

Advanced Software Protection:
Integration, Research and Exploitation

D4.05
Public Challenge

Project no.: 609734
Funding scheme: Collaborative project
Start date of the project: 1st November 2013
Duration: 36 months
Work programme topic: FP7-ICT-2013-10

Deliverable type: Report
Deliverable reference number: ICT-609734 / D4.05 / 1.0
WP and tasks contributing: WP4 / Tasks 4.5
Due date: M30 / April 2016
Actual submission date: 15 July 2016

Responsible Organization: UGent
Editor: Bart Coppens
Dissemination Level: Public
Revision: 1.0

Abstract:
We have designed a set of challenges for the public challenge, implemented these, and
integrated them into a website that attackers can sign up to. The website has been released
on https://bounty.aspire-fp7.eu/. Attackers can win a prize of up to €200 for breaking one of
the 8 challenges.
Keywords:
Public challenge, website

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC I

Editor
Bart Coppens (UGent)

The ASPIRE Consortium consists of:

Ghent University (UGent) Coordinator & Beneficiary Belgium

Politecnico Di Torino (POLITO) Beneficiary Italy

Nagravision SA (NAGRA) Beneficiary Switzerland

Fondazione Bruno Kessler (FBK) Beneficiary Italy

University of East London (UEL) Beneficiary UK

SFNT Germany GmbH (SFNT) Beneficiary Germany

Gemalto SA (GTO) Beneficiary France

Coordinating person: Prof. Bjorn De Sutter
E-mail: coordinator@ASPIRE-fp7.eu
Tel: +32 9 264 3367
Fax: +32 9 264 3594
Project website: www.ASPIRE-fp7.eu

Disclaimer
The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement n°609734.
The information in this document is provided as is and no guarantee or warranty is given that
the information is fit for any particular purpose. The user thereof uses the information at its
sole risk and liability.

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC II

Executive Summary
In this Deliverable, we document how we designed and implemented the public challenge for
the ASPIRE project. Initially, we had foreseen to select a pre-existing piece of software to
protect with the ASPIRE protections and to distribute this. As this turned out to be not
possible, we came up with a new design for the public challenge, where a set of 8 smaller
programs is protected. The challenge will run from August 2nd until September 30th.

We automated the generation of randomized instances of these challenges, and integrated
this in a custom website in which attackers can request new instances to break.

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC III

Table of Contents

 Introduction .. 1

 Public Challenge Design ... 2

2.1 Introduction ... 2

2.2 Public Challenge Protections .. 2

2.3 Challenge individualization ... 4

 Website ... 5

 Rules ... 8

4.1 Introduction and rationale ... 8

4.2 General terms and conditions for the ASPIRE Public Challenge 9

 List of Abbreviations ... 11

Appendix A Challenge source code.. 12

A.1 Challenge 1 .. 12

A.2 Challenge 2 .. 14

A.3 Challenge 3 .. 16

A.4 Challenge 4 .. 17

A.5 Challenge 5 .. 19

A.6 Challenge 6 .. 22

A.7 Challenge 7 .. 26

A.8 Challenge 8 .. 29

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC IV

List of Figures
Figure 1 Landing page of the public challenge website ... 5

Figure 2 Dashboard for logged-in users ... 6

Figure 3 Public ranking ... 6

Figure 4 Page containing the Terms & Conditions ... 7

List of Tables
Table 1 Protections applied to the challenges .. 2

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 1 of 30

Introduction
Section Author:

Bart Coppens (UGent)

This report documents Deliverable D4.05 of type prototype (consisting of protected binaries
to attack, a website and scripts to deliver them, scripts to handle responses, and a database
to track downloads and responses) We describe how the Public Challenge was designed
and implemented. This Document is based on the internal Working Document WD40.5.

Due to unforeseen use of extra resources from UGent for other tasks (such as the
preparation of the tiger experiments of Task T4.4), this Task T4.5 was started significantly
later than originally planned. While the prototype deliverable D4.05 contains a public
component, that is, the public challenge itself, the design decisions should be kept from the
attackers until the end of the public challenge. This is why this corresponding document is
classified as confidential.

This document is structured as follows. First, in 0 we describe how we designed the different
challenges. Then, in 0, we describe how the attackers will interact with us using a website we
designed for the public challenge. Finally, in 0, we describe how we arrived at the terms and
conditions that the attackers will have to follow.

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 2 of 30

Public Challenge Design
Section Author:

Bart Coppens (UGent)

1.1 Introduction
In the original ASPIRE Description of Work, we had foreseen to extend the Anti-Cheat
Engine (ACE) for the Unreal game engine by protecting it with the ASPIRE protections.
However, the author of ACE, Stijn Volckaert, was no longer able to contribute to the public
challenge because he had already started a post-doctoral fellowship at the University of
California, Irvine when Task T4.5 started. Thus, we needed to start from scratch with the
public challenge design.

Because external attackers need to attack the public challenge, the goal of the challenge
needs to be perfectly clear. That is to say, the application to be protected and attacked
should contain very concrete assets that we can concisely describe and that should be easy
for an attacker to verify as correctly attacked. While the ASPIRE Use Cases seem like the
perfect match, in the end we do not use any of these due to IP concerns.

We instead decided on using a set of self-written target applications. The asset to be
protected in all these cases is a random string of 64 characters in length, which we will refer
to as the key. As valid keys can contain both upper and lower case characters and numbers,
the search space is sufficiently large enough that attackers will not able to brute force the
correct number. The command-line program itself checks its first argument against this key,
and prints out whether or not the argument matches the key. Thus on entering the correct
key as input, it is immediately clear that the attack was successful.

The reason for deciding on a small set of 8 challenges is that then we can easily deploy
different protection combinations to evaluate and compare these combinations individually.

Even though the main focus of the ASPIRE project is on protecting Android binaries, we
decided to also offer GNU/Linux binaries of all challenges in addition to Android binaries.
This way, experienced hackers and reverse engineers who are skilled in GNU/Linux will not
be put off by the prospect of having to port their hacking tools and environment to an Android
environment.

