
Advanced Software Protection:
Integration, Research and Exploitation

D4.04
Security Evaluation, Advanced Human Experiments

Project no.: 609734
Funding scheme: Collaborative project
Start date of the project: November 1, 2013
Duration: 36 months
Work programme topic: FP7-ICT-2013-10

Deliverable type: Report
Deliverable reference number: ICT-609734 / D4.04
WP and tasks contributing: WP 4 / Task 4.4
Due date: Apr 2016 – M30
Actual submission date: 3 June 2016

Responsible Organization: POLITO
Editor: Cataldo Basile
Dissemination level: Public
Revision: v1.0

Abstract:
This deliverable presents the versions at M30 of the ASPIRE security model, the input/output
model of the metrics framework and of the Security Protection Assessment tool, the results of
empirical academic studies conducted in the M24-M30 period, and the planning of the industrial
studies.
Keywords:
ASPIRE knowledge Base, security evaluation, empirical studies

D4.04 — Security Evaluation, Advanced Human Experiments

Editor
Cataldo Basile (POLITO)

Contributors (ordered according to beneficiary numbers)
Bart Coppens, Jeroen Van Cleemput (UGent)
Cataldo Basile, Daniele Canavese, Leonardo Regano, Marco Torchiano
(POLITO)
Mariano Ceccato, Paolo Tonella (FBK)
Paolo Falcarin, Elena Gómez-Martı́nez, Gaofeng Zhang (UEL)

The ASPIRE Consortium consists of:

Ghent University (UGent) Coordinator & Beneficiary Belgium
Politecnico Di Torino (POLITO) Beneficiary Italy
Nagravision SA (NAGRA) Beneficiary Switzerland
Fondazione Bruno Kessler (FBK) Beneficiary Italy
University of East London (UEL) Beneficiary UK
SFNT Germany GmbH (SFNT) Beneficiary Germany
Gemalto SA (GTO) Beneficiary France

Coordinating person: Prof. Bjorn De Sutter
E-mail: coordinator@aspire-fp7.eu
Tel: +32 9 264 3367
Fax: +32 9 264 3594
Project website: www.aspire-fp7.eu
Disclaimer The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 609734. The infor-
mation in this document is provided as is and no guarantee or warranty is given that the infor-
mation is fit for any particular purpose. The user thereof uses the information at its sole risk and
liability.

ASPIRE D4.04 PUBLIC ii

mailto:coordinator@aspire-fp7.eu
http://www.aspire-fp7.eu

D4.04 — Security Evaluation, Advanced Human Experiments

Executive Summary

This deliverable presents the status of WP4 activities and the outcomes at M30. Achievements
are divided in three parts: the first part presents the updates to the ASPIRE Security Model, the
second part presents the metrics framework and the security evaluation models, finally, the third
one presents the results and planning of academic user studies and the planning of industrial user
studies.
The ASPIRE Security Model v1.2 (ASMv1.2) has been released at M30. ASMv1.2 describes all
the concepts used in the AKB at M30 for storing information and reasoning about it. These
concepts are used by both the ADSS Light and ADSS Full. ASMv1.2, as its previous versions,
is composed of a main model and several submodel (assets, application, protections, attacks,
metrics, and protection requirements sub-models). Compared to ASMv1.1, the ASMv1.1 pre-
sented here only presents minor differences in the assets and protection sub-models. In the as-
sets submodel, the ASMv1.2 only adds the SingleInstance class, used to mark applications
that have to use anti-cloning techniques. In the protection sub-model, the ASMv1.2 includes
the ProtectionInstantiation class and AppliedSWProtectionInstantion association
class to represent potential ways to use protections on an asset, and the Solution class to repre-
sent combinations of protections.
In task T4.2, the design of the extensions to the ASPIRE Compiler Tool Chain (ACTC) has been
performed to support metrics extraction. The metrics subsystem itself consists of three ACTC
compilation steps (BLP00, BLP04 and BLP04 DYN), each one generating different types of metrics,
and the M01 step, which collects metrics results and formats the output into a set of metrics file.
Modifying the application the generate the metrics is done by rewriting object files and binary
files (or libraries) using the Diablo obfuscation tool. All metrics files output by M01 have a similar
format: the filename reports the category of metrics that that be found inside; then, every line
in the file reports the metrics computed on a code region. We also report that since the previous
deliverable D4.03, no new metrics been have developed.
Moreover, in Task T4.2 the Security Protection Assessment (SPA) tool has been improved. In the
last six months, the effort concentrated on the evaluation techniques based on the fitness function
already introduced in D4.03. The purpose has been to make available the comparison features of
the SPA tool to the ASPIRE Decision Support System (ADSS) Light. Therefore, while the theo-
retical framework is mainly unchanged (and it is thus not reported here), effort has been put to
integrate the SPA tool with the ACTC to extract metrics and with the ADSS to drive the evaluation
process performed by the SPA tool, and to test the evaluation techniques on sample applications
and on the use cases.
In task T4.3 the ASPIRE user studies have been performed on academic subjects. Two experiments
have been conducted. First, a replication with data obfuscation in attack tasks on compiled binary
code, which has involved 34 Master students from Universiteit Gent, has showed that these tech-
niques have a dramatic impact on success rate and on the time necessary to complete a successful
attack (success rate reduced by a factor 4.5 and attack time increased by a factor 2). This quan-
titative evidence proves that data obfuscation techniques are powerful deterrents of malicious
tampering with binary code, as they render the attacks less economically convenient. Moreover,
the experiments also prove that combining multiple protections has an even better impact. This
is also confirmed by insights on attack strategies. Successful attacks were never targeted directly
against an ASPIRE protection, rather they took advantage of side channels attacks or brute force.
Therefore, if the application assets are designed to be safe against side channels attack or brute
force, the job of attackers becomes extremely difficult and economically inconvenient if ASPIRE
techniques are applied.
Second, the first replication (out of three) of the experiments to assess Client Server Code Splitting
effectiveness has been conducted with 10 participants at the University of East London, which
gave us only partial data. Indeed, due to the small number of participants and to the fact that only
two participants could successfully complete the attack task, no significant result is highlighted by
statistical tests. Since the same experimental design will be reused in the forthcoming replications

ASPIRE D4.04 PUBLIC iii

D4.04 — Security Evaluation, Advanced Human Experiments

on the other academic project partners, we will have more data points to draw statistically sound
conclusions. The complete set of experiments on code splitting and the new (statistically sound)
conclusions will be reported in deliverable D4.06, to be delivered at M36.
In task T4.4 the ASPIRE user studies with industrial participants have been designed. The ex-
periment is a long running case study, with loose control on the involved subjects and mostly
qualitative data collected during the execution of the experiment. It will consists of a single repli-
cation with two (or more) consecutive phases, to give hackers a larger continuous amount of time
to work on their task (with freedom to switch among phases) and a more flexible allocation of
time to replications (in case the ASPIRE Consortium would decide to change phases and their dif-
ficulty). Currently, experiments at NAGRA have been started, experiments at SFNT have started
and are temporary stopped to allow hackers to improve their background on the ASPIRE context,
while experiments at GTO are planned for M32-M33.

ASPIRE D4.04 PUBLIC iv

D4.04 — Security Evaluation, Advanced Human Experiments

Contents

1 Introduction 1

I The ASPIRE Knowledge Base 3

2 The final ASPIRE Security Model and ASPIRE Knowledge base 3
2.1 The Asset submodel . 3
2.2 The Software Protection submodel . 4

II Security Evaluation 7

3 Final Complexity metrics 7
3.1 Metrics generation in the ACTC . 7
3.2 The Metrics file format . 9

4 Software Protection Assessment: New features 10

III Experiments 12

5 Data obfuscation experiment 12
5.1 Experimental Definition . 12
5.2 Context: Systems . 14
5.3 Hypothesis Formulation and Variable Selection . 14
5.4 Design . 15
5.5 Experimental Procedure . 16
5.6 Analysis Procedure . 17
5.7 Participants Characterization . 18
5.8 Analysis of Success Rate for program Lotto . 18
5.9 Analysis of Success Rate for program Lottery . 22
5.10 Co-factors for Success Rate . 23
5.11 Analysis of Attack Time for Lotto . 25
5.12 Co-factors for Attack Time . 27
5.13 Analysis of post-questionnaire . 28
5.14 Threats to validity . 29
5.15 Lessons Learned . 30

6 Client/server code splitting experiment 30
6.1 Experimental Definition . 30
6.2 Research questions . 31
6.3 Object . 32
6.4 Analysis of Runtime Overhead . 33
6.5 Metrics . 33
6.6 Design . 34
6.7 Statistical analysis . 34
6.8 Participants Characterization . 34
6.9 Analysis of Success Rate . 36
6.10 Analysis of Attack Time . 36
6.11 Analysis of post-questionnaire . 36
6.12 Threats to validity . 39
6.13 Lessons Learned . 39

ASPIRE D4.04 PUBLIC v

D4.04 — Security Evaluation, Advanced Human Experiments

7 Experiments with Industrial Participants 40
7.1 Experimental Definition . 40
7.2 Objects . 41
7.3 Data . 41
7.4 Design . 43

7.4.1 Protection Configuration . 44
7.4.2 Asset Information . 44

7.5 Qualitative analysis . 45
7.6 Threats to validity . 45
7.7 Dates . 46

ASPIRE D4.04 PUBLIC vi

D4.04 — Security Evaluation, Advanced Human Experiments

List of Figures

1 The asset sub-model. 3
2 The SW protections sub-model. 5
3 ACTC metrics generation and collection . 8
4 SPA architecture (taken from D4.03). 10
5 Demographics of participants (a) . 19
6 Demographics of participants (b) – reverse engineering experience does not include

knowledge acquired during the course. 20
7 Bar plot of attack success rate (red=successful attack, yellow=failed attack) 21
8 Bar plot of attack success rate (red=successful attack, yellow=failed attack) 22
9 Interaction plot of Success Rate and Lab. 26
10 Boxplot of attack time (only for successful attacks) . 27
11 Screenshot of SpaceGame . 32
12 Demographics of participants at UEL . 35
13 Bar plot of attack success rate . 36
14 Boxplot of attack time (only for successful attacks) . 37
15 Post-questions answered by UEL’s subjects. 38

ASPIRE D4.04 PUBLIC vii

D4.04 — Security Evaluation, Advanced Human Experiments

List of Tables

1 Metrics resulting from the current ACTC execution. 9
2 Data obfuscation experiment definition . 13
3 Summary of the variables. 16
4 Success rate . 21
5 Analysis of success rate (Fisher test) . 22
6 Analysis of success rate (Odds ratio) . 22
7 Success rate . 23
8 Analysis of success rate (Fisher test) . 23
9 Overview of the pre-questionnaire questions . 24
10 Overview of the post-questionnaire questions . 24
11 Success rate co-factors (General linear model). 25
12 Descriptive statistics of Attack Time. 25
13 Analysis of attack time (Mann-Whitney U test). 25
14 Analysis of attack time (Effect size). 26
15 Attack Time co-factors (general linear model). 27
16 Analysis of feedback post-questionnaire. 28
17 Code splitting experiment . 31
18 Execution times for split code. 33
19 Design for the code splitting experiment: group G1 is assigned object P1 in its orig-

inal form, while group G2 is assigned P1 protected with code splitting T’ (either of
T1/T2), in a single lab (Lab1) . 34

20 Descriptive statistics of Attack Time . 36
21 Nagravision case study . 40
22 SafeNet case study . 41
23 Gemalto case study . 42
24 Size of case study objects (measured by sloccount), divided by file type. 42

ASPIRE D4.04 PUBLIC viii

D4.04 — Security Evaluation, Advanced Human Experiments

1 Introduction

Section authors:
Cataldo Basile (POLITO)

The goal of this deliverable (see GA Annex II DoW part A) is to document the updates and the tool
support for the security models and the evaluation techniques in the ASPIRE’s Work Package 4 at
M30. WP4 is creating the necessary infrastructure to allow the ASPIRE Decision Support System
(ADSS) to select the best combination of protections for preserving the assets in the application to
protect. The WP4 outcomes include the ASPIRE security model, the ASPIRE knowledge base, the
metrics framework, and the evaluation techniques based on analytic methods (fitness function)
and simulation models (Petri nets). Moreover, WP4 includes the evaluation of protection tech-
niques with real human beings, to check if (ex-post/ex-ante) estimates on the protection level are
correct, and the public challenge.
Therefore, this deliverable presents the updates on:

• the ASPIRE Security Model (developed in T4.1 “Security Model and Evaluation Methodol-
ogy”), which allows the formal representation of the ASPIRE concepts , stored by the AS-
PIRE Knowledge Base in a way to perform the sophisticated reasoning used by the ADSS;

• the metrics framework (developed in T4.2 “Complexity metrics”), designed to evaluate soft-
ware protection strength through the use of software complexity and protection resilience
metrics ;

• the Security Protection Assessment tool (developed in T4.2 “Complexity metrics”), designed
to evaluate the impact of protections and impact of attacks against the application assets;

• the user studies, which have conducted with academic and industrial parties to evaluate
the effectiveness of the ASPIRE protections (developed in T4.3 “Experiments with academic
subjects” and T4.4 “Experiments with industrial tiger teams”).

We report here that the public challenge to be performed in task T4.5 is delayed with 6 weeks
because the additional effort required at UGent to support all the partners for the protection of
the use case applications for the tiger team experiments. However, this delay does not affect the
project in a major way. In fact, the public challenge design is documented in the internal WD4.05,
it will run for six months as expected even if it will be completed after the end of the project.
The costs that for the period will not be claimed and the analysis of the obtained information
will be available in time for the Y3 review. Therefore, the public challenge code and setup will
be delivered in M31 with D3.05 and documented, together with the results of the analysis, with
D4.06. An update of D4.06 is expected before the Y3 review in case further interesting data would
be available after the end of the project.
This deliverable is organized as follows. Part I presents the updates to the ASPIRE Security model.
Section 2 reports the new version of the ASPIRE Security Model (ASMv1.2) and the changes com-
pared to the last version (ASMv1.1). ASMv1.1 has been documented in the deliverable D4.03,
Section 3.
Part II presents the updates to the ASPIRE Security Evaluation. Section 3 presents the input/out-
put model of the metrics framework and sketches the modifications to the ACTC to support it.
Section 4 reports the input/output model of Software Protection Assessment tool used by the
ADSS Light to assess the protection strength and compare combinations of protections, based on
the metrics computed by the metrics framework.
Finally, Part III reports the design and the results of the empirical studies conducted to evaluate
the effectiveness of the ASPIRE protections. Section 5 presents the academic studies conducted at
UGent to assess strenght of data obfuscation techniques against attacks conducted at binary level.
Section 6 presents the academic studies conducted to assess the strength of Client Server Code

ASPIRE D4.04 PUBLIC 1

D4.04 — Security Evaluation, Advanced Human Experiments

splitting. In this deliverable only the outcomes of the experiments at UEL are available. Section 7
presents the planning of the industrial studies, which will be conducted by the industrial partners
during the next months.

