encryption and decryption). Preliminary work on the WBTA has been
delivered in M18 with a release tagged as Release 1.2.0 and reported in ASPIRE Deliverable
D2.04 “White-Box Crypto Library and Code Generation”, additional progress with report on the
delivery of the final WBTA and the white-box AES implementations has been delivered in
ASPIRE Deliverable D2.08 “Offline Code Protection Report”.

As reported in Section 3.3.4.3 of Deliverable D2.08, the integration of the additional
functionalities in the ACTC did not require any changes to the ACTC itself. That is because (1)
all the protection techniques are offline techniques and (2) adding additional modules and
features to the WBTA is abstracted by the source-to-source tools. The ACTC invokes these
tools. If under the hood the white-box transformation is a white-box AES implementation of a
certain type or any other white-box implementation; from the point of view of the ACTC
process this is all the same.

3.4 Anti-Cloning
NAGRA envisioned to implement and integrate the Anti-Cloning technique at the end of Year 2
of the ASPIRE project, as was described in the ASPIRE Description of Work. However, due to
a priority shift, where NAGRA focused more on other work packages, the work on the anti-
cloning technique only concerned the finalization of the design and planning of implementation
and integration activities. This is described in ASPIRE Deliverable D3.04 “Intermediate Online
Protections Report”, Section 6.

Early in Year 3, NAGRA will implement and integrate the anti-cloning technique. This minor
delay does not introduce any issues in the project planning because there are no
dependencies on the anti-cloning technique except for the validation and the security
evaluation work which is planned to be executed after the updated delivery date of the
technique.

3.5 Remote Attestation
In Year 2 of the ASPIRE project, remote attestation techniques have been developed. The tool
support to insert the necessary remote attestation code functionality into the application to be
protected has been added to the ACTC. Currently, it supports static remote attestation.

Static remote attestation has already been presented at the M18 review as an isolated
prototype and as delivered in Section 5 of deliverable D3.02. Since then, static remote
attestation has been extended and integrated in the ACTC at M24. Updates to the static
remote attestation are reported in Section 5 of deliverable D3.04. During the last 6 months, the
isolated prototype has been extensively tested on sample applications to guarantee the
correctness of the remote attestation protection. Dynamic remote attestation is still an isolated
prototype (under testing) and it is not reported here.

Protection-specific annotations related to remote attestation have been extended to steer the
ACTC the application of static remote attestation correctly. Annotations as previously
documented in deliverable D5.01 were mainly tailored for dynamic remote attestation, i.e.,
based on invariants monitoring. Consequently, the annotation parser has been extended to
extract the new remote attestation annotations.

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 CONFIDENTIAL Page 9 of 23

The ACTC integrates a first remote attestation tool in the source code processing step SLP07.
With the inclusion of that step, the overall source-level tool flow now looks as depicted in
Figure 2. SLP07 is invoked after all other source-level protections have been applied.

SLP07 is executed as a Bash script. SLP07 selects the attestator to add into the application as
part of the protection. The Attestator to insert is specified in the source code annotations. If an
annotation does not specify the Attestator to use, two case are considered. If no annotations
specify an Attestator, a default Attestator is inserted. If one or more annotations specify the
(same) Attestator to use, this Attestator is also used for other annotated code areas that do not
specify Attestators. However, if two or more different Attestators are specified by annotations,
the RA tool stops and reports an error, as the current tool does not support multiple attestators
yet.

The remote attestation script takes as input the JSON file containing the extracted annotations
(the D01 annotation facts). The script first invokes an interpreter, written in Java and released
as a JAR executable archive. The interpreter parses the JSON annotations file and deduces
the Attestator to link into the application. Once the Attestator to deploy is identified, the script
selects the object files that implement the identified Attestator among a set of precompiled
Attestators object files. The set of all the Attestators object files is represented as BC11 in
Figure 3. The script copies the selected object file into the output folder (BC12). Together with
the attestator object file, the script also copies another object file that implements the
functionality common to all the Attestators. Together, these two files form BC12, that will be
linked into the program as explained in Section 4.