1.2 Public Challenge Protections
Table 1 provides an overview of the challenges and their combinations of protections.
Besides the indicated protections, all challenges are protected with control-flow obfuscations
(opaque predicates, branch functions and function flattening), call stack checks, and offline
code guards.

Table 1 Protections applied to the challenges

Challenge

Number

Data
Obfuscation

Anti-
Debugging

Remote
Attestation

Code
Mobility

Client-
Server
Split

SoftVM WBC

1 X X X

2 X

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 3 of 30

3 X X

4 X X

5 X X

6 X X

7 X

8 X X

Even though the asset is the same in all challenges (i.e., a key with the same function;
obviously the key value differs from binary to binary), and the program I/O behaviour is the
same in all challenges, we have decided to tailor the source code of each challenge to suit
the protections that are applied in each of those challenges. We do so because we think that
different protection combinations can yield different attack paths.

For each of the challenges summarized in Table 1, we arrived at the following source code
descriptions and protections that have to be applied:

1. In this challenge, an array is constructed by a block of code that is protected with the
anti-debugger component. Next, mobile code is used to XOR this array with mobile
data, and this mobile code then calls the strncmp C function. Attackers might try to
attack this by hooking the strncmp function.

2. The key is split into 16 integers, each of which is encoded using the Residue Number
Coding. The input to the program is also split into 16 integers, and these integers are
then compared with the RNC-encoded key. Attackers might try to find the key by

3. This challenge also uses the RNC data obfuscation, and has anti-debugging applied
at the entry of the main function and to the RNC decoding function.

4. The main function is protected by moving it into the SoftVM.
5. The key is used as ciphertext for WBC with a fixed key. This is then ‘decrypted’ when

a challenge instance is generated, and the decrypted key is stored in the challenge
instance. When run, the challenge similarly decrypts its input and compares it to the
stored decrypted key. Furthermore, the WBC code has been protected with anti-
debugging.

6. The key is checked in two parts: the first half of the key is checked byte per byte. The
code that checks the key performs a very long delay loop (a double nested loop, both
of which only finish after looping through 264 values) and a sleep of about 11 days
after each character is checked. These delays are to encourage the attackers to try to
modify the binary to remove or shorten the delay to verify the key, which is protected
with Remote Attestation. The next part of the binary is protected using mobile code,
so that if the RA component detects tampering, the protection server can trigger a
tamper response in the code mobility component.

7. This challenge starts from code that has ‘ugly’ control flow at the source level. Then
this code has binary control flow obfuscations applied, and is furthermore protected
with anti-debugging.

8. The code is protected with client-server code splitting, where each character is sent
individually to the server, and the client only asks for the correctness of the next key
character once the previous one was correct. One way that we think this can be
attacked is by a side channel: attackers can deduce whether a single character is
correct by observing the time it takes the challenge to complete, or by observing the
amount of communication happening between the client and the server.

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 4 of 30

The full sources of these challenges (including their annotations) have been included in
Appendix A.

1.3 Challenge individualization
Some of the challenges have been protected with networked anti-tampering protections. In
particular, in the case of a failed Remote Attestation request, the server will instruct the code
mobility server to trigger its anti-tamper response (which results in the code mobility no
longer sending back any code). Thus, once an attacker tries circumventing the RA and fails,
the circumvented challenge will no longer function. If we would send all attackers the same
challenge binary, no one would be able to correctly run the application anymore. Thus, we
have to provide attackers with individualised copies of the challenges. Furthermore, we want
to provide attackers the opportunity to learn from their mistakes, and send them fresh,
working copies of a challenge if the anti-tampering has been triggered. Moreover, we wat to
enable collusion attacks, in which attackers attack multiple instances of an application
protected with the same protections (possibly applied differently) but different key values. We
decided to allow attackers to request a limited number of fresh instances of each challenge.

To allow for this, we implemented the following flow:

1. Whenever we create a new instance of a challenge, we in a way that the ACTC will
assign a unique and reproducible identifier to that challenge instance.

2. This identifier is used as the initialisation to generate the randomness for the key
asset in the challenge.

3. This identifier is also used in the control flow obfuscation and layout randomization of
the binary rewriting step in the tool chain. This means that every instance will be
completely randomized at the binary level. We verified that the binaries indeed differ
at the binary level by comparing some different challenge instances with the binary
diffing tool BinDiff.

4. When an instance is produced, it is automatically tested on either an Android board or
on a GNU/Linux board as appropriate. We do so as a quality assurance, to ensure
that we do not provide non-working binaries to attackers.

We pre-generate a set of challenge instances, which are put automatically into a database
that is accessed by the public challenge’s website. Whenever an attacker requests a new
challenge, the database is queried and the next available binary is mailed to the requesting
attacker. In case the number of challenge instances is running low, the public challenge
website admins are sent an e-mail, that allow us to generate additional instances.

In a database, we furthermore store hashes of the correct keys for each challenge instance.
To verify whether or not a user has cracked an instance, he will submit the combination of
the name of the broken challenge instance, and the matching key. We can then query the
database for this information and easily check whether the attacker succeeded in recovering
the key. Once we know that an attack succeeded, we also know who the successful attacker
is, as challenge instances are linked to users (and their e-mail addresses).

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 5 of 30

Website
Section Author:

Bart Coppens (UGent)

Attackers will interact with us through a public website we released on https://bounty.aspire-
fp7.eu/. Figure 1 shows the site’s landing page for new users. It contains a short description
of what the goal of the challenge is, and also contains the registration form where attackers
can sign up, and a ‘Log in’ button that can be used for registered attackers. The banner of
the page also contains links to the Terms & Conditions, to a Ranking page, and to a Contact
page.

Figure 1 Landing page of the public challenge website

When a user has logged in, surfing to the same landing page presents the user with a dash
board, which is show in Figure 2. From this screen, attackers can request new challenge
instances, and submit their solutions to one of their challenge instances.