ASPIRE D4.04 PUBLIC 2

D4.04 — Security Evaluation, Advanced Human Experiments

Part I

The ASPIRE Knowledge Base

2 The final ASPIRE Security Model and ASPIRE Knowledge base

Section authors:
Cataldo Basile, Daniele Canavese, Leonardo Regano (POLITO)

This deliverable presents the ASPIRE Security Model v1.2 (ASMv1.2), which updates the ASPIRE
Security Model v1.1 (ASMv1.1) described in the deliverable D4.03. The main model and all the
sub-model do not present differences, but the Asset sub-model, and the Software Protection sub-
model, which show minor moor updates. For the Asset and the Software Protection sub-models,
we report the entire sub-model description together with a changelog that presents the differences
compared to the ASMv1.1.
We also report here that there are no changes in the ASPIRE Knowledge base (AKB). The AKB
purpose and organization of the information is unchanged. The AKB is still represented as an
OWL-DL ontology, which have been updated to reflect changes into the ASPIRE Security Model.
No additional inferences have been added at ontology level. Moreover, the AKB still features
the support for the Enrichment Framework and Enrichment Modules already presented in the
deliverable D5.07, which have been slightly updated in the last six months (and will be reported
in D5.10 and D5.11).

2.1 The Asset submodel

Changelog: Compared to ASMv1.1, the ASMv1.2 only adds the SingleInstance class, used
to mark applications that have to use anti-cloning techniques.

Figure 1: The asset sub-model.

Figure 1 reports the categorization of assets presented in D1.02. The different asset categories
have been modelled with the sub-classing paradigm. The classes PublicData, TraceableData,
TraceableCode, ApplicationExecution, UniqueData, GlobalData, PrivateData, and
Code are subclasses of the main Asset class. Moreover, the Code class has been further sub-
classed in SecurityLibrary, CustomAlgorithm, and PrivateProtocol. There are differ-
ent asset properties, obtained as subclasses of the AssetProperty class: the Integrity class,

ASPIRE D4.04 PUBLIC 3

D4.04 — Security Evaluation, Advanced Human Experiments

used for the assets that must be protected from modifications, the Confidentiality class, for
the asset that must remain secret, the Privacy class, for the assets that data whose disclosure
affects the privacy of the person owning the application, and the SingleIstance class, used for
applications that must be only used on a registered platform (e.g., no clones of the application
must be executed).

2.2 The Software Protection submodel

Changelog: The SW protection sub-model was expanded to include the
ProtectionInstantiation class and AppliedSWProtectionInstantion association
class (and related associations) to represent a possible way to use a protections to protect an
asset. It also includes the Solution class (and related associations) to represent combinations of
protections.

Figure 2 shows the categorization of the protection techniques that are considered of interest for
the ASPIRE project. First of all, it is possible to see the five lines of defence, i.e. the main, more ab-
stract categories of protections as detailed in the ASPIRE DoW. These techniques are represented
by means of the DataHiding, AlgorithmHiding, AntiTampering, RemoteAttestation,
and Renewability classes, all subclasses of the SWProtectionType class. Together with the
five lines of defence, we also added some more concrete protection types that play a major role
in the ASPIRE project. They are represented by ClientSideCodeSplitting, ClientServer-
CodeSplitting, ClientServerDataSplitting, and ReactiveTechnologies.
All the previously mentioned classes are the first level of categorization. We also specialized some
of these techniques, for instance:

• DataHiding has been sub-classed in Source2SourceDataObfuscation and WBC (white-
box crypto);

• AlgorithmHiding has been sub-classed in:

– SourceLevelAlgorithmHiding, further sub-classed in PatternRemoval;

– ClientSideVM;

– BinaryCodeObfuscation, further sub-classed in CodeFlattening, BranchFunc-
tions and OpaquePredicates;

• AntiTampering, has been sub-classed in AntiCodeInjection, AntiLibraryCallback,
AntiDebug and CodeGuards;

• Renewability has been sub-classed in RenewabilityInSpace and RenewabilityIn-
Time

• ReactiveTechnique has been sub-classed in TimeBombs.

Integrity protection techniques, like remote attestation and anti-tampering techniques, are also
categorized as either static and dynamic. However, instead of using the sub-classing paradigm
we plan to add a Boolean attribute (dynamic) in those classes.
A protection technique exposes one or more protection profiles (see D5.01), implemented as in-
stances of the SWProtectionProfile class. The hasProfile annotation is used to link the
profiles to their related SWProtection objects.
Some protection techniques cannot be applied on the same asset in any order, so that a (partial) or-
dering is needed. The ASM models this by making use of the cannotBePrecededBy association,
used to express the fact that a protection technique cannot used after another one.
Protection techniques can be used in different ways by changing their own configuration parame-
ters. However, there are more meaningful ways to use them (which are selected by human beings

ASPIRE D4.04 PUBLIC 4

D4.04 — Security Evaluation, Advanced Human Experiments

Figure 2: The SW protections sub-model.

ASPIRE D4.04 PUBLIC 5

D4.04 — Security Evaluation, Advanced Human Experiments

and made available to the decision process)1. We introduced the ProtectionInstantiation
class to represent a set of ways to use protections. The AppliedSWProtectionInstantion
association class is then used to associate a ProtectionInstantion class instance (via the
hasInstantiation association) to the ApplicationPart class instance to protect (via the
hasAsset association) and the annotation to be inserted in the application source code (via the
hasVariableAnnotation and hasCodeRegionAnnotation associations depending on the
asset type.) Finally, the Solution class represent a combination of protections to be use to pro-
tect an entire application as an aggregation of AppliedSWProtectionInstantion association
class instances. Moreover, Solution class instances also aggregate all the values of the metrics
computed on the application protected with the protection instantiations it aggregates.

1For instance, in some case it is worth considering if 5%, 10%, 15% of the code needs to be obfuscated, it is not really
interesting considering if 5%, 5.1%, or 5.5% of the code should be obfuscated.

ASPIRE D4.04 PUBLIC 6

D4.04 — Security Evaluation, Advanced Human Experiments

Part II

Security Evaluation

3 Final Complexity metrics

Section authors:
Bart Coppens, Jeroen Van Cleemput (UGent)

This section gives a global overview of the metrics collection in the ACTC framework and dis-
cusses the file format used to represent the different metrics. This perspective is interesting as it
presents the metrics subsystem as a black box component that is used by other tools developed in
WP4 and by the ADSS developed in WP5. A complete overview of the ACTC metrics subsystem
can be found the D5.08 deliverable.
Since the previous deliverable, no new metrics been have developed. Therefore no updates are
reported in this deliverable. Detailed analyses of the existing metrics can be found in the D4.03
deliverable. In the next months, more (dynamic) metrics will be implemented, which will be
reported in the D4.06 deliverable at M36.

3.1 Metrics generation in the ACTC

Modifying the application the generate the metrics is done by rewriting object files and binary
files (or libraries) using the Diablo obfuscation tool.
The global input-output behavior of the metrics subsystem is shown in Figure 3.
The various inputs for the metrics subsystem are shown on the left. The inputs of the metrics
generation subsystem are the outputs of source to binary tools and binary to binary tools already
present in the ACTC:

• BC08, which are the input (binary) object files

• BC02, which is the binary that has source level protections applied, but not binary level
protections

• BLC02, which is are the extracted code fragments for the SoftVM component

• BC03, which are additional inputs object files for the binary protections.

• BC04, which is binary that has been protected with both source and binary protections

• ACTC JSON configuration

All of these inputs are defined in more detail in WD5.02.
The ACTC workflow has been extended with additional steps to generate and collect metrics. The
metrics subsystem itself consists of three compilation steps BLP00, BLP04 and BLP04 DYN shown
in green, each generating different types of metrics, and M01, which collects metrics results and
formats the output, the metrics file. The ACTC metrics steps reported in Figure 3 are:

BLP00 In this step the library or binary is rewritten to support the generation of runtime profiles.
At the same time, static metrics are generated for the application protected with source code
transformations, or the “vanilla” application in case not source code protections are applied.
The self-profiling binary is then run on an actual target board to generate a runtime profile. This
step is automated using use-case specific scripts that copy the required files to the board and
retrieve the runtime profiles when the application has finished. Finally, the library or binary
is rewritten based on the information contained in the runtime profiles and dynamic metrics
are calculated.

ASPIRE D4.04 PUBLIC 7

D4.04 — Security Evaluation, Advanced Human Experiments

ACTC Metrics
BC08

BC02

BLC02

BC03

BC04

BLP04

ACTC

configuration

JSON

BLP04_DYN

BLP00

metrics files
M01

Figure 3: ACTC metrics generation and collection

BLP04 The existing diablo obfuscator step, BLP04, has been extended to generate static metrics
for both the complete binary or library and for the individual protected regions. This step
generates metrics for the application protected with both source code protection techniques
and binary protection techniques.

BLP04 DYN When the diablo obfuscator uses the runtime profiles generated in BLP00 as an ad-
ditional input, dynamic metrics are generated as well. Finally,

M01 the metrics collection step M01 collects the generated metrics from the individual output
folders of the compilation steps in the metrics subsystem and centralizes them in the M01
directory. The specific files that need to be collected during this phase can be configured in
the ACTC configuration JSON file. M01 outputs all the metrics files in the same folder. The
format of the metrics files is described in Section 3.2.

The output files produced by the metrics framework are:

BC02 SP (*.stat complexity info) These files contain the static complexity metrics computed over
the entire program (without binary protections applied, i.e., the BC02 binary). This is pro-
duced by analysing the BC08 and BC02 inputs.

BC02 SP/profiles (*.plaintext) These files contain the dynamic profile information of the program
without binary protections applied, i.e., BC02.

BC02 DYN (*.dynamic complexity info) These files contain the dynamic complexity metrics of
the program without binary protections applied, i.e., BC02.

ASPIRE D4.04 PUBLIC 8

D4.04 — Security Evaluation, Advanced Human Experiments

BC05 (*.stat complexity info, *.stat regions complexity info) This is the static metrics information
computed on the program with binary protections applied. This is produced by analysing
the BC08, BC02, BC03 and BLC02 input files, and optionally by including the profile infor-
mation from BC02 SP/profiles that can guide the binary protections.

BC05 DYN (*.dynamic complexity info) This is the dynamic metrics information computed on
the program with binary protections applied, i.e., this is the dynamic complexity info that
corresponds to the BC05 complexity info.

The current version of the metrics subsystem outputs a subset of the metrics proposed in the D4.02
deliverable. Moreover, it includes are additional metrics not described in D4.02, which are labelled
with §. All the currently include the metrics are shown in Table 1.

Metric Acronym Description
nr ins static INS Number of instructions§.

nr src oper static SRC Number of source operands§.
nr dst oper static DST Number of destination operands§.

halsted program size static SPS Static Program Size.
halsted program size dynamic DPL Dynamic Program Size.

halsted program size dynamic coverage DPS Coverage Dynamic Program Size.
nr edges static EDG Number of static edges§.

nr indirect edge CFIM static CFIM Control Flow Indirection Metric
cyclomatic complexity static CC Static Cyclomatic Complexity

Table 1: Metrics resulting from the current ACTC execution.

These metrics are used by the Software Protection Assessment (SPA) tool and by the ADSS. These
tools fetch them directly from the ACTC. Moreover, the ADSS stores the metrics data extracted
into the AKB, following the data class structure in Section 2.

3.2 The Metrics file format

All metrics files output by M01 have a similar format. First of all, the name of the metric cat-
egories in Table 1 is used as filename. The first line of each file works as header and indicates
by column the metrics values that will be found in the next rows. Then all the other lines re-
port the metrics for each code region, following the metrics order described in the first line. All
the lines with information on code regions start with a numerical identifier of the code region
that is described in that line. Moreover, the stat complexity info files contain information
about the entire program. Metrics about the entire program are reported as a single ‘region’ la-
belled with the index of ‘-1’. The stat regions complexity info files contain information
about the regions that have been annotated with ASPIRE protection annotations. An example of
stat regions complexity info file (which has a reduced number of columns to fit on this
page) is as follows:

#region, nr_ins_static, halstead_size_static, cycl_complexity_static
0, 22, 83, 2,
1, 142, 455, 16,

This indicates that this file has two annotation regions; that the first region contains 22 instructions
and that the second region contains 142 instructions. In addition, the first region has a cyclomatic
complexity of 2, whereas the second region has a cyclomatic complexity of 16, etc. All of these
metrics are described in much more detail in Deliverable D4.02.
The metrics files for the dynamic complexity information (dynamic complexity info files) fol-
low the same structure. However, these have additional fields containing the dynamic metrics.
These dynamic metrics are computed based on the dynamic profile files (plaintext), which

ASPIRE D4.04 PUBLIC 9

D4.04 — Security Evaluation, Advanced Human Experiments

consist simply of one line for each basic block containing the start address of this basic block, and
its dynamic execution count. All this information can be computed both on the application that
has no binary protections applied (BC02) as the application with the binary protections applied
(BC05).

4 Software Protection Assessment: New features

Section authors:
Paolo Falcarin, Elena Gómez-Martı́nez, Gaofeng Zhang (UEL)

The Software Protection Assessment (SPA) tool is the component of the ASPIRE framework to
assess and compare different protection solutions. It is used by the ADSS Light, the component
of the ADSS that permits the evaluation of the strength of combinations of protections against a
set of attacks against the application assets. As introduced in deliverables D4.03, the SPA tool has
three main components: PN editor, fitness function and PN simulator, illustrated in Figure 4.

Figure 4: SPA architecture (taken from D4.03).