The SLP07 script is portable and can be executed on any platform where a Bash shell and
Java (at least version 1.5) are installed. At the current stage of development, the remote
attestation tool can be used with the examples provided by the ACTC maintainers. They are
now also being tested (and debugged if necessary) for the ASPIRE use cases as part of the
intermediate validation of WP1 Task T1.5.

As explained in Section 4, a second remote attestation processing step is implemented in the
binary-level part of the ACTC, in BLP04. In that step, the Diablo-based rewriter determines the
exact location of the code areas to attest in the memory space of the protected binary or
library.

Further details on the static remote attestation tool are available in deliverable D3.04, Section
5.3.3.

The tools do not yet support annotation logging. That support will be added during Y3. In
addition, as agreed during the last ASPIRE workshop, the tool will be updated with support for
multiple attestators, better integration with code mobility, and also attestation capabilities for
read-only data sections (to meet requirement REQ-NFS-008, see D1.03).

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 CONFIDENTIAL Page 10 of 23

Figure 2 - Overall source-level tool flow of the ACTC after the inclusion of remote attestation

SC01

source code
.c|.h|.cpp|.hpp

SLP01

source code annotation

SC02

annotated source code
.c|.h|.cpp|.hpp

SLP04

annotation extraction
TXL

SC07

.cpp|.hpp

SC03

.c|.h

SLP03

white-box crypto

SLP02

preprocessor

SC04

.i

D01

annotation facts

SLP05

data hiding

SC05

.i

SC06

.i

SLP06

client/server
code splitting

SC07.01

.i

SLP07

attestator selector
BC12

.o

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 CONFIDENTIAL Page 11 of 23

Figure 3 – Remote attestation tool

SLP07

attestator selector

BC11

remote attestation objects
.o

D01

annotation facts

BC12

remote attestator
.o

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 CONFIDENTIAL Page 12 of 23

Section 4 Binary-level ACTC components
Section Authors: Bart Coppens, Bert Abrath, Jens Van den Broeck, Bjorn De Sutter (UGent)

4.1 Communication and Protection Libraries
In the previously reported and developed versions of the ACTC (see deliverables D5.01,
D5.03, D5.04), the binary-level component BLP03-04 was responsible for linking libraries and
objects that implement precompiled parts of the ASPIRE protections into the protected
applications. Those libraries and objects were numbered BC09 before.

This design decision has been revised during year 2. In the updated design, the precompiled
libraries and object files now numbered BC10 (everything except remote attestation) and
BC12 (precompiled remote attestators and support code, as selected from BC11 during the
remote attestation compilation step SLP07, see Section 3.4) are linked into the protected
application as part of the standard compilation & linker process. Figure 4 visualizes this. This
figure replaces Figure 6 of D5.03 and Figure 10 of D5.01.

The main reason for this design change is that it simplifies the overall tool flow design, making
it easier to compose protections and to compute complexity metrics.

Android and Linux versions of those libraries are available in the project's shared build VM,
and the ACTC feeds the linker the appropriate files based on the presence of annotations in
the annotation facts file D01 corresponding to the ASPIRE protections that come with libraries.
The ACTC chooses Android or Linux versions based on settings in the JSON ACTC
configuration file.

Currently, libraries and objects are available for

- SoftVM: the interpreter to be embedded as part of the client-side code splitting
protection (see D2.08 Section 4 and D1.04 v2.0 Section 3.3).