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 6 of 30

Figure 2 Dashboard for logged-in users

Once a user has successfully broken a challenge, this will show up on the public ranking, as
is shown in Figure 3. Finally, Figure 4 shows the page with the Terms & Conditions.

Figure 3 Public ranking

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 7 of 30

Figure 4 Page containing the Terms & Conditions

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 8 of 30

Rules

1.4 Introduction and rationale
Even though we want to motivate the attackers to break the challenges, their doing so must
be somewhat orderly if we are to learn anything from them. Thus, all attackers must follow a
set of ground rules when participating in the public challenge. These ground rules were
codified into the ‘General terms and conditions for the ASPIRE Public Challenge’, which is
shown verbatim in the next section.

To arrive at these precise rules, we first discussed some general requirements in a Steering
Board meeting:

1. Motivate attackers by appealing to their pride, by listing their name immediately on a
public leader board when they break a challenge.

2. Attackers should be motivated to participate not only through their pride, but also by
offering prize money for each challenge that is successfully broken.

3. We want to learn as much as possible from the public challenge. Thus, in order to
claim their prizes, attackers must provide us with detailed information on how they
broke the challenge. If they do not do this, they will not get the prize.

4. Attackers might still want to break a challenge even after it was already broken by
someone else, i.e., when it might not lead to any monetary reward. We still want to
learn as much as possible from these attackers, though, as they might try different
approaches compared to the first successful attempt. In order not to ‘taint’ the people
coming after them, successful attackers should not publish the information until after
the challenge ends.

5. Attackers are free to publish information about how they attacked the challenges in a
public write-up, but again, only after the challenge has ended.

6. We would like to be able to have results before the end of the project.

We fleshed out these requirements, and added some initial description of how exactly the
public challenge works. Furthermore, as some of our protections involve server-side
components that were not necessarily written with security in mind, we explicitly ask that the
attackers not try to attack the servers, but that they focus on the protected application. This is
similar to the tiger team experiments, where the teams were explicitly told that the servers
were out of scope. This is consistent with the attack model we have used throughout the
project. As for the prize money, we settled on a €200 per-challenge prize, for the first
successful attack.

As for the submission deadline, we originally planned the public challenge to end after the
end of the ASPIRE project, as we already discussed in Deliverable D4.04. However, as it
would be beneficial to be able to analyze and discuss the results during the project, we will
publicly state that the competition finishes at the end of September. However, internally we
will allow for a possibility of extending this deadline until the end of the calender year, in
accordance to what was stated in Deliverabe D4.04 Section 1. We will do so only if we can
still learn more from the challenges, for example if some of them have not yet been broken
and when we notice (in the security server logs) that attackers are still active.

Furthermore, we decided to launch the challenge itself on August 2nd, even though all work to
launch it has already been completed by July 15th. The reason is that the public challenge
itself is completely organized by UGent, which has a fixed holiday period in the second half
of July due to a city festival, which is thus also the period where most people decide to go
travel abroad. As we cannot guarantee that everything will immediately work smoothly once
a significant number of attackers try to run the server-connected applications, and we thus

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 9 of 30

might to do manual interventions, launching the challenge without the possibility of low-
latency support by the people who designed the challenge would be irresponsible.

UGent sent out a draft of these rules to some of the project partners for feedback. As there
was no additional feedback apart from some typos, these typo-fixed draft rules became the
final rules.

1.5 General terms and conditions for the ASPIRE Public Challenge
• There are 8 different challenges. Every challenge is a program that prints out whether

or not the input argument is the correct 'key'.
• Breaking the challenge consists of recovering the complete correct key that the

program checks for.
• Binaries sent to the participants will contain an individualized key.
• Only correct combinations of the received binary (through submitting its file name)

and the corresponding key will be accepted.
• Participants can request binaries for both GNU/Linux-ARM and Android-ARM for

each challenge.
• There is no separate prize for breaking either the GNU/Linux or Android version: once

either is broken, that entire challenge is considered to be broken.
• The first three participants to break a challenge will have their user name listed next

to that challenge, together with the timestamp on which the correct solution was
submitted.

• For every challenge, the first participant to successfully break it is eligible to a €200
prize, to be sent after the challenge ends.

• To be eligible for this prize, the participant must furthermore:
- Agree to do (through e-mail) a post-mortem forensic interview, describing how

the challenge was attacked and broken, which tools were used, what the
general attack strategy was, etc.;

- Refrain from publishing any write-up of their attacks before the end of the
challenge (publishing information about only the fact that a participant
successfully attacked a challenge is ok, as that information will be live on the
website). Once the challenge ends, these write-ups can be published freely;

- Not be paid or have been paid on the ASPIRE Project, nor cooperate with or
have cooperated with ASPIRE members on ASPIRE foreground material, nor
have (had) access to confidential ASPIRE information (in writing or by
participating in restricted meetings where non-public ASPIRE aspects were
discussed);

- Not attempt to obtain non-public information about the challenges, their
solutions, or the applied protections from people that are or have been paid on
the ASPIRE Project, or others as described earlier who have (had) access to
confidential ASPIRE information;

- Have recovered the correct binary/key combination from the binary, /not/ by
having broken into the ASPIRE server(s)

- Not try to perform denial-of-service attacks on the ASPIRE server(s), nor try to
exploit them (successfully or not).

• We reserve the right to not award a prize despite the participant's eligibility, given a
reasonable motivation.

• How the money will be transferred to the prize winners after the challenge ends will
be discussed by the winners through the email address through which they are
registered.

• The challenge ends on September 30th 2016, 23:59:59 CEST.
• Some of the challenges might contain online protections in which a binary connects to

a remote server. It is possible that in the course of an attack, certain binaries will stop

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 10 of 30

functioning correctly. (Or might even fail to stop functioning correctly without any
attack: as this is research software it is not entirely robust yet.) In such cases,
participants are allowed to request new instances (checking for a different key) of
those binaries. The number of such new instances is limited to a reasonable amount.