Since the delivery in D4.03, the SPA tool has been updated to be integrated with the ADSS Light
and the ACTC. The SPA tool obtains the attack models from the ADSS and metrics data from
the ACTC and feeds back assessment results. In other words, the current version of the SPA tool
can do protection assessment on Petri Net based attack models, and run the same assessment
functions on the attack paths available in the AKB, as computed by the Enrichment Framework
(presented in Section 15 of D5.01 and updated in D5.07). Hence, the SPA can be executed for
protection assessment with all data inputs from ADSS and ACTC, whose interaction is made by
means of the fitness function. The extended PN editor could be an alternative option for the attack
model input.
Compared to D4.03, PN editor and PN simulator have no significant updates in this deliverable.
Minor updated will be needed for the full integration with ACTC and ADSS and will be delivered
later in D4.06.
To carry out the assessment, the SPA tool collects some input data from ACTC and ADSS (both
Light and Full).

• Metrics files: These files are generated by ACTC, which include the software metrics on
vanilla and protected software. These metric data are essential for the assessment processes
in the SPA. The metrics file format has been introduce in Section 3.2, which recently includes
9 metrics values for assessment.

ASPIRE D4.04 PUBLIC 10

D4.04 — Security Evaluation, Advanced Human Experiments

• Attacks and Protections data from AKB: these data come from AKB and ADSS. The SPA can
load directly the attack paths and protection solutions from AKB to carry out the assessment.

• Version Builds and Build Log files are generated by ACTC to identify previous metric files.
Currently, due to the lack of sample codes, this input has not been used for assessment in
SPA. In future work, SPA will use this input to improve related assessments.

In the SPA outputs/results, there are two parts: the fitness level of one protection solution and
detailed logs.

• The fitness level of a protection solution on attack paths or one specific attack path is a
number (type is double) that determines the effectiveness of protection solutions, the higher
the level the better the solution. Based on this number, the ADSS Light can compare different
protection solutions to identify the best one.

• The detailed logs on the assessment process include all formulas and data for assessment on
each attack step. It is saved as txt files where the SPA tool is executed. Data in the detailed
logs are only used for manual inspection and are not used by the ADSS Light.

Currently, in order to integrate SPA, ADSS and ACTC together, the ADSS light version is pre-
sented, which is a WP5 outcome. Compared to the ADSS Full, it focuses on the assessment and
comparison of the existing protection solutions. The SPA tool is the main component of this ADSS
Light. In this ADSS Light, users can configure all data for assessment firstly, including selecting
attack paths, protection solutions, metrics files and so on. Then, ADSS Light can send all these
data to SPA to carry out the assessment. Lastly, the assessment results (the fitness level of one
protection solution on attack paths or one attack path) can be send back to the ADSS Light for
solution comparison to find out the gold solution.

ASPIRE D4.04 PUBLIC 11

D4.04 — Security Evaluation, Advanced Human Experiments

Part III

Experiments
The objective of the experiments is to investigate the level of protection offered by ASPIRE protec-
tions from the empirical point of view. Experiments are divided into experiments with academic
participants and experiments with industrial participants.
In the experiments with academic participants, the experimental setting is represented by an ar-
tificial environment (i.e., in vitro experiment) where the experimenter controls and objectively
measures all the relevant variables. This allows us to apply statistical analysis to elaborate objec-
tive observations. Academic participants are involved in multiple rounds of experiments to test
ASPIRE protections, each run in isolation.
To make the presentation of the experiments self-contained, some fragments of text that describe
the design have been taken from Deliverable D4.03. When text was reused from the previous
deliverable this is clearly marked in the beginning of each section or subsection and the copied
text is marked in blue.

5 Data obfuscation experiment

Section authors:
Mariano Ceccato, Paolo Tonella (FBK), Marco Torchiano (POLITO), Bjorn De Sutter, Bart Cop-
pens (UGent)

In this section, we present a new replication of the experiment with data obfuscation. The repli-
cation has involved 34 students (32 Master, 2 Bachelor) students from Universiteit Gent in attack
tasks on compiled binary code. We collected the following pieces of evidence:

1. The success rate of attack tasks on code obfuscated with the combination of RNC and Array
Reordering is reduced to zero;

2. The success rate of attack tasks on code obfuscated with Dynamic RNC is substantially lower
than the success rate of attackers working on clear code;

3. The amount of time required to attack code obfuscated with RNC and Dynamic RNC is higher
than the time required to attack clear code;

4. Attacks to code obfuscated with RNC consist both of static analysis (using IDA-Pro) and
dynamic analysis (using OllyDbg); and

5. Attacks to code obfuscated with Dynamc RNC consist mainly of dynamic analysis (using
OllyDbg).

5.1 Experimental Definition

The planning and formal definition of the experimental settings have been conducted in a struc-
tured way, following the guidelines by [8].
The goal of this study (see Table 2) is to analyse the effect of data obfuscation – specifically RNC,
ArrayReordering, ArrayReordering + RNC and Dynamic RNC obfuscation – with the purpose of evalu-
ating its capability of making sensitive data resilient to malicious attacks. The quality focus regards
how these obfuscation techniques reduce the attacker’s ability to correctly and efficiently extract
data from the code. Investigating the effect of obfuscation on the attack efficiency is a crucial point
in our experimentation: although we are aware that an attacker might be ultimately able to com-
plete an attack on obfuscated code, he can be discouraged if such an attack requires a substantial
effort/time. Results of this study can be interpreted from multiple perspectives: (i) a researcher

ASPIRE D4.04 PUBLIC 12

D4.04 — Security Evaluation, Advanced Human Experiments

Table 2: Data obfuscation experiment definition

Goal : Analyse the ability of data obfuscation to protect sensitive data inside the
code

Treatments : T0 = Clear code; T1 = Array Reordering; T2 = RNC data obfuscation; T3
= RNC + Array Reordering data obfuscation; T4 = Dynamic RNC data
obfuscation;

RQ1 : How effective is data obfuscation in protecting data inside the code as
compared to the clear code?

RQ2 : What is the effort to attack data obfuscated with data obfuscation as com-
pared to clear code?

RQ3 : What strategies and tools have been used to complete successful attacks?

Participants : Students from Universiteit Gent

Systems : P1=Lottery, P2=Lotto (compiled code): programs for the extraction of lot-
tery/lotto numbers

Tasks : Force the program to extract only numbers between 1 and 20; leak the
winning sequence from the program

Metrics : Success rate; time to mount a successful attack

Design : Balanced design: two tasks, two objects, (five treatments)
Group1 Group2 Group3 Group4

Lab1 P1-T0 P1-T4 P1-T2 P1-T0
Lab2 P2-T2 P2-T0 P2-T1 P2-T3

interested in the empirical assessment of data obfuscation; and (ii) a practitioner, who wants to
ensure high resilience to attacks to sensitive data of applications delivered to clients, where they
run in an untrusted environment.
The data obfuscation techniques that we have investigated in this experiment are:

Residue Number Coding (RNC): state-of-the-art obfuscation before ASPIRE. Numeric values are
protected by encoding them as a tuple of integers computed as the respective residues over
a tuple of moduli. Moduli are static constants in the code. This obfuscation is described in
detail in Deliverable D2.01.

ArrayReordering (AR): In a variant of array reordering as described in D2.01, the initialization
values of a read-only array are scrambled in this experiment. No indexing operations in
the code needed to be adapted in this case, as the only purpose of the array is to feed the
algorithm with a list of unique, strictly positive numbers. In the original, clear program, this
is a simple list of consecutive natural numbers starting from 1, as a result of which each value
equals its index + 1. The list of numbers therefore featured almost no entropy. By reordering
the numbers, a significant amount of entropy was introduced, and the all too obvious link
between index and value was removed from the program.

RNC+ArrayReordering (RNC+Reordering): combination of the aforementioned techniques, to
protect either the sensitive assets and the side channel (array indexes) that can be used to
circumvent obfuscation.

Dynamic Residue Number Coding (DynRNC): novel code obfuscation technique developed in
the project. Numeric values are protected by encoding them as a tuple of integers com-

ASPIRE D4.04 PUBLIC 13

D4.04 — Security Evaluation, Advanced Human Experiments

puted as the respective residues over a tuple of moduli. Moduli are computed at run-time
with a function that is hard to analyse statically, because it is based on an NP-complete
problem. This obfuscation has been elaborated by ASPIRE and is described in detail in De-
liverable D2.08.

This experiment allows for a direct measurement of the reduced success rate/increased attack
effort associated with the novel protection elaborated by the ASPIRE project. The reference is not
just the clear code, but also state-of-the-art data obfuscation techniques, potentially combined.
This experiment has been conducted at Universiteit Gent. As part of the course, the students had
access to IDA Pro 6.1. They were also given access to gdb and OllyDbg, LordPE, and any tool they
wanted to bring or install themselves.
The experiment aims at answering the following three research questions:

• RQ1: How effective are data obfuscations RNC/AR/RNC+AR/DynRNC in protecting data
inside the code as compared to the clear code?

• RQ2: What is the effort required to complete a successful attack on data obfuscated with
RNC/AR/RNC+AR/DynRNC as compared to clear code?

• RQ3: What strategies and tools have been used to complete successful attacks?

The first research question deals with the effectiveness of data obfuscation protection, while the
second deals with the effort required to conduct a successful attack. The third research question
investigates the techniques and tools used to complete a successful attack. Data obfuscation might
result in a higher time to successfully complete an attack task or might result in the failure to com-
plete the attack task when this is conducted on protected code. There is an economic advantage in
adopting a data obfuscation protection if the probability that an attack is successfully completed
within a limited amount of time is drastically reduced by the protection.

5.2 Context: Systems

The content of this section is copied from Section 7.2 of Deliverable D4.03
The objects of this experiment are two C programs, Lotto and Lottery, obtained from the web and
developed by third parties who were not involved in the preparation of the experiment.
The tasks of this experiment are as follows: Lotto: Determine the JACKPOT sequence, consisting
of 7 winning numbers, which is embedded in the binary code (specifically, inside some variables)
of the Lotto program. While executing the task, subjects are allowed to read, debug and execute
the code. Participants are asked to write down the winning sequence on paper. Lottery: Modify
the program Lottery so that it extracts only numbers between 1 and 20 in a legal extraction (i.e.,
one matching the logged challenge). When any of the 7 extracted numbers is greater than 20,
the extraction should be redone, by requesting a new challenge to the remote server. In fact, the
extracted numbers are checked for validity against the challenge stored in the remote server. After
successfully completing the task, the reported frequencies shall be equal to zero for all numbers
greater than 20.

5.3 Hypothesis Formulation and Variable Selection

The content of this section is mostly copied from Section 7.3 of Deliverable D4.03.
The two metrics collected to answer research questions RQ1 and RQ2 are:

SR (Success Rate): Proportion of attack tasks completed successfully by participants.

AT (Attack Time): Time needed to complete the attack task, measured only for successfully com-
pleted tasks.

ASPIRE D4.04 PUBLIC 14

D4.04 — Security Evaluation, Advanced Human Experiments

Participants are asked to mark down the start and end time when starting and after finishing the
attack task, so one key metric collected during the experiment is the attack time (AT). Participants
are also asked to show their attack, in case they deem it successful, to one of the research assistants
available during the experiment, who verified if the attack was indeed successful or not. Students
could spend three hours on the task (corresponding to two consecutive lab sessions in the course
schedule).
The success of each attack task on binary code was assessed by one of the course’s teaching as-
sistants directly during the laboratory session, by looking at the modifications operated on the
execution of the programs by means of the debugger.
Based on the metrics chosen to quantify the effectiveness of the protections, we can formulate the
following null hypotheses, respectively for research questions RQ1 and RQ2:

• H0S : There is no difference in average SR between participants working on obfuscated and
participants working on clear code;

• H0T : There is no difference in average AT between participants working on obfuscated code
and participants working on clear code.

No null hypothesis is formulated for RQ3, because it will be addressed by asking direct questions
to participants.
The main factor of the experiment—that acts as independent variable—is the treatment (clear vs.
obfuscated code). As shown in Table 2, in the experiment the five alternative treatments are: (i)
clear binary code, (ii) arrays obfuscated with array reordering, (iii) binary code obfuscated with
RNC, (iv) binary code obfuscated with RNC and array reordering; and (v) binary code obfuscated
with dynamic RNC.
In addition to the metrics SR and AT, we asked participants to answer a pre-questionnaire and
a post-questionnaire. The pre-questionnaire collects information about the abilities and experi-
ence of the involved participants. This is important to analyse the effect of ability and experience
in the successful completion of attack tasks, either on clear or on obfuscated code. The post-
questionnaire collects information about clarity and difficulty of the task, availability of sufficient
time to complete it, and about the tools used and the activities carried out to complete the task.
Among the co-factors that can potentially affect the results, we identified and measured the fol-
lowing ones:

• Experience in C: self reported in the profiling questionnaire (pre1);

• Experience in Assembly: self reported in the profiling questionnaire (pre2);

• Experience in Reverse Engineering: self reported in the profiling questionnaire (pre3 and pre4);

• The Lab: whether there is a learning effect across subsequent experiment laboratories.

5.4 Design

The design of this experiment is balanced so as to ensure that each participant works both on clear
code/code with reordered arrays and on obfuscated code, and to ensure at the same time that
each participant works on different systems during different labs.
The bottom of Table 2 reports the balanced design of the experimental sessions. Participants are
divided into four groups. However, participants work on their own, without any collaboration
within the group. Systems (P1 = Lottery; P2 = Lotto) are provided as clear code (T0), code with
arrays reordered (T1) or code obfuscated by RNC/RNC+AR/DynRNC (T2/T3/T4). In the two
consecutive laboratories sessions (Lab1, Lab2), each group of participants receives both a different
system and a different treatment.

ASPIRE D4.04 PUBLIC 15

D4.04 — Security Evaluation, Advanced Human Experiments

Table 3: Summary of the variables.

Variable Description Scale Range

Treatment Type of obfuscation Nominal ∈ { Clear, AR, RNC,
RNC+AR, DynRNC}

AS Attack success Nominal ∈ { 0, 1 }
AT Time to complete attack Ratio ≥ 0

Lab Lab session of the task Ordinal ∈ { 1, 2 }
Pre1 Experience in C Ordinal ∈ { <3 Months, 6 Months, 1

Year, 2 Years, >3 Years }
Pre2 Experience in Assembly Ordinal ∈ { <3 Months, 6 Months, 1

Year, 2 Years, >3 Years }
Pre3 Previous experience in Reverse

Engineering
Nominal ∈ { Yes, No }

Pre4 Experience in Reverse Engineer-
ing

Ordinal ∈ { <3 Months, 6 Months, 1
Year, 2 Years, >3 Years }

5.5 Experimental Procedure

As the students had already received classes and labs on reverse engineering, no additional warm-
up exercises were necessary.
All students were informed that they were not evaluated on their performance in doing the ex-
periment, they were only rewarded for their participation (as they were for other activities in the
course).
Right before the experiment, we provided participants with a detailed explanation of the tasks to
be performed during the lab. A reference was made to the study hypotheses: the students knew
they were participating in an experiment on analysing the strength of data obfuscations, and they
had studied the overview of such obfuscations in ASPIRE deliverable D2.01.
We distributed the following material to our participants:

• A short textual documentation of the system they had to attack, including how to run it;

• The compiled code to attack, either clear or obfuscated depending on the group the partici-
pant belonged to (see Table 2);

• A textual description of the goal to achieve with the attack task.