- Code Mobility: the binder and downloader (see D3.04 Section 3 and D1.04 v2.0
Section 3.4)

- Remote attestation: communication with the server, attestators, reaction logic, etc.
(see D3.04 Section 5 and D1.04 v2.0 Section 4)

- the client-side ASPIRE Common Communication Logic library (see D1.04 v2.0
Section 2) and third party libraries this library relies on (openssl, curl)

- embedded self-debugger of the anti-debugging protection (see D2.08 Section 6.1 and
D1.04 v2.0 Section 3.2)

The precise list of all files (libraries and individual object files is as follows:
./xtranslator/obj/android/vmExecute.o
./xtranslator/obj/android/vm.a
./xtranslator/obj/linux/vmExecute.o
./xtranslator/obj/linux/vm.a
./xtranslator/tags/2.4.5/obj/vmExecute.o
./xtranslator/tags/2.4.5/obj/vm.a
./code_mobility/downloader/obj/android/downloader.o
./code_mobility/downloader/obj/linux/downloader.o
./code_mobility/binder/obj/android/downloader.o
./code_mobility/binder/obj/android/binder.o
./code_mobility/binder/obj/linux/downloader.o
./code_mobility/binder/obj/linux/binder.o
./3rd_party/openssl/android/lib/libssl.a
./3rd_party/openssl/android/lib/libcrypto.a
./3rd_party/openssl/linux/lib/libssl.a

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 CONFIDENTIAL Page 13 of 23

./3rd_party/openssl/linux/lib/libcrypto.a

./3rd_party/curl/android/lib/libcurl.a

./3rd_party/curl/linux/lib/libcurl.a

./ACCL/obj/android/accl.a

./ACCL/obj/linux/accl.a

./ACCL/curl/android/libcurl.a

./ACCL/curl/linux/libcurl.a

./RA/obj/android/libattestator_1.o/RA/obj/android/libattestator_40.o

./RA/obj/android/libracommon.o

./RA/obj/linux/libattestator_1.o/RA/obj/linux/libattestator_40.o

./RA/obj/linux/libracommon.o

The BLP03-04 component (based on Diablo) has been updated to ensure that the linked-in
libraries and objects are not removed from the program during Diablo's initial construction of
the program's control flow graphs, despite the fact that some of the code in those libraries and
objects is not yet reachable in the program during that construction.

Figure 4 - Updated compiler & linker phase of the ACTC.

Of course the binary part of the ACTC is updated accordingly. The overall picture now looks as
shown in Figure 5. This figure replaces Figure 11 of D5.01. BLP01 still consists of the
selection of native code fragments to be X-translated to bytecode, BLP02 still performs the
(initial) X-translation, BLP03 is responsible for integrating the bytecode and the stubs that
replace the translated native code, and BLP04 is responsible for performing the remaining
transformations. BLP03 and BLP04 are in fact executed in one run of a Diablo-based binary-
rewriting tool, which is hence called BLP03-04.

SC07

.cpp|.hpp
SC07.01

.i

compiler
llvm 3.4

SC08

.s

assembler
binutils 2.23.2

BC02

binary | library
a.out | liba.so

BC08

object code
.o

linker
binutils 2.23.2

D02

map file
a.out.map | liba.so.map

BC10

ASPIRE protection libs
.o | .a

BC12

remote attestators
.o

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 CONFIDENTIAL Page 14 of 23

BC09 is still present because BLP03-04 requires some external object files to produce self-
profiling versions of the binaries/libraries as needed for performance estimation, profile-based
protection optimization, and for computing dynamic security metrics.

Figure 5 - Four steps of the binary part of the ACTC.

4.2 Updates for client-side code splitting (BLP01,02,03,04,05)
The SoftVM (previously in BC09, now in BC10) and cross-translator (BLP02) have been
upgraded from a custom Java-based VM to an LLVM-based lli provided by SFNT (see also
D2.08 Section 4).

A number of modifications were necessary to the Diablo-based tools BLP01 and BLP03-04 to
support a number of API changes for interacting with this new SoftVM implementation. The
most important one is the invocation of second X-translator BLP05, as shown on the left of
Figure 6.