• The copyright in these challenges remains with the ASPIRE Project Partners;
however, participants are allowed to reverse engineer and study the provided binaries
to the extent needed to break the challenges, and are allowed to publish their
findings.

• Registration to this website will constitute acceptance of these terms and conditions.

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 11 of 30

List of Abbreviations

ACE Anti-Cheat Engine

ACCL ASPIRE Client-side Communication Logic

ASPIRE Advanced Software Protection: Integration, Research and Exploitation

RNC Residue Number Coding

WBC White-Box Cryptography

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 12 of 30

 Challenge source code

A.1 Challenge 1
/* C-standard headers */

#include <stdio.h>

#include <string.h>

#include "common.h"

#include "xor.h"

int main(int argc, char* argv[])

{

 _Pragma("ASPIRE begin protection(guarded_region,label(generic_region))")

 _Pragma("ASPIRE begin
protection(obfuscations(enable_obfuscation(opaque_predicate:percent_apply=75,branch_function:percent_ap
ply=75,flatten_function))), protection(call_stack_check)")

 _Pragma("ASPIRE begin protection(remote_attestation, static_ra(RW_NORMAL, HF_SHA256, NI_1, NG_1,
MA_1, DS_1), label(first_attestator), frequency(10))")

 _Pragma("ASPIRE end")

 /* Validate the arguments */

 validateArguments(argc, argv);

 _Pragma("ASPIRE end") /* obfuscations, call check */

 _Pragma("ASPIRE begin protection(remote_attestation, static_ra_region, attestator(first_attestator),
attest_at_startup(true))")

 /* Build up the key */

 char key[KEY_LENGTH];

 COMPILER_BARRIER();

 _Pragma("ASPIRE begin protection(anti_debugging)")

 key[59] = part1[59];

 key[8] = part1[8];

 key[14] = part1[14];

 key[0] = part1[0];

 key[37] = part1[37];

 key[48] = part1[48];

 key[41] = part1[41];

 key[6] = part1[6];

 key[51] = part1[51];

 key[3] = part1[3];

 key[23] = part1[23];

 key[10] = part1[10];

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 13 of 30

 key[49] = part1[49];

 key[26] = part1[26];

 key[17] = part1[17];

 key[40] = part1[40];

 key[22] = part1[22];

 key[18] = part1[18];

 key[15] = part1[15];

 key[62] = part1[62];

 key[61] = part1[61];

 key[53] = part1[53];

 key[55] = part1[55];

 key[63] = part1[63];

 key[19] = part1[19];

 key[11] = part1[11];

 key[50] = part1[50];

 key[12] = part1[12];

 key[52] = part1[52];

 key[58] = part1[58];

 key[44] = part1[44];

 key[35] = part1[35];

 key[45] = part1[45];

 key[27] = part1[27];

 key[16] = part1[16];

 key[34] = part1[34];

 key[33] = part1[33];

 key[60] = part1[60];

 key[42] = part1[42];

 key[7] = part1[7];

 key[36] = part1[36];

 key[13] = part1[13];

 key[38] = part1[38];

 key[32] = part1[32];

 key[46] = part1[46];

 key[20] = part1[20];

 key[4] = part1[4];

 key[24] = part1[24];

 key[30] = part1[30];

 key[56] = part1[56];

 key[25] = part1[25];

 key[47] = part1[47];

 key[39] = part1[39];

 key[31] = part1[31];

 key[43] = part1[43];

 key[28] = part1[28];

 key[2] = part1[2];

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 14 of 30

 key[5] = part1[5];

 key[54] = part1[54];

 key[29] = part1[29];

 key[21] = part1[21];

 key[1] = part1[1];

 key[9] = part1[9];

 key[57] = part1[57];

 _Pragma("ASPIRE end") /* anti_debugging */

 _Pragma("ASPIRE end") /* RA */

 _Pragma("ASPIRE end") /* CG */

 COMPILER_BARRIER();

 _Pragma("ASPIRE begin protection(code_mobility, status(mobile), data(mobile))")

 int iii;

 for (iii = 0; iii < KEY_LENGTH; iii++)

 key[iii] ^= part2[iii];

 /* Do the actual compare */

 int res = strncmp(key, argv[1], KEY_LENGTH);

 _Pragma("ASPIRE end") /* code_mobility */

 _Pragma("ASPIRE begin protection(guarded_region,label(generic_region))")

 _Pragma("ASPIRE begin
protection(obfuscations(enable_obfuscation(opaque_predicate:percent_apply=75,branch_function:percent_ap
ply=75,flatten_function)))")

 /* Print out the result */

 if (res == 0)

 printf("Success!\n");

 else

 printf("Wrong key.\n");

 _Pragma("ASPIRE end") /* obfuscations */

 _Pragma("ASPIRE end") /* CG */

}

A.2 Challenge 2
/* C-standard headers */

#include <stdint.h>

#include <stdio.h>

#include "common.h"

#include "rnc_key.h"

int main(int argc, char* argv[])

{

 _Pragma("ASPIRE begin protection(guarded_region,label(generic_region))")

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 15 of 30

 _Pragma("ASPIRE begin
protection(obfuscations(enable_obfuscation(opaque_predicate:percent_apply=75,branch_function:percent_ap
ply=75,flatten_function))), protection(call_stack_check)")

 /* Validate the arguments */

 validateArguments(argc, argv);

 /* Get the key and check it part by part */

 int res = 0;

 char* key = argv[1];

 uint32_t* int_key = (uint32_t*) key;

 if (int_key[0] != rnc_part0)

 res = 1;

 if (int_key[1] != rnc_part1)

 res = 1;

 if (int_key[2] != rnc_part2)

 res = 1;

 if (int_key[3] != rnc_part3)

 res = 1;

 if (int_key[4] != rnc_part4)

 res = 1;

 if (int_key[5] != rnc_part5)

 res = 1;

 if (int_key[6] != rnc_part6)

 res = 1;

 if (int_key[7] != rnc_part7)

 res = 1;

 if (int_key[8] != rnc_part8)

 res = 1;

 if (int_key[9] != rnc_part9)

 res = 1;

 if (int_key[10] != rnc_part10)

 res = 1;

 if (int_key[11] != rnc_part11)

 res = 1;

 if (int_key[12] != rnc_part12)

 res = 1;

 if (int_key[13] != rnc_part13)

 res = 1;

 if (int_key[14] != rnc_part14)

 res = 1;

 if (int_key[15] != rnc_part15)

 res = 1;

