
Advanced Software Protection:
Integration, Research and Exploitation

D4.03
Security Model, Knowledge Base, Human Experiments

Project no.: 609734
Funding scheme: Collaborative project
Start date of the project: November 1, 2013
Duration: 36 months
Work programme topic: FP7-ICT-2013-10

Deliverable type: Report
Deliverable reference number: ICT-609734 / D4.03
WP and tasks contributing: WP 4 / Task 4.3
Due date: Oct 2015 – M24
Actual submission date: 28 November 2015

Responsible Organization: POLITO
Editor: Cataldo Basile
Dissemination level: Public
Revision: 1.0

Abstract:
This document presents the updates to the ASPIRE Security Model (ASM) and ASPIRE Knowl-
edge Base (AKB), the advances in the Security Evaluation models and metrics, and the results of
the empirical studies conducted with students of the academic project partners and with the tiger
teams of the industrial partners.
Keywords:
ASPIRE Knowledge Base, security evaluation, empirical studies

D4.03 — Security Model, Knowledge Base, Human Experiments

Editor
Cataldo Basile (POLITO)

Contributors (ordered according to beneficiary numbers)
Bjorn De Sutter (UGent)
Cataldo Basile, Daniele Canavese, Leonardo Regano, Marco Torchiano
(POLITO)
Mariano Ceccato, Paolo Tonella (FBK)
Paolo Falcarin, Elena Gómez-Martı́nez, Gaofeng Zhang (UEL)

The ASPIRE Consortium consists of:

Ghent University (UGent) Coordinator & Beneficiary Belgium
Politecnico Di Torino (POLITO) Beneficiary Italy
Nagravision SA (NAGRA) Beneficiary Switzerland
Fondazione Bruno Kessler (FBK) Beneficiary Italy
University of East London (UEL) Beneficiary UK
SFNT Germany GmbH (SFNT) Beneficiary Germany
Gemalto SA (GTO) Beneficiary France

Coordinating person: Prof. Bjorn De Sutter
E-mail: coordinator@aspire-fp7.eu
Tel: +32 9 264 3367
Fax: +32 9 264 3594
Project website: www.aspire-fp7.eu
Disclaimer The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 609734. The infor-
mation in this document is provided as is and no guarantee or warranty is given that the infor-
mation is fit for any particular purpose. The user thereof uses the information at its sole risk and
liability.

ASPIRE D4.03 PUBLIC ii

mailto:coordinator@aspire-fp7.eu
http://www.aspire-fp7.eu

D4.03 — Security Model, Knowledge Base, Human Experiments

Executive Summary

This deliverable presents the achievements of the second year in WP4. Achievements are divided
in three parts: the first part presents the updates to the ASPIRE Security Model and Knowledge
Base, the second presents the updates on the metrics framework and to the security evaluation
models, finally, the third one presents the results and planning of academic and industrial user
studies. The delivery of D4.03 allows the ASPIRE project to achieve MS12.
Following the principles in D4.01, the ASPIRE Knowledge Base has been designed to include two
types of information: a priori and execution-specific knowledge. A priori information includes
concepts that exist regardless of ASPIRE project and regardless of the application to protect, like
attacks, protection, assets, applications, tools, attack, metrics. Moreover, it includes concepts that
exist regardless of the application to protect but they depend on the ASPIRE project, like the AS-
PIRE tool chain, protections developed within the ASPIRE project, ADSS preferences, annotations,
etc. Execution-specific knowledge instantiates a priori concepts based on the information about
the application to protect, like functions, variables, the actual assets and their links to the appli-
cation code, attacks paths possible against the actual assets, protections that can be actually used,
etc.
The ASPIRE Knowledge Base also supports reasoning about the concepts in the AKB. However,
compared to planning in D4.01, there is major difference. The use of ontologies has been limited
to statically represent the concepts in the ASPIRE Knowledge Base and a few DL classification
reasonings. In the meanwhile, the Enrichment Framework, developed in WP5 and reported in
D5.01, has allowed to externalize several reasoning thus achieving better performance and better
development time.
The ASPIRE Security Model describes all the concepts used in the AKB. A priori concepts are in the
main model. Then, several sub-models detail the following concepts: assets, application and their
parts, protections and protection types, attacks, metrics, and protection requirements. Compared
to the initial version (ASMv1.0) described in D4.01, the Y2 version (ASMv1.0) has very minor up-
dates. The main model, and the asset, the metrics, the protection requirements sub-models have
not been changed. There are four new classes and relations in the application sub-model. The
purpose of these new entities is to describe code and data so that it is possible to reasoning about
them when looking for the best solution (as needed by the ADSS). The attack sub-model intro-
duces the attack target concept (and the needed associations) to better describe the concept attack
goal and allow automatic attack paths discovery. The most significant updates are in the protec-
tion sub-model. First, this sub-model has been expanded by adding a new class to describe the
protection profiles that are used by the ADSS, and new associations to depict protection depen-
dencies. Then, we added a new class diagram that represents the annotations and the way they
are organized and related to software protection. This class diagram describes the annotation de-
sign and representation made in WP5 in a way that is usable for logging annotation consumed by
all the tools’ activities in the ACTC.
The ASPIRE Security Evaluation combines the Petri Net models with the metrics framework to
into the new Software Protection Assessment tool utilized to assess the protection strength based
on the computed code complexity metrics.
The ASPIRE user studies are split between academic studies and industrial studies. Academic
studies are controlled experiments conducted with students of the academic project partners. In-
dustrial studies are case studies conducted with the tiger teams provided by the industrial part-
ners. Academic studies aim at investigating the effectiveness of specific protection techniques,
such as data obfuscation and code splitting. They analyse the factors that affect the effectiveness of
protections and they consider different variants and configurations of the protections. Industrial
studies evaluate the ASPIRE protections as a whole when applied to industrial strength software.
They involve professional hackers recruited by the industrial partners.