The LLVM-based lli VM supports bytecode fragments with multiple exit points, of which the
(position-independent) continuation addresses in the native code are hidden in the bytecode.
Initially, as BLP02, the X-Translator generates bytecode BC03 that only holds placeholders for
those continuation addresses: As BLP03 and BLP04 have not been executed yet, the
addresses in the final binary/library BC05 are simply not known yet.

One option would have been to let Diablo, as part of the BLP03 integration of the generated
bytecode, fill in the addresses in those placeholders. However, that would make BLP03-04's

D01 - D02

annotation facts + map file

BLP01
extraction

BLC02

extracted code

BLP02

code generation

BC03

additional code

BC02 - BC08

binary | library - object files

BLP03

code integration

BC04

protected binary / library

BLP04
binary code
protection

BC09

additional code

BC10

ASPIRE protection libs
.o | .a

BC12

remote attestators
.o

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 CONFIDENTIAL Page 15 of 23

internal operation dependent on internal aspects of the VM and of the X-translator, and
therefore violate the separation of concerns that we strive for in the plugin-based ACTC
design.

We therefore decided to implement an alternative approach, in which BLP03-04 simply
invokes the X-translator again, now as BLP05 and via a slightly different API. This invocation
is performed when the final layout of the binary has been determined as part of BLP04, and
the final addresses of the continuation points are passed to the X-translator, such that it can fill
in the placeholders itself, using whatever (diversified) encoding it chooses.

This invocation of the X-translator as BLP05 is visualized in Figure 6. This figure replaces
Figure 16 in D5.01 and Figure 9 in D5.03.

Figure 6 - Final tool BLP03-04 invoked in the ACTC to deploy several protections.

4.3 Updates for other protections (BLP04)
Compared to Figure 16 in D5.01 and Figure 9 in D5.03 that visualized BLP03-04 in the
previous iterations of the ACTC, Figure 3 is much more complex. This of course results from
the many protections that have been integrated into the ACTC from M19 to M24 of the project.

We have chosen the following order to apply the many transformations needed to deploy the
protections

1. Code factoring (to hide and blur the boundaries between application code (originating
from BC08) and code of the different protections (originating from BC10). See D2.0X
Section X for more information about this form of obfuscation contributed in WP2 Task
T2.4 by UGent.

2. Control flow obfuscations (opaque predicates, branch functions, control flow
flattening). See D2.06 and D2.08 Section 5.1.1 for more information about these forms
of obfuscation contributed in WP2 Task T2.4 by UGent.

BC08

object code
.o

BLP03 - BLP04

binary protector
diablo

BC04

binary | library
c.out | libc.so

D04

map file
c.out.map | libc.so.map

linker script

D01

annotation facts

BC10

ASPIRE protection libs
.o | .a

BC03

bytecode + stubs
.o

BC05.01

protected binary - library
d.out | libd.so

D05.02

assembler list
d.out.list | libd.so.list

BLP05

X-translator
.so

BC09

additional code
.o

D05.01

logs

D05.03

CFGs
.dot

D05.04

mobile
chuncks

D05.05

Remote
attest. data

D05.06

metrics
data

BC05.02

self-profiling binary - library
e.out | libe.so

D11

profile information

BC12

remote attestators
.o

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 CONFIDENTIAL Page 16 of 23

3. Anti-call back stack checks. See D1.04 v2.0 Section 4.3 and D2.08 Section 6.2 for
more information about this protection contributed in WP2 Task T2.5 by UGent.

4. Anti-debugging. See D1.04 v2.0 Section 3.2 and D2.08 Section 6.1 for more
information about this protection contributed in WP2 Task T2.5 by UGent. A first
version of anti-debugging has been implemented and is integrated in the ACTC. This
version is capable of moving regions that do not make any function calls to the
debugger context.

5. Code Mobility, including the extraction of mobile blocks into files D05.04. See D3.04
Section 3 and D1.04 v2.0 Section 3.4 for more information about this protection
contributed in WP3 Task T3.1 by UEL. This protection is integrated completely.