 /* Print out the result */

 if (res == 0)

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 16 of 30

 printf("Success!\n");

 else

 printf("Wrong key.\n");

 _Pragma("ASPIRE end") /* obfuscations */

 _Pragma("ASPIRE end") /* CG */

}

A.3 Challenge 3
/* C-standard headers */

#include <stdint.h>

#include <stdio.h>

#include "common.h"

#include "rnc_key.h"

int main(int argc, char* argv[])

{

 _Pragma("ASPIRE begin protection(guarded_region,label(generic_region))")

 _Pragma("ASPIRE begin
protection(obfuscations(enable_obfuscation(opaque_predicate:percent_apply=75,branch_function:percent_ap
ply=75,flatten_function))), protection(call_stack_check)")

 /* Validate the arguments */

 validateArguments(argc, argv);

 _Pragma("ASPIRE end") /* obfuscations */

 _Pragma("ASPIRE begin protection(anti_debugging)")

 /* Get the key and check it part by part */

 int res = 0;

 char* key = argv[1];

 uint32_t* int_key = (uint32_t*) key;

 _Pragma("ASPIRE end") /* anti_debugging */

 _Pragma("ASPIRE begin
protection(obfuscations(enable_obfuscation(opaque_predicate:percent_apply=75,branch_function:percent_ap
ply=75,flatten_function))), protection(call_stack_check)")

 if (int_key[0] != rnc_part0)

 res = 1;

 if (int_key[1] != rnc_part1)

 res = 1;

 if (int_key[2] != rnc_part2)

 res = 1;

 if (int_key[3] != rnc_part3)

 res = 1;

 if (int_key[4] != rnc_part4)

 res = 1;

 if (int_key[5] != rnc_part5)

 res = 1;

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 17 of 30

 if (int_key[6] != rnc_part6)

 res = 1;

 if (int_key[7] != rnc_part7)

 res = 1;

 if (int_key[8] != rnc_part8)

 res = 1;

 if (int_key[9] != rnc_part9)

 res = 1;

 if (int_key[10] != rnc_part10)

 res = 1;

 if (int_key[11] != rnc_part11)

 res = 1;

 if (int_key[12] != rnc_part12)

 res = 1;

 if (int_key[13] != rnc_part13)

 res = 1;

 if (int_key[14] != rnc_part14)

 res = 1;

 if (int_key[15] != rnc_part15)

 res = 1;

 /* Print out the result */

 if (res == 0)

 printf("Success!\n");

 else

 printf("Wrong key.\n");

 _Pragma("ASPIRE end") /* obfuscations */

 _Pragma("ASPIRE end") /* CG */

}

A.4 Challenge 4
/* C-standard headers */

#include <stdio.h>

#include "common.h"

#include "key.h"

int main(int argc, char* argv[])

{

 _Pragma("ASPIRE begin protection(guarded_region,label(generic_region))")

 _Pragma("ASPIRE begin
protection(obfuscations(enable_obfuscation(opaque_predicate:percent_apply=75,branch_function:percent_ap
ply=75,flatten_function))), protection(call_stack_check)")

 /* Validate the arguments */

 validateArguments(argc, argv);

 char* input = argv[1];

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 18 of 30

 int res = 0;

 _Pragma("ASPIRE begin protection(softvm)")

 res = res || !(protected_key[28] == input[28]);

 res = res || !(protected_key[20] == input[20]);

 res = res || !(protected_key[47] == input[47]);

 res = res || !(protected_key[25] == input[25]);

 res = res || !(protected_key[21] == input[21]);

 res = res || !(protected_key[0] == input[0]);

 res = res || !(protected_key[27] == input[27]);

 res = res || !(protected_key[45] == input[45]);

 res = res || !(protected_key[58] == input[58]);

 res = res || !(protected_key[38] == input[38]);

 res = res || !(protected_key[39] == input[39]);

 res = res || !(protected_key[7] == input[7]);

 res = res || !(protected_key[62] == input[62]);

 res = res || !(protected_key[61] == input[61]);

 res = res || !(protected_key[5] == input[5]);

 res = res || !(protected_key[46] == input[46]);

 res = res || !(protected_key[18] == input[18]);

 res = res || !(protected_key[42] == input[42]);

 res = res || !(protected_key[8] == input[8]);

 res = res || !(protected_key[37] == input[37]);

 res = res || !(protected_key[33] == input[33]);

 res = res || !(protected_key[49] == input[49]);

 res = res || !(protected_key[2] == input[2]);

 res = res || !(protected_key[59] == input[59]);

 res = res || !(protected_key[22] == input[22]);

 res = res || !(protected_key[44] == input[44]);

 res = res || !(protected_key[40] == input[40]);

 res = res || !(protected_key[29] == input[29]);

 res = res || !(protected_key[23] == input[23]);

 res = res || !(protected_key[57] == input[57]);

 res = res || !(protected_key[14] == input[14]);

 res = res || !(protected_key[53] == input[53]);

 res = res || !(protected_key[32] == input[32]);

 res = res || !(protected_key[24] == input[24]);

 res = res || !(protected_key[17] == input[17]);

 res = res || !(protected_key[41] == input[41]);

 res = res || !(protected_key[11] == input[11]);

 res = res || !(protected_key[63] == input[63]);

 res = res || !(protected_key[19] == input[19]);

 res = res || !(protected_key[10] == input[10]);

 res = res || !(protected_key[51] == input[51]);

 res = res || !(protected_key[4] == input[4]);