The binary code was compiled for Windows with the Visual Studio compiler with optimisations
for speed and size maximally enabled, favouring size over speed (to avoid that divisions are con-
verted to hard-to-interpret multiplications).
The experiment was carried out according to the following procedure. Participants had to:

1. Fill a profiling questionnaire.

2. Read the application description.

3. Run the application (Lotto or Lottery) to familiarise with it.

4. Read the task; mark the start time; perform the task; mark the stop time.

5. After completing all tasks, show the attack to the experimenter by manipulating an actual
execution with the help of the debugger.

ASPIRE D4.04 PUBLIC 16

D4.04 — Security Evaluation, Advanced Human Experiments

6. Complete a post-experiment survey questionnaire.

During the experiment, teaching assistants and professors were in the laboratory to prevent col-
laboration among participants, and to check that participants properly followed the experimental
procedure.
Before the experiment, participants were required to fill a profiling questionnaire. Profiling ques-
tions deal with the participants’ experience with C, e.g. as professional programmers, with de-
buggers, with Assembly and its reverse engineering.
After the experiment, participants were required to fill a post-experiment survey questionnaire,
aimed at both gaining insights about the participants’ behaviour during the experiment and find-
ing justifications for the quantitative results. The survey includes questions on the clarity of the
task and on the time granted for the task, the task easiness, the tools used, the actions undertaken
to attack the code and the time devoted to the attack task.

5.6 Analysis Procedure

Most of the content of this section is copied from Section 7.6 of Deliverable D4.03
The difference between the output variable (SR and AT) obtained under different treatments (clear
code vs. obfuscated code) is tested using non-parametric statistical tests, assuming significance at
a 95% confidence level (α=0.05). So, we reject the null-hypotheses when p-value<0.05. All the
data processing is performed using the R statistical package [4].
To analyse whether data obfuscation reduces the success rate of attack tasks, we used a test on
categorical data, because the tasks can be either correct (completed successfully) or incorrect (com-
pleted unsuccessfully). In particular, we used Fisher’s exact test [2], which is more accurate than
the χ2 test for small sample sizes, another possible alternative to test the presence of differences in
categorical data. The same analysis was used in previous empirical works [5].
To be conservative (because of the small sample size and non-normality of the data), a non-
parametric test has been used to test the hypotheses related to differences in the attack time. In
particular, we perform the one-tailed Mann-Whitney U test on all samples [6]. Such a test al-
lows to check whether differences exhibited by participants under different treatments (clear and
obfuscated code) over the two labs are significant.
Since multiple obfuscations have been used, we are interested in comparing pairwise all the cases
(i.e., against clear code, but also direct comparison between obfuscations). However, when mul-
tiple pairwise comparisons are performed with overlapping data, the number of hypotheses in a
test increases and so does the likelihood of witnessing a rare event. Hence, the chance to reject
true null hypotheses may also increase (type I error). To control this problem, we adopt the Holm
correction which is more complex but also more powerful than the Bonferroni correction. The Holm
correction consists of using different significance levels on different tests. P -values from the n de-
pendent hypotheses are sorted in ascending order. Then, on each ordered p-valuei, a decreasing
correction factor n − i + 1 is used, i.e., an increasing significance level α/(n − i + 1) is applied.
We reject the null hypotheses until the minimum index k for which the null hypothesis cannot be
rejected is encountered (p-valuek > α/(n− k + 1)). All subsequent hypotheses cannot be rejected
(p-valuei : i > k).
While these tests allow for checking the presence of significant differences, they do not provide
any information about the magnitude of such a difference. This is particularly relevant in our
study, since we are interested in investigating to what extent the use of obfuscation reduces the
likelihood of completing an attack and increases the time needed for an attack. As such, two kinds
of effect size measures have been used, the odds ratio for the categorical variable SR and the Cliff’s
delta effect size [3] for the AT variable. The effect size is computed using the effsize package [7].
The odds ratio is a measure of effect size that can be used for dichotomous categorical data. An
odds indicates how likely it is that an event will occur as opposed to it not occurring [6]. The
odds ratio is defined as the ratio of the odds of an event occurring in one group (e.g., experimental
group) to the odds of it occurring in another group (e.g., control group), or to a sample-based

ASPIRE D4.04 PUBLIC 17

D4.04 — Security Evaluation, Advanced Human Experiments

estimate of that ratio. If the probabilities of the event in each of the groups are indicated as p
(experimental group) and q (control group), then the odds ratio is defined as:

OR =
p/(1− p)
q/(1− q)

(1)

An odds ratio of 1 indicates that the condition or event under study is equally likely in both
groups. An odds ratio greater than 1 indicates that the condition or event is more likely in the
first group. An odds ratio less than 1 indicates that the condition or event is less likely in the first
group.
For independent samples, Cliff’s delta provides an indication of the extent to which two (ordered)
data sets overlap, i.e., it is based on the same principles of the Mann-Whitney test. Cliff’s Delta
ranges in the interval [−1, 1]. It is equal to +1 when all values of one group are higher than the
values of the other group and−1 when the opposite is true. Two overlapping distributions would
have a Cliff’s Delta equal to zero. An effect size d is considered small when 0.148 ≤ d < 0.33,
medium when 0.33 ≤ d < 0.474 and large when d ≥ 0.474 [1].
The analysis of co-factors is performed using a General Linear Model (GLM). It consists of fitting
a linear model of the dependent output variables (success rate or attack time) as a function of the
independent input variables (all factors, including the treatment, i.e., the presence of obfuscation).
A general linear model allows to test the statistical significance of the influence of all factors on
the attack success rate and attack time. In case of relevant factors, interpretations are formulated
by visualising the associated interaction plots.
The analysis is conducted on the main co-factors (reported in Table 3) and reports the individual
coefficients and their significance level. The coefficients are used to understand magnitude and
direction of the effects.
The rest of this section reports the results of the experiment, with the aim of answering the research
questions elaborated previously. Since different treatments have been applied to program Lotto
and Lottery, statistical analysis is conducted separately on these two programs.

5.7 Participants Characterization

The Participants to the experiment are 32 Master and 2 Bachelor students from Universiteit Gent.
They take part in the experiment as part of the “Software hacking and protection course”, an
elective course at Universiteit Gent. Figure 5 and Figure 6 show some descriptive statistics about
the participants. These data were collected by means of the pre-experiment questionnaire.
The majority of the participants declared two or more years of experience with the C programming
language. Their experience with the x86 assembly language was a bit shorter; still, most of them
have experience reading assembly for at least one year. Before participating to the course, most
students had no experience in reverse engineering. For those who had some prior experience,
it was mostly less than 3 months. During the course, however, all students had already studied
static and dynamic reverse engineering techniques, as well as applied them during hands-on labs.
Moreover, the students had read the data obfuscation techniques overview from deliverable D2.01.

5.8 Analysis of Success Rate for program Lotto

Figure 7 shows the bar plots of success rate for the attack tasks, divided by treatment (clear code,
code obfuscated with RNC/DynRNC). Successful and failed tasks are represented, respectively, in
red and in yellow. Bars for different treatments have different height because different treatments
have been executed a different number of times (the graph reports absolute values).
From the plot, we can observe that the success rate on clear code is always higher than the success
rate on obfuscated code. Moreover, the success rate is higher on static RNC than on Dynamic
RNC.

ASPIRE D4.04 PUBLIC 18

D4.04 — Security Evaluation, Advanced Human Experiments

<3 Months 6 Months 1 Year 2 Years >3 Years

Cumulative programming experience in C

F
re

q
u
e
n
c
y

0
2

4
6

8
1
0

<3 Months 6 Months 1 Year 2 Years >3 Years

Cumulative programming experience in Assembly

F
re

q
u
e
n
c
y

0
2

4
6

8
1
0

Figure 5: Demographics of participants (a)

ASPIRE D4.04 PUBLIC 19

D4.04 — Security Evaluation, Advanced Human Experiments

Yes No

Previous experience in Reverse Engineering

F
re

q
u
e
n
c
y

0
5

1
0

1
5

2
0

2
5

<3 Months 6 Months 1 Year 2 Years >3 Years

Cumulative programming experience in Reverse Engineering

F
re

q
u
e
n
c
y

0
2

4
6

8

Figure 6: Demographics of participants (b) – reverse engineering experience does not include
knowledge acquired during the course.

ASPIRE D4.04 PUBLIC 20

D4.04 — Security Evaluation, Advanced Human Experiments

Clear RNC DynRNC

Success rate

F
re

q
u

e
n

c
y

0
5

1
0

1
5

Figure 7: Bar plot of attack success rate (red=successful attack, yellow=failed attack)

Clear RNC DynRNC

Success 15 3 2
Failure 1 6 7

Table 4: Success rate

Table 4 reports the precise number of successful and failed attack tasks for each treatment. Table 5
and Table 6 show the analysis of success rate for the attack tasks performed by participants, re-
porting the p-value resulting from Fisher’s test and the effect size, computed as the odds ratio. An
odds ratio > 1 indicates that the chances of success are higher with the first treatment than with
the second one. Considering the Holm correction, significant cases (shown in bold face) are when
p-values < 0.05/k. This holds for the smallest p-value (p-value1 < 0.05/3) and the second smallest
p-value (p-value2 < 0.05/2).
The lack of significance in the remaining case (RNC vs. DynRNC) might be due to the presence
of multiple treatments, which caused a reduction of participants in each group, thus reducing the
number of observations per treatment.
These results suggest that the success rate of attacks on code obfuscated with RNC/DynRNC is
significantly lower than the success rate of attacks on clear code. On the other hand, no statisti-
cal difference is observed in the direct comparison between obfuscations, because of insufficient
statistical power of the sampled data. The output of the tool GPower2 run on the sampled data
confirms that their statistical power is low (less than the commonly accepted threshold 1−β = 0.8).
The output of GPower corroborates the hypothesis that significance could not be obtained due to
low statistical power of the sampled data.
The odds ratio for RNC/DynRNC indicates that the chances of correctly porting an attack task
when code is obfuscated with RNC/Dynamic RNC is more than 24 (resp. 39) times lower than on
clear code. Even if the difference is not statistically significant, we can observe that, according to
odds ratio, the dynamic variant of RNC reduces that chances of porting a successful attack by a
factor 1.7 with respect to the state-of-the-art variant, (static) RNC.
Overall, the null hypothesis H0SR on success rate can be rejected using Fisher’s test for the com-
parison with clear code in two cases: for the RNC and for Dynamic RNC.
Therefore, we can formulate the following alternative hypothesis:

• HSR,RNC : The success rate of attackers working on code obfuscated with RNC is lower than

2http://www.gpower.hhu.de/en.html

ASPIRE D4.04 PUBLIC 21

D4.04 — Security Evaluation, Advanced Human Experiments

Treatments Clear RNC DynRNC

Clear 0.0029 0.0005
RNC 1.0000

Table 5: Analysis of success rate (Fisher test)

Treatments Clear RNC DynRNC

Clear 24.55 39.59
RNC 1.70

Table 6: Analysis of success rate (Odds ratio)

the success rate of attackers working on clear code.

• HSR,DynRNC : The success rate of attackers working on code obfuscated with Dynamic RNC
is lower than the success rate of attackers working on clear code.

5.9 Analysis of Success Rate for program Lottery

Clear AR RNC RNC+AR

Success rate

F
re

q
u

e
n

c
y

0
2

4
6

8

Figure 8: Bar plot of attack success rate (red=successful attack, yellow=failed attack)

Figure 8 shows the bar plots of success rate for the attack tasks, divided by treatment (clear code,
code with arrays reordered, code obfuscated with RNC/RNC+AR). Successful and failed tasks are
represented, respectively, in red and in yellow. Bars for different treatments have different height
because different treatments have been executed a different number of times (the graph reports
absolute values).
From the plot, we can observe that the success rate is almost zero across treatments. This clearly
indicates that program Lottery is remarkably more complex than program Lotto, even when pro-
vided as clear code. No participant could complete a successful attack when the code was clear or
was obfuscated with a combination of RNC and AR. Only 1 subject could complete a successful
attack in the other two cases.
Table 7 reports the precise number of successful and failed attack tasks for each treatment. Table 8
shows the analysis of success rate for the attack tasks performed by participants, reporting the
p-value resulting from Fisher’s test. Even without considering the Holm correction, there are no
significant cases (p-value < 0.05).

ASPIRE D4.04 PUBLIC 22

D4.04 — Security Evaluation, Advanced Human Experiments

Clear AR RNC RNC+AR

Success 0 1 1 0
Failure 9 8 7 8

Table 7: Success rate

Treatments Clear AR RNC RNC+AR

Clear 1.0000 0.4706 1.0000
AR 1.0000 1.0000

RNC 1.0000

Table 8: Analysis of success rate (Fisher test)

The lack of statistical significance of results is due to the presence of multiple treatments, which
caused a reduction of participants in each group, thus reducing the number of observations per
treatment. Since there are no statistically significant results, the odds ratio is not analysed for this
program. No statistical difference is observed in the direct comparisons because of insufficient
statistical power of the sampled data. The output of the tool GPower3 run on the sampled data
confirms that their statistical power is low (less than the commonly accepted threshold 1−β = 0.8).
The output of GPower corroborates the hypothesis that significance could not be obtained due to
low statistical power of the sampled data.
The null hypothesis H0SR on success rate cannot be rejected because of low statistical power of
the collected data. Although there is no statistical power to reject H0SR, the results of this exper-
iment are still useful for ASPIRE. In fact, this experiment shows that RNC combined with Array
Reordering could successfully defeat all attack attempts. This is not true of RNC alone, because
array indexes leak information about the array content, even if the array content is protected by
means of RNC. Actually, one participant was able to successfully complete an attack task against
RNC. On the other hand, AR alone is not a very powerful protection (it was also defeated by one
participant), since it just scrambles the array content without actually obfuscating it. Once com-
bined, the two approaches eliminate the possibility to obtain information about the array content
without actually attempting to de-obfuscate them, which turned out to be a very difficult task that
no participant was able to complete successfully.