6. Layout randomization. See D2.06 for more information about this form of code
obfuscation contributed in WP2 Task T2.4 by UGent.

7. Remote attestation data. For this protection, the Area Data Structures are produced
in data files D5.05. These require the final code layout. It is for that reason that this
protection is applied after layout randomization. See D3.04 Section 5 and D1.04 v2.0
Section 4 for more information on this protection contributed in WP3 Task T3.2 by
POLITO with some help from UGent. Remote attestation has been integrated in the
ACTC. A version where multiple attesters can be present in the protected binary is
being worked on.

8. Bytecode re-X-translation (BLP05), see Section 4.2 where it was already noted that
this translation also requires the final code layout.

To enable these protections not only on the application code (from BC08) but also on the code
implementing the other protections (from BC10), the ACTC combines the annotation fact file
D01 received from the source-level part of the ACTC (and hence limited to code from BC08)
with an externally defined fact file that describes which protections to apply onto the pre-
compiled libraries.

All support for the protections in BLP03-BLP04 based on Diablo has been implemented and
integrated by UGent.

During the integration of the different protection techniques, we discovered some issues in the
implementation of the binary control flow obfuscations. While these caused no problems when
applying only control flow obfuscations, it was impossible to combine control flow obfuscations
with some other binary protection techniques. We fixed these issues; now we can combine
binary control flow obfuscations and other protection techniques in the ACTC.

Throughout all protections, detailed logging information is produced in separate log files
D05.01, one per protection. Moreover, textual, machine readable versions of the control flow
graphs of the code transformed as part of the protections are produced for every
transformation in the form of the D05.03 .dot files.

4.4 Support for metrics and self-profiling
On top of the support for the individual protections, UGent integrated the necessary support for
metrics and self-profiling as described in D4.03 Section 4.2 into BLP03-04. The
instrumentation mentioned for item 2. in Section 4.2.2 of D4.03 is performed in between the
above steps 4 and 5. The reason is that the basic block structure of the binary code (i.e., the
granularity at which instrumentation operations are inserted) is finalized in step 4. From step 5
on, native code is converted and moved around, but the structure remains fixed.

4.5 Support for profile-guided protections
BLP03-04 can also read in profile information (obtained from an application version to which
no binary-level protections had been applied yet). That information is represented by D11 in
Figure 6.

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 CONFIDENTIAL Page 17 of 23

This profile information is already used for two different purposes. First, it is used to compute
dynamic complexity metrics as described in the first of two mechanisms in Section 4.2.2 of
D4.03. Furthermore, support for profile-guided annotation region transformations has been
implemented in the Diablo tools. This means that when the binary control flow obfuscations get
an execution profile as an additional, optional input, the obfuscations will be applied on code
regions that are executed the least. This reduces the overhead of the obfuscations on the
protected application. Results obtained with this capability have been reported in D2.08
Section 5.1.1.

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 CONFIDENTIAL Page 18 of 23

Section 5 Application of ACTC on Use cases

5.1 NAGRA use case
Section Authors: Brecht Wyseur (NAGRA), Rémi Cohen-Scali (NAGRA)

With respect to having the NAGRA use case compiled by the ACTC, the activities are related
to adding annotations to the use case source code, and modifications to make sure that the
use case can be used by all partners.

The correct application is being assessed as a part of the intermediate validation that will be
reported in D1.05.

5.1.1 Annotations
Annotations have been added based on an asset description document that was produced.
This document is an internal working document, referred to as ASPIRE Working Document
WD6.02 “NAGRA Use Case Assets”, which is attached as an annex to this deliverable.

We refer to Section 6.1 in D1.05 for a detailed description of the protection selection process.

5.1.2 Adaptations to meet requirements of source-level ACTC components
Several additional adaptations on the use case were done to make sure that the academic
project partners could easily use the NAGRA use case and test protection techniques thereon,
and to meet demand for other activities in the project, such as for example performance tests
for WP4.