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 19 of 30

 res = res || !(protected_key[31] == input[31]);

 res = res || !(protected_key[15] == input[15]);

 res = res || !(protected_key[43] == input[43]);

 res = res || !(protected_key[13] == input[13]);

 res = res || !(protected_key[9] == input[9]);

 res = res || !(protected_key[48] == input[48]);

 res = res || !(protected_key[52] == input[52]);

 res = res || !(protected_key[6] == input[6]);

 res = res || !(protected_key[35] == input[35]);

 res = res || !(protected_key[34] == input[34]);

 res = res || !(protected_key[54] == input[54]);

 res = res || !(protected_key[12] == input[12]);

 res = res || !(protected_key[16] == input[16]);

 res = res || !(protected_key[50] == input[50]);

 res = res || !(protected_key[60] == input[60]);

 res = res || !(protected_key[1] == input[1]);

 res = res || !(protected_key[26] == input[26]);

 res = res || !(protected_key[30] == input[30]);

 res = res || !(protected_key[55] == input[55]);

 res = res || !(protected_key[3] == input[3]);

 res = res || !(protected_key[36] == input[36]);

 res = res || !(protected_key[56] == input[56]);

 _Pragma("ASPIRE end")

 /* Print out the result */

 if (res == 0)

 printf("Success!\n");

 else

 printf("Wrong key.\n");

 _Pragma("ASPIRE end") /* obfuscations, call check */

 _Pragma("ASPIRE end") /* CG */

}

A.5 Challenge 5
/* C-standard headers */

#include <stdio.h>

#include <stdint.h>

#include <assert.h>

#include "common.h"

#include "challenge.h"

/*

 * @brief

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 20 of 30

 * function used to encrypt a 64-byte buffer using AES

 *

 * Copyright (C) 2016-2016 Nagravision S.A.

*/

/**/

/* */

/* INCLUDE FILES */

/* */

/**/

#include <stdlib.h>

/**/

/* */

/* CONSTANTS */

/* */

/**/

#ifdef __cplusplus

extern "C" {

#endif /* C++ */

#ifndef NULL

#define NULL ((void *)0)

#endif /* NULL */

/* confidentiality key */

const char gWbcAesChallengeKey[16] __attribute__((ASPIRE("protection(wbc, role(key), size(16),
label(WbcAesChallenge))")))

= {

 0x5e, 0xac, 0xab, 0x01, 0xab, 0xae, 0x11, 0xa1,

 0xaf, 0x0c, 0xac, 0xc1, 0xa1, 0xe1, 0xca, 0xfe

};

/* confidentiality IV (C2016Nagravision) */

const char gWbcAesChallengeIv[16] __attribute__((ASPIRE("protection(wbc, role(iv), size(16),
label(WbcAesChallenge))")))

= {

 0xa9, 0x32, 0x30, 0x31, 0x36, 0x6e, 0x61, 0x67,

 0x72, 0x61, 0x76, 0x69, 0x73, 0x69, 0x6f, 0x6e

};

/**/

/* */

/* TYPES & STRUCTURES */

/* */

/**/

/**

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 21 of 30

 * @brief

 * byte buffer

*/

typedef struct

{

 uint8_t* pBuffer;

 /**< data */

 size_t size;

 /**< size, in bytes */

} TBuffer;

#include "key_wbc_decrypted.h"

int doCheck(const char* in_key)

{

 _Pragma("ASPIRE begin protection(guarded_region,label(generic_region))")

 _Pragma("ASPIRE begin
protection(obfuscations(enable_obfuscation(opaque_predicate:percent_apply=75,branch_function:percent_ap
ply=75,flatten_function))), protection(call_stack_check)")

 uint8_t encrypted_key_from_input[KEY_LENGTH];

 uint8_t* pInput;

 TBuffer inputBuffer;

 TBuffer* pInputBuffer __attribute__((ASPIRE("protection(wbc, role(input), size(0),
label(WbcAesChallenge))")));

 uint8_t* pOutput __attribute__((ASPIRE("protection(wbc, role(output), size(0),
label(WbcAesChallenge))")));

 int i;

 pInputBuffer = &inputBuffer;

 pInputBuffer->pBuffer = in_key;

 pInputBuffer->size = KEY_LENGTH;

 pInput = in_key;

 pOutput = encrypted_key_from_input;

 /* Decrypting instead of encrypting because (potentially) of a bug(?) in the WBC/OpenSSL */

 _Pragma("ASPIRE begin protection (wbc, algorithm(aes), operation(decrypt), mode(CBC),
label(WbcAesChallenge))")

 decryptBuffer(pInput, KEY_LENGTH, pOutput);

 _Pragma("ASPIRE end")

 if (memcmp(encrypted_key_from_input, encrypted_key, KEY_LENGTH) == 0)

 return 1 /* true */;

 else

 return 0; /* false */

 _Pragma("ASPIRE end") /* obfuscations, call check */

 _Pragma("ASPIRE end") /* CG */

}

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 22 of 30

int main(int argc, char* argv[])

{

 _Pragma("ASPIRE begin protection(guarded_region,label(generic_region))")

 _Pragma("ASPIRE begin
protection(obfuscations(enable_obfuscation(opaque_predicate:percent_apply=75,branch_function:percent_ap
ply=75,flatten_function))), protection(call_stack_check)")

 /* Validate the arguments */

 validateArguments(argc, argv);

 const char* in_key = argv[1];

 if (doCheck(in_key))

 printf("Success!\n");

 else

 printf("Wrong key.\n");

 _Pragma("ASPIRE end") /* obfuscations, call check */

 _Pragma("ASPIRE end") /* CG */

} /* main */

#ifdef __cplusplus

} /* C++ */

#endif /* C++ */

/* wbc_aes_challenge.c */

A.6 Challenge 6
/* C-standard headers */

#include <stdbool.h>

#include <stdint.h>

#include <stdio.h>

/* Linux headers */

#include <unistd.h>

#include "common.h"

#include "key.h"