5.10 Co-factors for Success Rate

Here we report the analysis of co-factors that could have influenced the success rate. Table 9 and
Table 10 summarise the questions asked in the pre-questionnaire and post-questionnaire respec-
tively.
Table 11 reports the analysis of co-factors obtained by applying the general linear model method.
Statistically significant coefficients are in boldface. The Lab co-factor significantly influences the
success rate. The significantly non zero value for the intercept of the linear model (first row of
Table 11) indicates that the two classes out output (Success vs. Failure) are not equally likely,
hence one of the two (i.e., Failure) can be predicted even without any knowledge of co-factors.
From the interaction plot in Figure 9 we can notice that in the second lab the success rate is consis-
tently lower than in the first lab (the trends for AR, RNC+AR, DynRNC are missing, because these
obfuscations were not used in both labs). This trend goes in the opposite direction of the learning
effect, which should make participants achieve higher success rate in the second lab. This can
be explained considering that different systems were used in different labs (Lotto in the first Lab
and Lottery in the second lab) and a program can be intrinsically more difficult to attack than the
other. Lottery was actually reported by the involved subjects as substantially more difficult to

3http://www.gpower.hhu.de/en.html

ASPIRE D4.04 PUBLIC 23

D4.04 — Security Evaluation, Advanced Human Experiments

Question Question Answers

Pre1
What is your cumulative
programming experience in C?

< 3 Months; 6 Months; 1
Year; 2 Years; > 3 Years

Pre2
What is your cumulative
programming experience in
Assembly?

< 3 Months; 6 Months; 1
Year; 2 Years; > 3 Years

Pre3
Did you have any experience
with Reverse Engineering
before this course?

Yes; No

Pre4
If so, what is your cumulative
programming experience in
Reverse Engineering?

< 3 Months; 6 Months; 1
Year; 2 Years; > 3 Years

Pre4
If so, which tools do you have
prior experience with outside of
this course?

Table 9: Overview of the pre-questionnaire questions

Question Question Answers

Post1 The task was clear to me.
Strongly agree; Agree;
Not certain; Disagree;
Strongly disagree

Post2
There was enough time to
perform the task.

Strongly agree; Agree;
Not certain; Disagree;
Strongly disagree

Post3 The task was easy to perform.
Strongly agree; Agree;
Not certain; Disagree;
Strongly disagree

Post4
Which tools did you use in
trying to solve this challenge?

Post5
What is the specific sequence of
activities that you performed?

Post6
Can you order these activities
by difficulty (from the more
difficult to the more easy)?

Post7

Can you order these activities
by time consumed (from the
one that required more time to
the one that required less time)?

Post8

What protections, if any, do you
think it was applied to the
program? Did identifying them
help you?

Table 10: Overview of the post-questionnaire questions

attack than Lotto.
Another important factor that could have influenced the success rate is the background knowl-
edge of each participant. We collected participant background information through the profile
questionnaire. However, the profile of the participants (experience in C, Assembly and Reverse
Engineering) has no significant influence on the success rate. Participants involved in this ex-

ASPIRE D4.04 PUBLIC 24

D4.04 — Security Evaluation, Advanced Human Experiments

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.3912 0.9064 2.64 0.0205
Clear -0.2666 0.3362 -0.79 0.4420
DynRNC -1.2615 0.4848 -2.60 0.0219
RNC -0.4091 0.2621 -1.56 0.1425
RNC+AR -0.3441 0.2889 -1.19 0.2549
Lab -0.8930 0.2103 -4.25 0.0010
Pre1 (C experience) -0.0153 0.1019 -0.15 0.8833
Pre2 (Assembly experience) 0.0471 0.0891 0.53 0.6061
Pre3 (Previous RE experience) -0.1090 0.2065 -0.53 0.6065
Pre4 (RE experience) -0.1308 0.1178 -1.11 0.2872

Table 11: Success rate co-factors (General linear model).

periment have all a similar background, as apparent from the pre-questionnaires, and they all
attended the course “Software hacking and protection” at Universiteit Gent. As a consequence,
the involved students were quite homogeneous in terms of binary code analysis competences and
their background did not influence their performance in the experiment.

5.11 Analysis of Attack Time for Lotto

We now analyse the effort required to port a successful attack. Since we consider how long it took
to complete a successful attack task, we drop those tasks that were not successfully completed.
Moreover, since only two attacks (associated with 2 out of 4 treatments applied) were successful
on program Lottery, there is not enough information to carry out statistical tests on this program.
Hence, analysis of attack time is conducted only on Lotto.
Figure 10 shows the distribution of the attack time required to deliver correct results when the
attacked code is clear, obfuscated with RNC or obfuscated with Dynamic RNC. From the plot, we
can observe that obfuscated code consistently requires more time to be attacked than clear code
and that to attack the dynamic variant of RNC more time is required than for the static variant.

Treatment N Mean Median SD (σ)

Clear 15 61.00 52.00 24.80
RNC 3 122.00 125.00 34.60

DynRNC 2 148.50 148.50 14.85

Table 12: Descriptive statistics of Attack Time.

Table 12 reports the descriptive statistics of the time required to port successful attacks, respec-
tively on clear and obfuscated code. The table reports the number of successful attacks (second
column), mean, median and standard deviations of attack time (respectively on third, fourth and
fifth columns).

Treatments RNC DynRNC

Clear 0.0176 0.0438
RNC 0.4000

Table 13: Analysis of attack time (Mann-Whitney U test).

Table 13 and Table 14 report analysis of the time required to port successful attacks, respectively
as the p-value (significant cases in boldface) of the Mann-Whitney U test with Holm correction
and Cliff’s delta effect size.

ASPIRE D4.04 PUBLIC 25

D4.04 — Security Evaluation, Advanced Human Experiments

0
.0

0
.2

0
.4

0
.6

0
.8

Lab

M
e

a
n

 o
f

 C
o

rr
e

c
t

1 2

 Treatment

RNC

Clear

Figure 9: Interaction plot of Success Rate and Lab.

Treatments RNC DynRNC

Clear -2.03 -4.28
RNC - -1.00

Table 14: Analysis of attack time (Effect size).

Although statistical significance is not achieved in the comparison between clear code and code
obfuscated with RNC and DynRNC when the Holm correction is applied, p-values are quite low
(p-value < 0.05 for both RNC and DynRNC) and are associated with a large effect size. We conjec-
ture that a larger sample size would have provide statistical significance even after the application
of the Holm correction. Power analysis conducted by means of the GPower tool confirmed that the
statistical power of the data collected for RNC vs. Dynamic RNC is low (1− β < 0.8). For similar
reasons, the attack time difference visible in Figure 10 does not reach statistical significance.
Overall, hypothesis H0AT cannot be rejected using the Mann-Whitney U test with Holm correction
when RNC/DynRNC obfuscation is compared with clear code. It can be rejected if Holm correc-
tion is not applied. Therefore, the following alternative hypothesis requires further validation, by
collection of a larger sample of data:

• HAT,RNC/DynRNC : The amount of time required to attack code obfuscated with RNC/Dyn-
RNC is higher than the time required to attack clear code.

Lack of the large sample size necessary to achieve statistical significance when comparing attack
times is mostly due to the small number of successful attacks (only 3 on RNC and 2 on DynRNC,
as compared to 15 on clear code). In fact, in this experiment the primary metrics is success rate
and on this metrics there is indeed statistical significance of the differences with large effect size
(see Section 5.8). Attack time is a secondary metrics that can be computed only on the subset of
tasks completed successfully. Since the experimented protections were quite difficult to defeat for
attackers, only a small sample of attack times could be collected. Hence, the lack of significance (in
the presence of Holm correction) for HAT,RNC/DynRNC simply means that protections obstructed

ASPIRE D4.04 PUBLIC 26

D4.04 — Security Evaluation, Advanced Human Experiments

Clear RNC DynRNC

4
0

6
0

8
0

1
0

0
1

2
0

1
4

0
1

6
0

T
im

e
 [

m
in

]

Figure 10: Boxplot of attack time (only for successful attacks)

most of the attack attempts, leaving us with a few attack time values for the statistical analysis.

5.12 Co-factors for Attack Time

Estimate Std. Error t value Pr(>|t|)

(Intercept) 169.9677 28.2646 6.01 0.0266
Clear -60.8871 10.5604 -5.77 0.0288
RNC -65.9677 10.7396 -6.14 0.0255
Pre1 (C experience) -12.7097 5.9682 -2.13 0.1670
Pre2 (Assembly experience) 12.7419 4.5115 2.82 0.1058
Pre3 (Previous RE experience) -31.6129 9.9185 -3.19 0.0859
Pre4 (RE experience) 13.1129 5.7141 2.29 0.1487

Table 15: Attack Time co-factors (general linear model).

Similarly to what we did for success rate, we also analyse the impact of co-factors on attack time.
Table 15 shows the analysis of co-factors with general linear model. Treatments (RNC, Clear) have
an impact, which is significant only if no Holm correction is applied (consistently with the Mann-
Withney U test reported in Table 13). The statistically significant intercept indicates that one of
the two outputs (namely, attack task Failure) can be predicted even without knowledge of any
co-factor just because it is associated with a class that contains more samples.
Similarly to the case of success rate, also for attack time, the profile of the participants (experience
in C, Assembly and Reverse Engineering) collected with the profiling pre-questionnaire has no
significant influence on the result.

ASPIRE D4.04 PUBLIC 27

D4.04 — Security Evaluation, Advanced Human Experiments

Treatment Post1: Clear Post2: Enough time Post3: Easy

Clear 1 (Strongly agree) 2 (Agree) 2 (Agree)
AR 2 (Agree) 3.5 (Not Certain/Disagree) 4 (Disagree)
RNC 1 (Strongly agree) 3.5 (Not Certain/Disagree) 4 (Disagree)
RNC+AR 2 (Agree) 4 (Disagree) 5 (Strongly disagree)
DynRNC 1 (Strongly agree) 4.5 (Disagree/Strongly disagree) 5 (Strongly disagree)

Table 16: Analysis of feedback post-questionnaire.

5.13 Analysis of post-questionnaire

In this section, we analyse the answers provided by participants to the feedback post-questionnaire.
Table 16 reports the median of the answers to questions with closed answers on a Likert scale.
Overall, participants agree or strongly agree that the task was clear. Participants agree that the time
was enough only when attacking clear code (post1). They are either uncertain or they disagree that
the time was enough to attack obfuscated code (post2). Participants agree that the task was easy
(post3) only when performed on clear code, they disagree that the task was easy on obfuscated
code.
Now we are going to analyse the answers to open questions, provided by those participants who
were able to attack obfuscated code. The questions are intended to investigate the used tools
(Post4), the activities performed to complete the attack (Post5), the difficulty (Post6) and the time
spent (Post7) on these activities, as well as the protections participants think that had been applied
to the code (Post8).
RNC: The four participants who managed to attack code protected with RNC reported that they
mostly started analysing the code with IDA Pro to perform static analysis and OllyDbg to perform
dynamic analysis. In one case, a participant additionally used Python to automate a part of the
attack (with a script). Another participant also tried to use a “Chinese remainder calculator” to
break the data obfuscation scheme.
Two different strategies have been reported by participants: (1) white-box attack to obfuscation
and (2) brute force attack. The first strategy consists of using static and dynamic analysis (with
IDA Pro and OllyDbg) to identify the relevant point in the code where data was accessed and
decoded. Then, decoding operations were reverse engineered to recover the decoding algorithm.
Once known, the decoding algorithm has been used to recover the clear values of the protected
assets. While this strategy was successful for a participant, it was not so for the other participant
who attempted it. The latter participant, in fact, reported that at a certain point he gave up and
switched to the second strategy, adopted in the rest of the successful attacks, i.e., brute force. The
time to complete the attack was approximately two times higher for the participant who switched
from attack strategy (1) to (2) as compared to the participant who insisted with strategy (1) until
he was successful.
According to the answers to the feedback post-questionnaire, brute force attack still starts with
static/dynamic analysis to locate the point where data are decoded. Then, several attempts are
made with a trial-and-error approach, in which data combinations are enumerated and tried, suc-
cessful sub-sequences of data are recognised, and the complete sequence is obtained incrementally
and greedily, by concatenating the correct sub-sequences.
The hard part was understanding the Chinese Remainder Theorem and the way values are de-
coded. Brute forcing of values was also reported as a hard activity. In all the cases, the attack tasks
started with the easiest tasks and, while proceeding in the attack, more and more difficult tasks
have been faced. Not surprisingly, most of the time was spent in difficult tasks where human
effort was required.
Three out of four participants realised that Residue Number Coding was used to protect asset val-
ues. Even if able eventually to attack the code, the fourth participant did not realise the presence
of this specific data obfuscation algorithm. Instead, he wrongly reported the presence of XOR

ASPIRE D4.04 PUBLIC 28

D4.04 — Security Evaluation, Advanced Human Experiments

masking and opaque predicates. The presence of additional protections was wrongly reported by
two of the other participants who correctly identified RNC.
Dynamic RNC: Just two participants were able to attack the code protected with Dynamic RNC.
The used tools are consistent with the previous case: IDA Pro for static analysis and OllyDbg for
dynamic analysis. However, the attack strategy was quite different, because participants realised
that static analysis was useless, since it was not useful to detect the values of the modules used to
decode the protected values. In fact, none could reverse engineer the decoding algorithm nor ap-
ply the Chinese Remainder Theorem to complete the attack. In one case, the attack was successful
only when a participant resorted to OllyDbg to intercept the print statement and read the clear
values of the assets from the memory. In the other case, the attack was a waste of time until the
participant decided to switch to a brute force strategy.
Similarly to the previous cases, the steps supported by tools were easy and fast, while the mentally
and manual intensive tasks were reported as the most hard and time consuming.
While a participant was able to guess that some form of Residue Number Coding was present in
the code, the other participant did not realise this. Instead, he reported that some form of control
obfuscation was present, with many complex branches (“tons of unneeded branching”). These
branches probably result from the many uses of encoded variables in if-checks. RNC replaces
individual comparisons with short-circuiting chains. Anyway, the attack was successful even if
the deployed protection was not identified correctly.