ASPIRE D4.03 PUBLIC iii

D4.03 — Security Model, Knowledge Base, Human Experiments

Contents

1 Introduction 1

I The ASPIRE Knowledge Base 3

2 The ASPIRE knowledge base 3

3 The ASPIRE security model 7
3.1 The ASPIRE security model v1.1: main model . 7
3.2 Model Extensions: the Sub-Models . 10

3.2.1 Application sub-model . 11
3.2.2 Assets sub-model . 17
3.2.3 SW Protection sub-model . 18
3.2.4 Attacks sub-model . 21
3.2.5 Metrics sub-model . 23
3.2.6 Protection requirements sub-model . 24

II Security Evaluation 26

4 Tool Support for Computing Software Complexity Metrics 26
4.1 Automated support for tool-based metrics . 26

4.1.1 Diffing tools . 26
4.1.2 Disassemblers and control flow reconstruction 27

4.2 Automated Tool Support for Complexity Metrics . 27
4.2.1 Static metrics . 27
4.2.2 Dynamic metrics . 28

4.3 Automated Tool Support for Resilience Metrics . 29
4.4 Evolution of the Metrics . 29

5 Security Evaluation 30
5.1 Extended Petri Net based Editor for Protection Assessment 32

5.1.1 Petri Net Model Editing . 33
5.1.2 Transition Information Editor for Protection Assessment 34
5.1.3 Property View in the Graphical Editing Model 35

5.2 Protection Fitness Function . 35
5.2.1 Transition Information for Protection Assessment 36
5.2.2 Protection Fitness Function Method . 37

5.3 PN Simulator . 37
5.3.1 Single Attack Process Simulation . 38
5.3.2 Monte Carlo Simulation . 39

5.4 Obtaining Metrics with ACTC . 40

III Experiments 43

6 Data obfuscation experiment 43
6.1 Research questions . 44
6.2 Objects . 44
6.3 Metrics . 45
6.4 Design . 46
6.5 Statistical analysis . 46

ASPIRE D4.03 PUBLIC iv

D4.03 — Security Model, Knowledge Base, Human Experiments

6.6 Experimental results . 47
6.6.1 UGent results . 47
6.6.2 FBK results . 52
6.6.3 Overall results . 57

6.7 Comparison Results Source Code Attacks vs. Binary Code Attacks 61
6.8 Threats to validity . 61
6.9 Lessons Learned . 62
6.10 Dates . 62

7 Code splitting experiment 62
7.1 Research questions . 63
7.2 Object . 64
7.3 Metrics . 64
7.4 Design . 66
7.5 Statistical analysis . 66
7.6 Threats to validity . 66
7.7 Dates . 67

8 Industrial case studies 67
8.1 Research questions . 67
8.2 Objects . 68
8.3 Data . 69
8.4 Design . 69
8.5 Qualitative analysis . 70
8.6 Threats to validity . 70
8.7 Dates . 70

A Introduction slides for the data obfuscation experiment on binary code 74

B Introduction slides for the data obfuscation experiment on C source code 75

C Instructions for the data obfuscation experiment on binary code 76

D Instructions for the data obfuscation experiment on C source code 80

ASPIRE D4.03 PUBLIC v

D4.03 — Security Model, Knowledge Base, Human Experiments

List of Figures

1 The main model. 8
2 The applications sub-model. 11
3 The ApplicationParts package. 13
4 The Representations package. 14
5 The Compilers&Linkers package. 15
6 The Communications package. 16
7 The ExecutionEnvironments package. 17
8 The asset sub-model. 18
9 The SW protections sub-model. 19
10 The annotation part of the SW protections sub-model. 20
11 The attacks sub-model. 21
12 The attacks, goals and Petri nets. 22
13 The metrics sub-model. 23
14 The protection requirements sub-model. 24
15 The Software Protection Assessment tool: ACTC and ADSS dependencies. 31
16 Extended PN editor based on ePNK. 33
17 The graphical editing for PN models. 34
18 PN models with transition information for protection assessment. 35
19 Property view of the editor tool. 35
20 Monte Carlo based Attack Simulation. 39
21 SAMMPNN taken from Wang et al. [4]. 41
22 Time spent by UGent’s subjects to work the attack task (successful and not success-

ful, both on clear and obfuscated code). 47
23 Demographics of UGent’s subjects . 48
24 UGent experiment: effectiveness of RNC protection (boldface values have statistical

significance at level 0.05) . 49
25 Ugent experiment: effectiveness of RNC protection split by subjects experience