#define WAITLOOP iii = 0;\

 while(++iii != 0)\

 {\

 jjj = 0;\

 while(++jjj != 0);\

 }

#define SLEEPYTIME 999999

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 23 of 30

int main(int argc, char* argv[])

{

 _Pragma("ASPIRE begin protection(guarded_region,label(generic_region))")

 _Pragma("ASPIRE begin protection(remote_attestation, static_ra(RW_NORMAL, HF_SHA256, NI_1, NG_1,
MA_1, DS_1), label(first_attestator), frequency(10))")

 _Pragma("ASPIRE end")

 _Pragma("ASPIRE begin protection(remote_attestation, static_ra_region, attestator(first_attestator),
attest_at_startup(true))")

 _Pragma("ASPIRE begin
protection(obfuscations(enable_obfuscation(opaque_predicate:percent_apply=75,branch_function:percent_ap
ply=75,flatten_function))), protection(call_stack_check)")

 /* Validate the arguments */

 validateArguments(argc, argv);

 const char* input = argv[1];

 bool res = true;

 volatile uint64_t iii, jjj;

 /* Compare the characters in an extremely slow manner, so that attackers are forced to tamper */

 res = res && (protected_key[16] == input[16]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[15] == input[15]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[55] == input[55]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[30] == input[30]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[35] == input[35]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[40] == input[40]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[6] == input[6]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[39] == input[39]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[28] == input[28]);

 sleep(SLEEPYTIME);

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 24 of 30

 WAITLOOP

 res = res && (protected_key[38] == input[38]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[10] == input[10]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[26] == input[26]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[51] == input[51]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[1] == input[1]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[42] == input[42]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[36] == input[36]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[13] == input[13]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[34] == input[34]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[37] == input[37]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[53] == input[53]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[44] == input[44]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[48] == input[48]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[63] == input[63]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[46] == input[46]);

 sleep(SLEEPYTIME);

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 25 of 30

 WAITLOOP

 res = res && (protected_key[57] == input[57]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[24] == input[24]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[2] == input[2]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[14] == input[14]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[12] == input[12]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[4] == input[4]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[41] == input[41]);

 sleep(SLEEPYTIME);

 WAITLOOP

 res = res && (protected_key[11] == input[11]);

 sleep(SLEEPYTIME);

 _Pragma("ASPIRE end") /* obfuscations, call check */

 _Pragma("ASPIRE end")

 _Pragma("ASPIRE end") /* CG */

 _Pragma("ASPIRE begin protection(code_mobility, status(mobile), data(mobile))")

 res = res && (protected_key[17] == input[17]);

 res = res && (protected_key[20] == input[20]);

 res = res && (protected_key[19] == input[19]);

 res = res && (protected_key[25] == input[25]);

 res = res && (protected_key[5] == input[5]);

 res = res && (protected_key[33] == input[33]);

 res = res && (protected_key[43] == input[43]);

 res = res && (protected_key[23] == input[23]);

 res = res && (protected_key[56] == input[56]);

 res = res && (protected_key[47] == input[47]);

 res = res && (protected_key[58] == input[58]);

 res = res && (protected_key[7] == input[7]);

 res = res && (protected_key[45] == input[45]);

 res = res && (protected_key[62] == input[62]);

 res = res && (protected_key[61] == input[61]);

 res = res && (protected_key[54] == input[54]);

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 26 of 30

 res = res && (protected_key[3] == input[3]);

 res = res && (protected_key[60] == input[60]);

 res = res && (protected_key[31] == input[31]);

 res = res && (protected_key[9] == input[9]);

 res = res && (protected_key[29] == input[29]);

 res = res && (protected_key[8] == input[8]);

 res = res && (protected_key[50] == input[50]);

 res = res && (protected_key[27] == input[27]);

 res = res && (protected_key[18] == input[18]);

 res = res && (protected_key[59] == input[59]);

 res = res && (protected_key[21] == input[21]);

 res = res && (protected_key[52] == input[52]);

 res = res && (protected_key[49] == input[49]);

 res = res && (protected_key[0] == input[0]);

 res = res && (protected_key[22] == input[22]);

 res = res && (protected_key[32] == input[32]);

 _Pragma("ASPIRE end")

 COMPILER_BARRIER();

 _Pragma("ASPIRE begin protection(guarded_region,label(generic_region))")

 _Pragma("ASPIRE begin
protection(obfuscations(enable_obfuscation(opaque_predicate:percent_apply=75,branch_function:percent_ap
ply=75,flatten_function))), protection(call_stack_check)")

 /* Print out the result */

 if (res)

 printf("Success!\n");

 else

 printf("Wrong key.\n");

 _Pragma("ASPIRE end") /* obfuscations, call check */

 _Pragma("ASPIRE end") /* CG */

}

A.7 Challenge 7
/* C-standard headers */

#include <stdio.h>

#include "common.h"

#include "key.h"

int main(int argc, char* argv[])

{

 _Pragma("ASPIRE begin protection(guarded_region,label(generic_region))")

 _Pragma("ASPIRE begin
protection(obfuscations(enable_obfuscation(opaque_predicate:percent_apply=75,branch_function:percent_ap
ply=75,flatten_function))), protection(call_stack_check)")

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 27 of 30

 /* Validate the arguments */

 validateArguments(argc, argv);

 /* We will calculate the two results: one that should always be 0 and one that should always be 1 */

 int res0 = 0;

 int res1 = 1;

 char* input = argv[1];

 _Pragma("ASPIRE end") /* obfuscations, call check */

 COMPILER_BARRIER();

 _Pragma("ASPIRE begin protection(anti_debugging)")

 if (protected_key[55] == input[55])

 {

 res0 = res0 || !(protected_key[54] == input[54]);

 res0 = res0 || !(protected_key[4] == input[4]);

 res0 = res0 || !(protected_key[56] == input[56]);

 res0 = res0 || !(protected_key[1] == input[1]);

 res0 = res0 || !(protected_key[40] == input[40]);

 res0 = res0 || !(protected_key[63] == input[63]);

 res0 = res0 || !(protected_key[58] == input[58]);