5.14 Threats to validity

The content of this section is mostly copied from Section 7.13 of Deliverable D4.03
The main threats to the validity of this experiment belong to the conclusion, internal, construct
and external validity threat categories.
Conclusion validity threats concern the relationship between treatment and outcome. We use sta-
tistical tests to draw our conclusions. Inability to reject the null hypothesis exposes us to type
II errors (incorrectly accepting a false null hypothesis). We mitigate this threat by increasing the
number of participants to this study. In fact, the probability of a type II error can be reduced by
increasing the sample size. In a few instances, the application of the Holm correction prevented
us from achieving statistical significance. While a larger sample size might solve the problem, we
think such results are still interesting because they are very close to statistical significance (they
are statistically significant without Holm correction).
Internal validity threats concern external factors that may affect the independent variable. Sub-
jects were aware of the experimental hypotheses. Participants were informed that they were not
evaluated on their performance in doing the experiment.
Construct validity threats concern the relationship between theory and observation. They are
mainly due to how we measure the effectiveness of data obfuscation. We manually assessed the
successful completion of each task in order to measure SR. During the labs, experimenters made
sure that times were accurately marked in the time sheets upon start and completion of the attack
tasks.
External validity concerns the generalisation of the findings. In our experiment we considered two
small programs, Lotto and Lottery, to allow for potentially successful attacks within experimental
sessions with a limited time bound (3h). Results may not generalise to larger programs. On
the other hand, we expect that larger programs will be more difficult, not easier, to attack, both
with and without protections. Moreover, the chosen programs have been written by third parties,
completely unrelated with ASPIRE, so as to ensure that they are not crafted to provide optimal
application conditions for the ASPIRE protections. The possibility to complete a successful attack
on these simple programs might not necessarily translate to the fact that a more complex program
can be also attacked.
The study was performed in an academic environment which may differ substantially from the
industrial one. However, we mitigate this threat by asking participants to work on binary code,
a setting similar to a real attack scenario. Results cannot be extrapolated to (i) more advanced

ASPIRE D4.04 PUBLIC 29

D4.04 — Security Evaluation, Advanced Human Experiments

attackers, (ii) different types of assets, (iii) different attack goals. Furthermore, the specific form of
Array Reordering (see Section 5.1) used in this study differs significantly from the more traditional
form as was presented in deliverable D2.01. Results obtained for this specific form cannot be ex-
trapolated to other forms of this protection. Further replications of the study on additional objects,
with different assets and attack goals, as well as execution of case studies involving professional
hackers, will corroborate the external validity of our findings.

5.15 Lessons Learned

In this section we discuss the implications of the experimental results for the ASPIRE project.
Effects of protections. The protections tested in this experiment had a dramatic impact on success
rate and on the time necessary to complete a successful attack. On Lotto, the success rate was
reduced by a factor 3.3 and the attack time was more than doubled. This provides quantitative
evidence for the shift in the economic convenience of code attacks when attackers deal with pro-
tected binaries. The reduced probability of success and the increased effort necessary to complete
an attack are powerful deterrents that prevent to a major extent malicious tampering with binary
code.
Combination of protections. Attacks can be conducted on multiple, different assets and code regions.
By combining multiple protections it is possible to block multiple fronts of attacks at the same
time. On Lottery, we evaluated the combination of RNC with Array Reordering and we observed
that the combined protection could never be attacked successfully, while the two individual pro-
tections, applied in isolation, could be successfully attacked by one participant each. Practical
usage of the ASPIRE tool chain should activate as many protections as possible (considering of
course their impact on performance).
Attack strategies. Successful attacks were never targeted directly against an ASPIRE protection. In
fact, all successful attacks took advantage of side attack channels or brute force. This indicates
that careful analysis of the security assets and careful selection of the appropriate protections may
eventually inhibit all possibilities of side attacks. If the involved computation is complex enough
to prevent brute force attacks, the job of attackers becomes extremely difficult and economically
inconvenient.

6 Client/server code splitting experiment

Section authors:
Mariano Ceccato, Paolo Tonella (FBK)

According to the ASPIRE Description of Work (DoW), a second round of experiments is planned,
where a second protection is assessed. In this section, we present the results of the first replication
of the second round of experiments, intended to investigate client/server code splitting. The repli-
cation has been conducted with 10 academic participants from University of East London. Due
to the small number of participants and to the fact that only two participants could successfully
complete the attack task, no significant result is highlighted by statistical tests.
This experimental design will be reused in the forthcoming replications on the other academic
project partners, and more participants will be involved. More data points will allow us to draw
statistically sound conclusions. The complete set of experiments on code splitting and the new
(statistically sound) conclusions will be reported in deliverable D4.06 scheduled for month M36.

6.1 Experimental Definition

The content of this section is mostly copied from the first part of Section 8 of Deliverable D4.03
Table 17 provides a schematic overview of the code splitting experiment. The goal of this experi-
ment is to analyse the degree of protection offered by the ASPIRE code splitting technique, when

ASPIRE D4.04 PUBLIC 30

D4.04 — Security Evaluation, Advanced Human Experiments

Goal Analyze the ability of code splitting to prevent malicious attacks
and measure the performance penalty to be paid

Treatments T0 = original code; T1 = small code portion split; T2 = medium
code portion split

RQ1 How effective is code splitting for preventing code tampering as
compared to the clear code?

RQ2 How effective is code splitting for increasing the attack time as
compared to the attack time for the clear code?

Subjects Students from FBK, UEL, POLITO
Objects P1: space game
Tasks Make spacecraft move faster by doubling the effect of a move
Metrics Success rate; time to mount a successful attack
Design Lab1: P1-T0; P1-T1/2

Table 17: Code splitting experiment

it is applied to increasingly larger or more complex code portions. Splitting larger code portions
is expected to bring increased protection but also to cause increasing performance degradation.
Large portions of code executed on the server may involve a significant server execution over-
head, especially when serving many clients at the same time. Moreover, splitting a more complex
portion of code may require more frequent synchronisations between the code remaining on the
client and the code moved to the trusted server. Because of the implementation of this protection,
the more dependencies between client and server, the more synchronizations are required (see
Deliverable D3.1 for technical details about this protection). In order to evaluate the impact of the
split code size on both the level of protection and the performance penalty to be paid, we consider
two treatments, in addition to the baseline T0, which is the original code: T1/T2, associated with
a small/medium code portion being moved from the client to the trusted server.
In each replication of the experiment, one of the two split code sizes (T1/T2) is evaluated in com-
parison with the clear code (T0). This allows for a direct measurement of the increased attack
effort associated with each level of protection. Such measurement are paired with the associated
performance degradation. Moreover, by comparing the data collected in the three replications
where the split code portion has variable size, it is possible to quantitatively assess the trade off
between degree of protection and associated performance penalty.
The three replications of this experiment with variable split code size will be conducted at POLITO,
FBK and UEL, and will evaluate the treatment (T1/T2) in comparison with the baseline treatment
T0 (clear code).

6.2 Research questions

The experiment aims at answering the following two research questions:

• RQ1: How effective is code splitting for preventing code tampering as compared to the clear
code?

• RQ2: How effective is code splitting for increasing the attack time as compared to the attack
time for the clear code?

• RQ3: What strategies and tools are used to complete successful attacks?

The first research question is about the effectiveness of code splitting as a code protection tech-
nique that limits the likelihood for attackers to be able to complete a successful attack. The second
question is about the cost for porting a successful attack in terms of human time. The evidence
collected during the experiment will be used to assess the average increased attack time provided

ASPIRE D4.04 PUBLIC 31

D4.04 — Security Evaluation, Advanced Human Experiments

by code splitting, regardless of the split code size. We will measure also the performance degra-
dation associated with code splitting, depending on the size of the code portion being split, so
as to be able to pair the increased attack effort with the increased cost of protection (performance
penalty). The last research question is intended to investigate, more qualitatively, how attackers
work to complete their task.

6.3 Object

Figure 11: Screenshot of SpaceGame

The object of this experiment is an open source C program, SpaceGame, obtained from Source-
Forge. SpaceGame is a demonstrator for the framework GAME (Geometrical Ascii Multigame En-
vironment), a C language framework for creating geometrical games using ncurses text screens.
While GAME was originally created for Unix platforms, it can be ported to more systems, because
it uses standard ANSI C. The framework and the demonstrator amount to 1,873 SLoC (measured
by sloccount), including header files. Players can move their spacecraft on the screen by means
of the numeric keyboard or by pressing the keys for characters ’h’, ’j’, ’k’, ’l’ (’s’ stops the game,
while ’q’ quits it). Figure 11 shows a screenshot of SpaceGame.
The attack task to be executed by the experiment subjects on SpaceGame aims at gaining an unfair
advantage over other competing players:

Attack task: Modify the source code of SpaceGame so as to move twice as fast as allowed by
the game rules. Specifically, each key press must translate into a 2-character length move,
instead of a 1-character move.

While in the clear code the required modification consists just of changing the unitary increment
or decrement of the position into a double increment/decrement, when the code handling player
movements is moved from client to server, the modification to be done becomes increasingly more
difficult, depending on the split code size. It might for instance involve a double function call that
replaces a single call, or a modification of some client-server messages. Maybe, an attacker could
also observe the input/output data exchanged with the server, learn the behaviour of the split part
and reimplement locally the missing features in a fake-server, that could be later tampered with
to complete the attack.

ASPIRE D4.04 PUBLIC 32

D4.04 — Security Evaluation, Advanced Human Experiments

6.4 Analysis of Runtime Overhead

The execution time (ET) measures the time for a complete execution of SpaceGame under a pre-
defined interaction scenario. In order to obtain meaningful and comparable execution times, a
program driver is used to stimulate the program without requiring any user intervention. The
driver executes the program in batch mode and it sends a predefined key sequence to SpaceGame,
so as to simulate the interaction of the user with the game. The length of the chosen key sequence
was 120 (which is the maximum value for the execution in batch mode), which means that an
execution of the driver simulates the user pressing the game keys 120 times. The key-press rate
is not relevant for a batch execution, because key-press events are stored in a file and the game
consumes exactly one key-press event for each step of the game. To accommodate for random
fluctuations in the execution time measurements, ET is measured multiple (100) times.
The performance overhead (PO) is the relative increase of the average execution time between
split code and original code:

PO =
ET (P ′)− ET (P)

ET (P)
(2)

where P , P ′ indicate the original and protected program, respectively.

Version Average time [sec] SD (σ) PO

Original 0.020 0 -
Small 2.159 0.028 107
Medium 2.106 0.048 104

Table 18: Execution times for split code.

Table 18 reports the average execution times (expressed in seconds), the standard deviation and
the performance overhead for the three different versions of SpaceGame (original code, small
split, medium split). We can observe that the performance overhead for the two split versions is
significant. Protected code takes, respectively, 107 times and 104 times longer than the original
code. This is meanly due to the interaction between client and trusted server, because applying
this protection to SpaceGame means to turn a client-only program into a client-server architecture.
Anyway, this overhead was measured in a batch execution, and the performance overhead does
not impact negatively the user experience.
The difference between the two split versions is small, but opposed to the slice size. In fact, the
small split version is affected by a larger overhead than the medium split version. This is due
to the fact that, even if the portion of the code being moved from the client to server is larger
for medium split, the total number of synchronization actions required is slightly smaller. Thus,
when considering the runtime overhead, network messages are more important than the size of
the code to move to the server.

6.5 Metrics

The metrics collected to answer research questions RQ1 and RQ2 are:

AT: Attack time

SR: Success rate

Subjects are asked to mark down the start and end time when starting and after finishing the
attack task, so one key metrics collected during the experiment is the attack time (AT). Subjects
are also asked to send the attacked code to the experimenters, who manually verify if the attack
was successful or not. Metrics AT is meaningful only for successful attacks. The proportion of

ASPIRE D4.04 PUBLIC 33

D4.04 — Security Evaluation, Advanced Human Experiments

successful attacks provides a second metrics, which complements AT, called success rate (SR).
SR measures the proportion of subjects that successfully completed the attack task either on the
original code or on code protected by code splitting.
Based on the metrics chosen to quantify the effectiveness of the code splitting protection, we can
formulate null and alternative hypotheses associated with research questions RQ1, RQ2:

• H0SR: There is no difference in the average SR between participants working on code pro-
tected with code splitting and participants working on clear code;

• H0AT : There is no difference in the average AT between participants working on code pro-
tected with code splitting and participants working on clear code.

In addition to the metrics AT, SR, we ask subjects to answer a pre-questionnaire and a post-
questionnaire. The pre-questionnaire collects information about the abilities and experience of
the involved subjects. This is very important to analyse the effect of ability and experience in the
successful completion of the attack tasks either on original or on split code. The post-questionnaire
collects information about clarity and difficulty of the task, availability of sufficient time to com-
plete it, and on the tools used and the activities carried out to complete the task.

6.6 Design

The content of this section is copied from Section 8.4 of Deliverable D4.03
The design consists of a family of three experiments associated with replications aimed at explor-
ing the trade off between increased protection and performance penalty associated with different
levels of code splitting. Specifically, two levels of code splitting are applied in the three replica-
tions, T1/T2 (with respectively a small/medium code portion being split), while T0 indicates no
code splitting at all.

Lab P1-T0 P1-T’
Lab1 G1 G2

Table 19: Design for the code splitting experiment: group G1 is assigned object P1 in its original
form, while group G2 is assigned P1 protected with code splitting T’ (either of T1/T2), in a single
lab (Lab1)

Table 19 shows the design of each experimental session (Lab1). Subjects are divided into two
groups, G1 and G2. Object P1 (SpaceGame) is provided as clear code (T0) or split code code (T’).
In the latter case, the amount of code splitting varies across replications (T’ = T1 or T2 depending
on the replication).

6.7 Statistical analysis

The content of this section is copied from Section 8.5 of Deliverable D4.03
The difference between the output variable (AT, SR) obtained under different treatments (original
code vs. split code) is tested using the Wilcoxon non-parametric statistical test, assuming signif-
icance at a 95% confidence level (α=0.05); so we reject the null-hypotheses having p-value<0.05.