To facilitate performance tests, it was required that the core libraries from the NAGRA use
case could be invoked from the command line. The original use case implementation launched
as a graphical user interface and the libraries in the Android Media Framework were invoked
from this interface. Additional tests were implemented to allow for direct command line
invocation.

Bug fixes were also implemented and a new SDK was delivered to the consortium as part of
release 1.2.0.2 of the use case.

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 CONFIDENTIAL Page 19 of 23

5.2 SFNT use case
Section Authors: Werner Dondl (SFNT)

5.2.1 Annotations
Annotations have been added, following the process described in D1.05 section 6.1 and for
using the protections marked for the SFNT use case in D1.05 section 6.2.

A more detailed description of assets and protections can be found in WD6.03.

5.2.2 Adaptations to meet requirements of source-level ACTC components
In order to protect a cryptographic key using white-box cryptography, changes to the source
code had to be made. We have split out encryption routines with the so called “root key” which
are implementing the AES XTS mode, replacing the AES single block encryption functionality
with calls to the WBC functions.

Small changes also have been made to support data obfuscations. Here, sometimes strings
had been directly passed to subroutines and not be declared as explicit variables. The explicit
declaration is necessary to add the according annotations.

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 CONFIDENTIAL Page 20 of 23

5.3 GTO use case
Section Authors: Jerome d’Annoville (GTO)

5.3.1 Application description
This is a quick description of the GTO use case to understand this section. More details are
available in ASPIRE Deliverable D1.01, Section 4 Software-based security for credentials. The
purpose of application is to generate a One Time Password (OTP) that user will enter to
authenticate on a web site. User is provided with a registration number and a Personal
Identification Number (PIN) offline.

When the application is installed the user has to enter is registration number that is sent to the
Application Server. The server returns a Device Key that is stored. This key enables to
generate the OTP together with a counter that is initialized to zero. When the Device Key and
the counter value are stored on the device the provisioning phase is finished. The user may
now ask for an OTP. He will be asked to authenticate with his PIN and an OTP is generated if
authentication succeeds.

The application is deployed with a Master Key. It is derived during the provisioning phase to
retrieve a Session Key. The Device Key used for the OTP calculation is sent encrypted with
this Session Key by the server.

5.3.2 Annotations
The same portion of code can be protected by different protections. This composability of the
protections is studied in the reference architecture; it may have a cumulative effect or neutral
to negative effect. In the table below, each line describes a protection to be applied on a
portion of the code. Each line has an ID to document possible conflicts.

Protection Asset ID Purpose Location

Code splitting PIN cs1 Prevent attacker to tamper with
comparison result

PINchecker

Master
Key

cs2 Whole Master Key value retrieval on
server to avoid attacker to
understand the logic.

FBK proposes to put several portions
of code from the same function on
the server:

• Part four of the Master key
assignment to Master key

• Final Master key processing

MasterKeyBuilder

Master
Key

cs3 Hide the retrieval of part1,2 and 3 of
the Master Key

ProvisioningWrapper

Device
Key

cs4 Hide the key derivation logic Key Derivation
Function

Master
Key

cs5 Concatenation function used to
prepare the argument of the
derivation function

Utils

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 CONFIDENTIAL Page 21 of 23

Data
obfuscation

Master
Key

do1 Protect a part of the Master key
stored in a static variable initialized
with an immediate value

MasterKeyBuilder

do2 Protect immediate value on the call
key derivation function

Conflicts with cs2 protection

MasterKeyBuilder

Code Mobility Storage
Key

cm1 Hide the code that handles the data
saving/restoring processing of the
application

prepare_data_after_pro
visioning,
update_stored_data,
extract_stored_data,
derive_storage_key in
Storage

Binary
Obfuscation

Session
Key and
code
logic

bo1 All function used during the
communication with the application
server can take advantage of the
obfuscation. Still, coding style with
small functions doing atomic
processing would advantage the
attacker.