 }

 else

 res0 = 1;

 _Pragma("ASPIRE end")

 COMPILER_BARRIER();

 _Pragma("ASPIRE begin
protection(obfuscations(enable_obfuscation(branch_function:percent_apply=75)))")

 if (protected_key[15] == input[15])

 {

 res1 = res1 && (protected_key[34] == input[34]);

 res1 = res1 && (protected_key[61] == input[61]);

 res1 = res1 && (protected_key[48] == input[48]);

 res1 = res1 && (protected_key[31] == input[31]);

 res1 = res1 && (protected_key[52] == input[52]);

 res1 = res1 && (protected_key[59] == input[59]);

 res1 = res1 && (protected_key[35] == input[35]);

 }

 else

 res1 = 0;

 if (protected_key[12] == input[12])

 {

 res0 = res0 || !(protected_key[37] == input[37]);

 res0 = res0 || !(protected_key[20] == input[20]);

 res0 = res0 || !(protected_key[62] == input[62]);

 res0 = res0 || !(protected_key[43] == input[43]);

 res0 = res0 || !(protected_key[32] == input[32]);

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 28 of 30

 res0 = res0 || !(protected_key[16] == input[16]);

 res0 = res0 || !(protected_key[44] == input[44]);

 }

 else

 res0 = 1;

 if (protected_key[7] == input[7])

 {

 res1 = res1 && (protected_key[41] == input[41]);

 res1 = res1 && (protected_key[21] == input[21]);

 res1 = res1 && (protected_key[28] == input[28]);

 res1 = res1 && (protected_key[50] == input[50]);

 res1 = res1 && (protected_key[46] == input[46]);

 res1 = res1 && (protected_key[30] == input[30]);

 res1 = res1 && (protected_key[45] == input[45]);

 }

 else

 res1 = 0;

 if (protected_key[27] == input[27])

 {

 res1 = res1 && (protected_key[19] == input[19]);

 res1 = res1 && (protected_key[38] == input[38]);

 res1 = res1 && (protected_key[3] == input[3]);

 res1 = res1 && (protected_key[49] == input[49]);

 res1 = res1 && (protected_key[26] == input[26]);

 res1 = res1 && (protected_key[8] == input[8]);

 res1 = res1 && (protected_key[2] == input[2]);

 }

 else

 res1 = 0;

 if (protected_key[13] == input[13])

 {

 res0 = res0 || !(protected_key[18] == input[18]);

 res0 = res0 || !(protected_key[57] == input[57]);

 res0 = res0 || !(protected_key[25] == input[25]);

 res0 = res0 || !(protected_key[11] == input[11]);

 res0 = res0 || !(protected_key[47] == input[47]);

 res0 = res0 || !(protected_key[14] == input[14]);

 res0 = res0 || !(protected_key[23] == input[23]);

 }

 else

 res0 = 1;

 if (protected_key[0] == input[0])

 {

 res1 = res1 && (protected_key[9] == input[9]);

 res1 = res1 && (protected_key[36] == input[36]);

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 29 of 30

 res1 = res1 && (protected_key[24] == input[24]);

 res1 = res1 && (protected_key[6] == input[6]);

 res1 = res1 && (protected_key[42] == input[42]);

 res1 = res1 && (protected_key[5] == input[5]);

 res1 = res1 && (protected_key[10] == input[10]);

 }

 else

 res1 = 0;

 if (protected_key[17] == input[17])

 {

 res0 = res0 || !(protected_key[51] == input[51]);

 res0 = res0 || !(protected_key[60] == input[60]);

 res0 = res0 || !(protected_key[33] == input[33]);

 res0 = res0 || !(protected_key[29] == input[29]);

 res0 = res0 || !(protected_key[53] == input[53]);

 res0 = res0 || !(protected_key[22] == input[22]);

 res0 = res0 || !(protected_key[39] == input[39]);

 }

 else

 res0 = 1;

 /* Print out the result */

 int res = res0 || !res1;

 if (res == 0)

 printf("Success!\n");

 else

 printf("Wrong key.\n");

 _Pragma("ASPIRE end") /* obfuscations, call check */

 _Pragma("ASPIRE end") /* CG */

}

A.8 Challenge 8
/* C-standard headers */

#include <stdio.h>

#include <stdlib.h>

#include "common.h"

#include "key.h"

void doCheck(char key, int iii)

 {

 _Pragma("ASPIRE begin protection(guarded_region,label(generic_region))")

 _Pragma("ASPIRE begin protection(barrier_slicing, criterion(res), label(keys))")

D4.05 – Public Challenge

ASPIRE D4.05 PUBLIC Page 30 of 30

 _Pragma("ASPIRE begin
protection(obfuscations(enable_obfuscation(opaque_predicate:percent_apply=75,branch_function:percent_ap
ply=75,flatten_function))), protection(call_stack_check)")

 int res = (key != protected_key[iii]);

 if (res != 0)

 {

 printf("Wrong key.\n");

 exit(0);

 }

 _Pragma("ASPIRE end") /* obfuscations, call check */

 _Pragma("ASPIRE end")

 _Pragma("ASPIRE end") /* CG */

 return;

 }

int main(int argc, char* argv[])

{

 _Pragma("ASPIRE begin protection(guarded_region,label(generic_region))")

 _Pragma("ASPIRE begin
protection(obfuscations(enable_obfuscation(opaque_predicate:percent_apply=75,branch_function:percent_ap
ply=75,flatten_function))), protection(call_stack_check)")

 /* Validate the arguments */

 validateArguments(argc, argv);

 /* Compare the keys character per character */

 const char* in_key = argv[1];

 int iii;

 for (iii = 0; iii < KEY_LENGTH; iii++)

 {

 doCheck(in_key[iii], iii);

 }

 /* If we got to the end, it's a success */

 printf("Success!\n");

 _Pragma("ASPIRE end") /* obfuscations, call check */

 _Pragma("ASPIRE end") /* CG */

}