6.8 Participants Characterization

Figure 12 shows some statistics about the participants involved in the first replication of the ex-
periment, conducted at University of East London. These data were collected by means of the
pre-experiment questionnaire. Participants have a quite different background. They are: 1 bach-
elor student, 4 master students, 2 PhD students and 3 post-doc researches. Half of them have no

ASPIRE D4.04 PUBLIC 34

D4.04 — Security Evaluation, Advanced Human Experiments

No Part−time Full−time

Experience as professional programmer

F
re

q
u

e
n

c
y

0
1

2
3

4
5

<3 Months 6 Months 1 Year 2 Years >3 Years

Cumulative programming experience in C

F
re

q
u

e
n

c
y

0
1

2
3

4

Never 6 Months 1 Year 2 Years >3 Years

Experience with IDE for C programming

F
re

q
u

e
n

c
y

0
1

2
3

4
5

Break−

points

Stepwise

 exe

Inspect

 stack

Inspect

 vars

Use of C debugger

F
re

q
u

e
n

c
y

0
1

2
3

4
5

6
7

Figure 12: Demographics of participants at UEL

ASPIRE D4.04 PUBLIC 35

D4.04 — Security Evaluation, Advanced Human Experiments

experience as professional programmers, while the other half have experience as full-time profes-
sional programmer. Some of them have limited experience in C and in using IDE to program in
C, while others have more that three years of experience in C. For this reason, participants from
University of East London have been involved in a crash course of C before the experimental lab.

6.9 Analysis of Success Rate

Clear Split−small

Success rate

F
re

q
u

e
n

c
y

0
1

2
3

4
5

Figure 13: Bar plot of attack success rate

Figure 13 shows the bar plots of success rate of the attack tasks, comparing clear code and code
protected with code splitting. From the plot, we can observe that the success rate is quite low. In
both cases, only one participant could elaborate a correct attack.
Given the symmetry of success rate between protected and unprotected code, and the low success
rate, it does not make sense to apply statistical analysis to these data. All in all, with these data,
we can not reject the null hypotheses on success rate.

6.10 Analysis of Attack Time

Treatment N Mean Median sigma
Clear 1 34 34 -

Split-small 1 47 47 -

Table 20: Descriptive statistics of Attack Time

Now we analyse the time required to elaborate and port a successful attack. Similarly to what
done for data obfuscation, here we only consider successful attack tasks and we drop tasks that
were not successfully completed. Thus, we have just two data points. Table 20 and Figure 14
show the distribution of the attack time required to deliver correct results when the attacked code
is clear or protected. From the graph, we can observe that protected code required more time (47
minutes) to be attacked than clear code (34 minutes), however the fact that we observed just two
cases does not allow us to use any statistical test and to generalise our findings. More data points
on next replications of this study are required to formulate observations.

6.11 Analysis of post-questionnaire

Figure 15 shows the distribution of questions to the feedback post-questionnaire. For many par-
ticipants the task was clear and the time to complete the task was enough and the task was easy

ASPIRE D4.04 PUBLIC 36

D4.04 — Security Evaluation, Advanced Human Experiments

Clear Split−small

34
36

38
40

42
44

46

T
im

e
[m

in
]

Figure 14: Boxplot of attack time (only for successful attacks)

to perform. However, this is apparently in contrast with the fact that only few participants com-
pleted the task successfully. For this reason, a more detailed question is required in the future
replications, to ask in detail what would have been the precise problems and difficulties experi-
enced by participants.
To work on the attack task, participants mostly resorted to the editor, to the compiler and to internet
search. Eventually, most of the time was devoted to reading and understanding the code, and less
time was devoted to changing and executing the code.
Differently from previous questions, Post6, Post7 and Post8 are open questions, meant to let the
participants freely formulate their answers and describe their attack.
The sequence of activities (Post6) performed by the participant who solved the task on clear code
was quite simple. After identifying some static locations in the code, the participant added some
printf statements to do dynamic analysis and to verify the assumptions. The attack strategy for
the participant who was successful on the protected code was more complex. Similarly to the
other participant, the attack started by detecting the relevant function. The participant realised
that some computation was missing, because it was delegated to the split server. The participant,
then, attempted many different changes to guess and replicate the feature moved to the server.
This represents and attempt to learn the functionality moved to the server, possibly with the in-
tention of replicating it locally. The participant reported that, after wasting a lot of time in useless
attempts, eventually the attack was successful.
For the participant working on clear code, the most difficult task (Post7) was identifying the point
to attack. After that, it was easy to edit the code. On the other hand, for the participant working
on the protected code, understanding the missing feature and editing the code were reported as
the hardest parts. This result supports our hypothesis that the protection was effective in making
the attack’s job harder.
Considering where most of time was spent (Post8), the two participants agree that the most time
consuming task was editing the code and running it to check the results of edits.

ASPIRE D4.04 PUBLIC 37

D4.04 — Security Evaluation, Advanced Human Experiments

Strongly agree Agree Not certain Disagree trongly disagree

Task was clear

F
re

q
u

e
n

c
y

0
1

2
3

4

Strongly agree Agree Not certain Disagree trongly disagree

Enough time to perform the task

F
re

q
u

e
n

c
y

0
1

2
3

4
5

Strongly agree Agree Not certain Disagree trongly disagree

The task was easy to perform

F
re

q
u

e
n

c
y

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Editor IDE Compiler Debugger Internet search

Used tools

F
re

q
u

e
n

c
y

0
2

4
6

8

Reading &

 understanding

Changing &

executing

Executing with

debugger

Most time consuming task

F
re

q
u

e
n

c
y

0
1

2
3

4
5

6
7

Figure 15: Post-questions answered by UEL’s subjects.

ASPIRE D4.04 PUBLIC 38

D4.04 — Security Evaluation, Advanced Human Experiments

6.12 Threats to validity

The content of this section is mostly copied from Section 8.6 of Deliverable D4.03
The main threats to the validity of this experiment belong to the conclusion, internal, construct
and external validity threat categories.
Conclusion validity threats concern the relationship between treatment and outcome. We could
not use statistical tests to draw our conclusions. Inability to reject the null hypothesis exposes us
to type II errors (incorrectly accepting a false null hypothesis). This was expected and already
acknowledged in the beginning of this section: a quite limited number of participants (they were
10) have been involved in this first replication. Moreover, among them, only a small fraction (only
2 participants) had the right knowledge and skill to complete the attack task. We will mitigate this
threat by replicating the experiment multiple times, so as to increase the number of participants. In
fact, the probability of a type II error can be reduced by increasing the sample size. Subjects were
provided with the source code, not the binary code, because students are not proficient enough in
binary and assembly code analysis at FBK, UEL and POLITO.
Internal validity threats concern external factors that may affect the independent variable. Subjects
were not aware of the experimental hypotheses. Subjects were not rewarded for the participation
in the experiment and they were not evaluated on their performance in doing the experiment.
Construct validity threats concern the relationship between theory and observation. They are
mainly due to how we measure the effectiveness of code splitting and the related performance
overhead. We manually assess the successful completion of each task in order to measure SR.
During the labs, the experimenters make sure that times are accurately marked in the time sheets
upon start and completion of the attack task. Performance measurements were repeated 100 times
so as to remove the effect of the possible random fluctuations of the measured execution time un-
der slightly different conditions.
External validity concerns the generalisation of the findings. In our experiment we considered one
program, SpaceGame. Results may not generalise to different programs. However, the chosen
program has been written by third parties, completely unrelated with ASPIRE, so as to ensure that
it is not crafted to provide optimal application conditions for the ASPIRE protection. Moreover,
the chosen program is publicly available as an open source project in SourceForge. Hence, it can
be regarded as a representative for this category of software. Further replications of the study on
additional objects will corroborate the external validity of our findings.

6.13 Lessons Learned

In this section we discuss the implications of the experimental results for the ASPIRE project.
Effects of protections. The code splitting protection increased the attack time by a factor 1.4, while
at the same time degrading the execution time of the application by 107 times. This provides
quantitative evidence for the shift in the economic convenience of code attacks when attackers
deal with split code.
Attack strategies. Successful attacks against protected code required the reconstruction of server
side computation on the client side. This might be extremely challenging and time consuming of
realistic applications, larger than Space Game, for which a substantial portion of complex compu-
tations is moved to the server. The key implication is that the code splitting protection is extremely
powerful and offers little room for attacks when complex computations that are difficult to recon-
struct from black box observations are moved to the server. Such advantage is paid in terms of
performance degradation, which in our experiment with Space Game was quantified as 107 times
longer execution time. However, the performance overhead largely depends both on the applica-
tion subject to splitting and on the chosen split configuration, so this quantification of slowdown
can not assigned universal validity.

ASPIRE D4.04 PUBLIC 39

D4.04 — Security Evaluation, Advanced Human Experiments

7 Experiments with Industrial Participants

Section authors:
Mariano Ceccato, Paolo Tonella (FBK)

This section reports the detailed definition of the experiments that will be conducted at the indus-
trial project partners. At the moment of writing, some of the experiments are started and they
are monitored with weekly conference calls between industrial participants and academic exper-
imenters. However, considering the long period of execution (30+ days), no final experimental
data is available yet. Results of the experiments with industrial participants will be reported on
Deliverable D4.06 scheduled for month M36.
The plan originally was for two replications of the each experiment at each industrial partner.
However, the consortium decided to merge the two replications into a single longer replication
at each industrial partner. In this way, industrial hackers will be able to work continuously for a
longer time and deliver more complete and valuable attack reports. The benefit of merging two
separate sessions into a longer single session are discussed in more detail in Section 7.4.

7.1 Experimental Definition

The content of this section is copied from the first part of Section 9 of Deliverable D4.03

Goal Analyze the ability of ASPIRE to prevent DRM at-
tacks

Treatments T1 = protection configuration 1; T2 = protection con-
figuration 2; T3 = protection configuration 3

RQ1 To what extent do ASPIRE protections prevent at-
tacks against DRM?

RQ2 What ASPIRE protections are most effective in pre-
venting attacks against DRM?

Subjects Hackers from the NAGRA tiger team
Objects DemoPlayer (binary code)
Tasks Violate specific DRM protection
Data Report about the different reverse engineering and

attack activities (e.g., data de-obfuscation; identifier
renaming; control flow reconstruction; code under-
standing; decompilation) carried out by attackers

Design Long running (30+ days) case study

Table 21: Nagravision case study

Tables 21, 22, 23 provide a schematic overview of the industrial case studies. The goal of these
case studies is to evaluate the degree of protection offered by the ASPIRE techniques as a whole,
considering those operating on the source code as well as those operating on the binary code.
The entire ASPIRE tool chain is applied to the industrial case studies, so as to ensure maximum
protection. The subjects involved in these case studies are professional pentesters employed by
the industrial partners of ASPIRE.
The case studies aim at answering the following research questions:

• RQ1 To what extent do ASPIRE protections prevent attacks against DRM/license manage-
ment/secure authentication?

• RQ2 What ASPIRE protections are most effective in preventing attacks against DRM/license
management/secure authentication?

ASPIRE D4.04 PUBLIC 40

D4.04 — Security Evaluation, Advanced Human Experiments

Goal Analyze the ability of ASPIRE to prevent attacks
against license protections

Treatments T1 = no information about assets; T2 = detailed infor-
mation about assets

RQ1 To what extent do ASPIRE protections prevent at-
tacks against license management?

RQ2 What ASPIRE protections are most effective in pre-
venting attacks against license management?

Subjects Hackers from the SFNT tiger team
Objects Diamante (binary code)
Tasks Forge valid license
Data Report about the different reverse engineering and

attack activities (e.g., data de-obfuscation; identifier
renaming; control flow reconstruction; code under-
standing; decompilation) carried out by attackers

Design Long running (30+ days) case study

Table 22: SafeNet case study

These research questions deal with the effectiveness of the ASPIRE protections, when these are
applied to the industrial case studies. We want to assess the capability of the ASPIRE protections
to resist to a massive attack mounted by professional hackers during a long time period. Moreover,
we want to assess the relative importance of different defence lines implemented by the various
components in the ASPIRE tool chain, by analysing the activities carried out by the professional
hackers to defeat each specific ASPIRE protection.

7.2 Objects

The content of this section is copied from Section 9.2 of Deliverable D4.03
The objects of this experiment are programs provided by the industrial ASPIRE partners:

DemoPlayer: Media player provided by Nagravision and requiring DRM protection

Diamante: License manager provided by SafeNet

OTP: One time password authentication server and client

Table 24 shows some size data about the involved objects (reported SLoC include any library that
must be compiled with the application code). The tasks that hackers are asked to perform on these
programs are respectively:

• Nagravision: Violate a specific DRM protection of DemoPlayer

• SafeNet: Forge a valid license key that is accepted by Diamante

• Gemalto: Authenticate on OTP without having any valid credential

7.3 Data

The content of this section is mostly copied from Section 9.3 of Deliverable D4.03
Professional hackers are asked to fill a profiling questionnaire, to collect data about their expertise
and experience. Participants will be required to answer the following questions:

1. What is your programming experience in C? What C programming environment do you
use?

ASPIRE D4.04 PUBLIC 41

D4.04 — Security Evaluation, Advanced Human Experiments

Goal Analyze the ability of ASPIRE to prevent attacks
against secure authentication

Treatments T1 = no information about assets; T2 = detailed infor-
mation about assets

RQ1 To what extent do ASPIRE protections prevent at-
tacks against secure authentication?

RQ2 What ASPIRE protections are most effective in pre-
venting attacks against secure authentication?

Subjects Hackers from the GTO tiger team
Objects OTP (binary code)
Tasks Authenticate with no valid credentials available
Data Report about the different reverse engineering and

attack activities (e.g., data de-obfuscation; identifier
renaming; control flow reconstruction; code under-
standing; decompilation) carried out by attackers

Design Long running (30+ days) case study

Table 23: Gemalto case study

Object C SLoC H SLoC Java SLoC Cpp SLoC Total
DemoPlayer 2,595 644 1,859 1,389 6,487
Diamante 53,065 6,748 819 - 58,283
OTP 284,319 44,152 7,892 2,694 338,103

Table 24: Size of case study objects (measured by sloccount), divided by file type.

2. What is your programming experience in assembly? What assembly programming environ-
ment do you use?

3. What is your experience in disassembly? What tools do you use for disassembling binary
code?

4. What is your experience in analysing compiled binary code?

5. What is your experience in tampering/altering binary code?

6. What are the static analysis tools that you use when tampering/altering binary code (e.g.,
Ida-pro)?

7. What are the dynamic analysis tools that you use when tampering/altering binary code
(e.g., Olly-dbg)?

After completing the attack, professional hackers are asked to complete a Final Attack Report. The
attack report will cover the following points in detail:

1. Type of activities carried out during the attack: detailed indications about the type of ac-
tivities carried out to perform the attack and the proportion of time devoted to each activity.
For instance, hackers may want to indicate the following activities: (1) data de-obfuscation;
(2) identifier renaming; (3) control flow reconstruction; (4) code understanding; (5) decom-
pilation; (6) execution inspection (e.g., via debugger); (7) execution modification (e.g., via
debugger scripts). Hackers should provide such classification for each working day, not just
for the whole attack session.