DeriveKeyBuilder,
PayloadBuilder,
CheckIntegrity,
ReponseBuilder,
Communication in
Provisioning

Anti-
debugging

Device
Key
Counter
value

ad1 Protect the OTP calculation logic.
The asset here is more the logic than
the key and the counter values

Generate_otp in
OtpGenerator

Call stack
check

Applicati
on code
isolation

csc1 The application has to be responsive
then this protection will be used in
the provisioning part, not in the OTP
generation part.

Provisioning

Code Guards Applicati
on code
integrity

cg1 Issue that this protection should be
associated with Remote Attestation
to be that is not very adequate for
this use-case

Provisioning

Multi-
threaded
crypto

Device
Key

mt1 Hide the Device key used to
generate the OTP

AES_cbc_encrypt in
AES

Remote
Attestation

Hash
values

ra1 Not considered in a first step
because of OTP generation part is
offline while this protection needs a
connection with the server.

Now reconsidered for the
provisioning step, to be combined
with Code Guards.

Asset to be protected are the hash
values of the Guards, not an asset of
the application

Provisioning

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 CONFIDENTIAL Page 22 of 23

Client-side
code splitting

Master
Key

vm1 Not considered in a first step
because of competition between
Safenet and Gemalto.

Master key retrieval process is a
good candidate.

Conflicts with do2, cs2.

MasterKeyBuilder

White-box
cryptography

 Not considered because of potential
Intellectual Property issue between
Nagra and Gemalto companies

Table 2: Protections on assets

5.3.3 Adaptations to meet requirements of source-level ACTC components
The application is made of Java and C files. The Java part is the Android activity and the
graphical user interface management. Three C files implement the logic of the application that
is the provisioning, the PIN control and the OTP generation. These files are called by the Java
part. These three files call other C files gathered in a library that provides services. To
implement the cryptography and the HTTP communication this library calls existing external
libraries that are curl and openssl.

In a first phase, all C files have been compiled together with ACTC into a single library. It was
not a good idea because curl and openssl are large libraries with some perl code used here
and there to configure the source files according to the settings. Some strange syntactic
constructions generated by the pre-processor were not well handled by TXL and need to be
circumvented. Conclusion of this phase is that the purpose of ACTC is to chain the various
tools but it hasn’t the flexibility to be easily inserted in an existing build.

A drawback of ACTC is that there are many file copies between the different steps and this
clean design leads to average performance when a significant number of files have to be
processed. ACTC is like a new compiler where the main objective is to generate files able to
be executed and performance would be considered in an industrialisation phase.

In a second phase, the curl and openssl libraries are produced separately and only the
application C code and its library are compiled by ACTC.

5.3.4 Adaptations to meet requirements of the binary-level ACTC components
Only configuration constraints required because Diablo needs the linkage map as an input
together with the compiled library. Other requirement is that files have to be compiled with the
debug option because these debugging data are exploited by Diablo.

5.3.5 Adaptations to the target platform
The cross compilation of the curl library is not completely supported and the size of long has to
be adapted, so two distinct files curbuild-32.h and curlbuild-64 have to be provided. This is not
an ASPIRE issue.

D5.06 - Preliminary ASPIRE Online Protection Tool Chain Report

ASPIRE D5.06 CONFIDENTIAL Page 23 of 23

Section 6 List of Abbreviations

ACTC ASPIRE Compiler Tool Chain

ADSS ASPIRE Decision Support System

AES Advanced Encryption Standard

APK Android Application Package

ASPIRE Advanced Software Protection: Integration, Research and Exploitation

CBC Cipher Block Chaining

DRM Digital Rights Management

DoW Description of Work

ELF Executable and Linker Format

GUI Graphical User Interface

OTP One Time Password

PIN Personal Identification Number

SQL Structured Query Language

WBC White Box Cryptography