ASPIRE D4.04 PUBLIC 42

D4.04 — Security Evaluation, Advanced Human Experiments

2. Encountered obstacles: detailed description of the obstacles encountered during the attack
attempts. In particular, hackers should report any software protection that they think was
put into place to prevent the attack and that actually represented a major obstacle for their
work.

3. Attack strategy: description of the attack strategy and how it was adjusted whenever it
proved ineffective. Hackers should describe the initial attempts and the decisions (if any) to
change the strategy and to try alternative approaches.

4. Return of the attack effort: quantification of the attack effort, if possible economically, so as
to provide an estimate of the kind of remuneration that would justify the amount of work
done to carry out the attack.

5. Level of expertise required: which of the successful actions required a lot of expertise,
which could be done by script kiddies?

6. Identification vs. Exploitation: for attacks succeeded once in the lab, attackers should de-
scribe what work would be required to exploit them in the real world (i.e., on a large scale,
on software running on standard devices instead of on lab infrastructure, with other keys,
etc.).

The adoption of a common template to collect feedback from professional hackers will allow us to
perform comparisons among different experiments. For example, we might formulate considera-
tions on whether similar or different strategies are used by different attackers to attack the same
protections, or to compare the effort required to attack different assets in different applications
when they are protected with the same protection.

7.4 Design

The design of these three experiments is a long running case study, with loose control on the
involved subjects and mostly qualitative data collected during the execution of the experiment.
The plan originally included two replications of the experiment on each industrial partner. Since
an exact replication would bring limited value to the project, we decided to replicate each ex-
periment under different conditions, in order to collect more information about protections and
attacks. The different conditions that we intend to investigate are:

• Protection configuration: The same case study protected with different combinations of
ASPIRE protection.

• Information: The same case study with the same combination of ASPIRE protections, but
with more or less information provided to the participants. The information varies in terms
of what are the sensitive assets protected with ASPIRE protections, what protections are
deployed and, possibly, how these protections work.

Moreover, instead of conducting the two replications in separate moments in time, we decided
to merge the two replications and conduct them one after the other, as two (or more) consecutive
phases of the same experiment, to give hackers a larger continuous amount of time to work on
their task. This allows a more flexible allocation of time to replications. In fact, if the first (harder)
phase requires more time than expected, and if we consider it useful to the project, with this setup
we can decide to let the first phase last longer and to consume a fraction of the time originally
allocated to the subsequent phase, that is hence shortened in time. On the contrary, if the industrial
hackers are able to complete the attack before the end of the first phase, they can anticipate the
start of the subsequent phase, before the official beginning, thus limiting the waste of time and
delivering interesting results sooner.

ASPIRE D4.04 PUBLIC 43

D4.04 — Security Evaluation, Advanced Human Experiments

7.4.1 Protection Configuration

The first dimension considered in the experiment aims at assessing configurations such that pro-
tections can reinforce each other. In particular, the Nagravison use case will be subject to 3 differ-
ent configurations at decreasing level of protection. The first configuration consists of applying
a selection of ASPIRE protections, so as to evaluate professional hackers attacking the hardest
case. In the second configuration some protections are removed, to experiment with an applica-
tion that should be easier to attack. The third configuration of protections includes a minimal set
of protections.
Other than testing different configurations, this strategy allows us to minimise the risk of collec-
tion of no useful data, in case protections are too difficult to attacks, by providing easier and easier
code to attack. In case professional hackers are not able to complete a successful attack on the most
protected version of the case study, they can try again on an easier version and still provide useful
feedback to the project.
In Phase 1, the Nagravision use case is protected with the following protection techniques:

• All the protections available and applicable to the case study. They are:

– Data obfuscation (convert static data to procedure);

– White box cryptography.

– SoftVM (client side splitting);

– Anti debugging;

– Call stack check;

– Code guards;

– Binary code obfuscation (with flatten function and opaque predicate);

– Code mobility;

– Remote attestation;

In Phase 2, the configuration used in phase 1 will be changed by removing these protection tech-
niques:

• Anti-Debugging

• Remote attestation

In Phase 3, the configuration will be further reduced by removing the following techniques:

• Code mobility

In Phase 3, the Nagravision use-case is solely protected with offline protection techniques. The
program under attack can thus be analysed without the complexity associated with the server
execution.
Conversely, the SafeNet use-case and the Gemalto use-case will be protected with a single set of
protection techniques (although different configurations of protections for each use-case). Instead
of investigating with different configurations of protections across phases, for these two use-cases
we will investigate the role of the amount of information provided to the attackers, as described
in the following.

7.4.2 Asset Information

The second dimension is intended to investigate the role of additional information provided to
attackers (about protected assets and about protections) to make attackers complete the attack.
This dimension will be investigated when conducting the experiments in SafeNet and in Gemalto.

ASPIRE D4.04 PUBLIC 44

D4.04 — Security Evaluation, Advanced Human Experiments

In Phase 1, the attack to perform is formulated as a high level attack goal, i.e. the description of the
final goal that participants should achieve in order to violate a high level protection requirement
(e.g., forge a valid license).
Of course, there are multiple strategies that an attacker might adopt to achieve this objective (e.g.,
derive a key, skip a validity check, tamper with the storage). An attacker will adopt the strategy
that is closer to her/his experience, or that exploits the weakest protection. Maybe a participant
could be able to identify an attack that works around all the deployed protections, and we have
to accept this as a realistic attack case. The attack goal needs to be defined at a high level in order
not to introduce any bias and not to suggest any (correct or wrong) attack strategy, so as to keep
the experiments realistic. This first phase is supposed to measure globally the level of protection
offered by the ACTC as a whole, when all protections are deployed at once.
In Phase 2, after the high level attack goal is achieved or a time out has expired, hackers are
required to switch to detailed attacks to specific assets. Each of these latter tasks is an attack
specifically defined on a program asset protected by an ASPIRE protection, e.g. a key or a portion
of a program.
The purpose of this second phase is to explicitly ask hackers to break single ASPIRE protections
(or single combination of protections) and to report on their level of security and, possibly, on
their weak points.
The description of detailed attacks to assets leaks how the application is structured and what/where
are its sensitive assets. These attack tasks guide the attackers on specific strategies, to defeat spe-
cific ASPIRE protection, for which we want empirical data in this second phase. Hence, they are
less realistic, but still very useful to understand the relative strength of the ASPIRE protections.

7.5 Qualitative analysis

The content of this section is copied from Section 9.5 of Deliverable D4.03
Qualitative analysis of the reports collected from hackers will be the basis to answer RQ2. Evi-
dence about the activities performed and the obstacles encountered will be mapped to the ASPIRE
protections that were most effective in blocking the attacks mounted by professional hackers.
For what concerns RQ1, the answer may be boolean, i.e., the attack was or was not successful.
However, in case of a non-successful attack, there might still be some degree of exploitation that
was achieved, such as leakage of sensitive information, denial of service, or any other attack that
was not the direct goal of the case study task. For this reason RQ1 is formulated in terms of
the extent to which the attack is prevented. Again, qualitative data analysis will be employed to
answer this question.

7.6 Threats to validity

The content of this section is mostly copied from Section 9.6 of Deliverable D4.03
The main threats to the validity of the case studies belong to the conclusion, internal, construct
and external validity threat categories.
Conclusion validity threats concern the relationship between treatment and outcome. We assume
that unsuccessful attacks can be attributed to the ASPIRE protections and that the obstacles en-
countered during successful attacks can be also attributed to the ASPIRE protections, while we do
not know what would have happened without the ASPIRE protections. To mitigate this threat, we
will collect extensive feedback from the professional hackers, in order to be able to support our
conjectures with objective evidence collected in the field.
Internal validity threats concern external factors that may affect the independent variable. While
subjects are professional hackers who are used to the kind of attack tasks requested to them during
the study, there might be factors out of our control that affect their performance. Being a long
running case study, the degree of control that we can have on the activities performed daily by the
professional hackers is limited. We reduce this threat to validity by introducing a structured and

ASPIRE D4.04 PUBLIC 45

D4.04 — Security Evaluation, Advanced Human Experiments

systematic data collection procedure and by scheduling regular conference calls with industrial
participants.
Construct validity threats concern the relationship between theory and observation. They are
mainly due to how we measure the effectiveness of the ASPIRE protections. We will manually
assess the successful completion of the attack tasks to decide on the answer to RQ1. For RQ2,
we will perform a qualitative analysis of the reports to obtain evidence in support to our conjec-
tures. To minimise the risk of committing errors in the design of these experiments, the design
has been discussed and revised by those project P.I. who are more expert in empirical studies with
human participants. Moreover, to minimise the risk of committing errors in the setup of the mate-
rial required to run the experiments, the industrial partners and the protection owners have been
involved in the preparation.
External validity concerns the generalisation of the findings. Being based on a set of three case
studies, results may not generalise to different cases. On the other hand, the considered objects
are industrial applications, which make them quite meaningful cases, and the protected assets
span across a wide and meaningful range (i.e., DRM, licenses, authentication), so we expect some
degree of generalisability to similar applications and to similar industrial contexts.

7.7 Dates

The experimental material presented in this section has been revised by the experimenters and it
is ready to be used in the actual experiments with industrial participants. The actual experiments
will be conducted in these time frames:

• Nagravision: April-May, 2016;

• SafeNet: May-August, 2016;

• Gemalto: June-July, 2016.

At the moment of writing, the experiment in Nagravision and in SafeNet are started and they
are monitored by the experimenters with weekly conference calls. Weekly calls are intended to
monitor the smooth execution of the attack tasks and to provide clarifications and informations
whenever needed to industrial participants, to avoid that an experiment gets stuck and waste
valuable participants’ time. Moreover, a weekly monitoring will allow to identify potential is-
sues soon and timely react to solve them, possibly by changing some details of the experimental
settings, to guarantee that useful informations and lessons are collected for the project.

ASPIRE D4.04 PUBLIC 46

D4.04 — Security Evaluation, Advanced Human Experiments

List of abbreviations

ACM CCS Association for Computing Machinery Conference on Computer and Communica-
tions Security

ACTC ASPIRE Compiler Tool Chain

ADSS ASPIRE Decision Support System

AKB ASPIRE Knowledge Base

API Application Programming Interface

AR Array Reordering

ASPIRE Advanced Software Protection: Integration, Research, and Exploitation

ASM ASPIRE Security Model

AS Attack Success

AT Attack Time

CC Cyclomatic Complexity

CFIM Control Flow Indirection Metric

CRUD Create, Read, Update, Delete

DOP Number of destination register operands

DoW Description of Work

DPL Dynamic Program Length

DL Description Logic

DRM Digital Rights Management

DST Number of destination operations

EDG Number of edges

ET Execution Time

E/R DB Entity-Relationship DataBase

EXE Number of executed instructions

GUI Graphical User Interface

ICSE International Conference on Software Engineering

IDA Pro For clarification: IDA is not an abbreviation

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

INS Number of instructions

IND Number of index edges

JDK Java Development Kit

JMP Number of computed jumped instructions

MCAS Monte Carlo-based Attack Simulation

NB Number of bytes

OTP One Time Password

OWL Web Ontology Language

PF Protection Fitness Function

PO Performance Overhead

ASPIRE D4.04 PUBLIC 47

D4.04 — Security Evaluation, Advanced Human Experiments

PN Petri Net

PNML Petri Net Markup Language

PNDV Petri Nets with Discrete Values

PSAM PN-based Software Attack Model

RNC Residue Number Coding

SAPS Single Attack Process Simulation

SAMMPN Software Attack Model based on Marked Petri Net

SLoC Source Lines Of Code

SOP Number of source register operands

SPA Software Protection Assessment

SPRO Software Protection (Workshop)

SR Success Rate

SRC Number of source operations

UML Unified Modeling Language

WP Work Package

XOR Exclusive OR

XML eXtensible Markup Language

ASPIRE D4.04 PUBLIC 48

D4.04 — Security Evaluation, Advanced Human Experiments

References

[1] J. Cohen. Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Earlbaum Asso-
ciates, Hillsdale, NJ, 1988.

[2] Jay L. Devore. Probability and Statistics for Engineering and the Sciences. Duxbury Press; 7 edition,
2007.

[3] Robert J. Grissom and John J. Kim. Effect sizes for research: A broad practical approach. Lawrence
Earlbaum Associates, 2nd edition edition, 2005.

[4] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statis-
tical Computing, Vienna, Austria, 2015.

[5] F. Ricca, M. Torchiano, M. Di Penta, M. Ceccato, and P. Tonella. Using acceptance tests as a
support for clarifying requirements: a series of experiments. Information & Software Technology,
51:270–283, 2009.

[6] D.J. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures (4th Ed.). Chapman
& All, 2007.

[7] Marco Torchiano. effsize: Efficient Effect Size Computation, 2015. R package version 0.5.5.

[8] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A. Wesslén. Experimentation in
Software Engineering - An Introduction. Kluwer Academic Publishers, 2000.

ASPIRE D4.04 PUBLIC 49

	Introduction
	I The ASPIRE Knowledge Base
	The final ASPIRE Security Model and ASPIRE Knowledge base
	The Asset submodel
	The Software Protection submodel

	II Security Evaluation
	Final Complexity metrics
	Metrics generation in the ACTC
	The Metrics file format

	Software Protection Assessment: New features

	III Experiments
	Data obfuscation experiment
	Experimental Definition
	Context: Systems
	Hypothesis Formulation and Variable Selection
	Design
	Experimental Procedure
	Analysis Procedure
	Participants Characterization
	Analysis of Success Rate for program Lotto
	Analysis of Success Rate for program Lottery
	Co-factors for Success Rate
	Analysis of Attack Time for Lotto
	Co-factors for Attack Time
	Analysis of post-questionnaire
	Threats to validity
	Lessons Learned

	Client/server code splitting experiment
	Experimental Definition
	Research questions
	Object
	Analysis of Runtime Overhead
	Metrics
	Design
	Statistical analysis
	Participants Characterization
	Analysis of Success Rate
	Analysis of Attack Time
	Analysis of post-questionnaire
	Threats to validity
	Lessons Learned

	Experiments with Industrial Participants
	Experimental Definition
	Objects
	Data
	Design
	Protection Configuration
	Asset Information

	Qualitative analysis
	Threats to validity
	Dates