(boldface values have statistical significance at level 0.05) 50
26 UGent experiment: interaction of Program (Lotto vs. Lottery) and Protection (Clear

vs. RNC) with Success rate (boldface values have statistical significance at level 0.05;
a dashed line indicates the clear version; a solid line the obfuscated version) 50

27 Post-questions answered by UGent’s subjects . 51
28 Demographics of FBK’s subjects . 52
29 FBK experiment: effectiveness of RNC protection (boldface values have statistical

significance at level 0.05) . 53
30 FBK experiment: effectiveness of RNC protection split by subjects experience (bold-

face values have statistical significance at level 0.05) 54
31 FBK experiment: interaction of Program (Lotto vs. Lottery) and Protection (Clear vs.

RNC) with Success rate (boldface values have statistical significance at level 0.05; a
dashed line indicates the clear version; a solid line the obfuscated version) 54

32 Post-questions answered by FBK’s subjects . 56
33 Demographics of all participating subjects . 57
34 Overall results: effectiveness of RNC protection (boldface values have statistical

significance at level 0.05) . 58
35 Overall results: effectiveness of RNC protection split by subjects experience (bold-

face values have statistical significance at level 0.05) 59
36 Overall results: interaction of Program (Lotto vs. Lottery) and Protection (Clear vs.

RNC) with Success rate (boldface values have statistical significance at level 0.05; a
dashed line indicates the clear version; a solid line the obfuscated version) 59

37 Post-questions answered by all participating subjects 60
38 Screenshot of SpaceGame . 64

ASPIRE D4.03 PUBLIC vi

D4.03 — Security Model, Knowledge Base, Human Experiments

List of Tables

1 Metrics resulting from the ACTC execution. 40
2 Meaning of States(P) and Techniques (T) of Figure 21. 41
3 Metrics obtained with Serial Certification example. 42
4 Metrics involved in each attack step. 42
5 Data obfuscation experiment . 43
6 Design for the data obfuscation experiment: each group of subjects (G1/G2/G3/G4)

is assigned a different object (P1/P2) and treatment (T0/T’) in each lab (Lab1/Lab2) 46
7 Code splitting experiment . 63
8 Design for the code splitting experiment: group G1 is assigned object P1 in its orig-

inal form, while group G2 is assigned P1 protected with code splitting T’ (either of
T1/T2/T3), in a single lab (Lab1) . 66

9 Nagravision case study . 67
10 SafeNet case study . 68
11 Gemalto case study . 68
12 Size of case study objects (measured by sloccount), divided by file type. 69

ASPIRE D4.03 PUBLIC vii

D4.03 — Security Model, Knowledge Base, Human Experiments

1 Introduction

Section authors:
Cataldo Basile (POLITO)

Two of the most important objectives of the ASPIRE project are the design of protection techniques
that are meaningful and effective to protect applications in the use cases, and the use of multiple
lines of defence that strengthen each other to achieve a level of protection that is better than the
sum of the individual protections. Moreover, the ASPIRE ambition is to use the ASPIRE Decision
Support System (ADSS) to select the best combination of protections for preserving the assets in
the application to protect.
To achieve these goals, several research and implementation questions need to be answered. First
of all, we need to model assets, attacks, protections, dependencies among protections and among
protections and attacks, etc. In short, we need to depict the landscape where ASPIRE plays its im-
portant role. Furthermore, we need to reason about these concepts, to automate the processes the
ADSS must perform, thus the model must be designed to deal with logical inference, deduction,
and abduction.
Then, we need to evaluate the effectiveness of the protections. Both metrics and simulation models
join forces to have better estimation of the level of protection that can be achieved by deploying
certain techniques against certain attacks on software assets. The most relevant improvement is to
estimate the impact of the concurrent deployment of several techniques. However, these abstract
evaluation models need to be proved against the abilities of real human beings, to check if (ex-
post/ex-ante) estimates on the protection level are correct.
WP4 plays a crucial role in achieving these goals. Indeed, it creates the necessary infrastructure to
achieve these goals and pushes the state of the art to solve the research issues.
Therefore, this deliverable presents the updates on:

• the ASPIRE Knowledge Base, the representation of the ASPIRE Security Model, designed to
perform sophisticated reasoning (developed in T4.1 “Security Model and Evaluation Method-
ology”);

• the ASPIRE Security Model, which allows the formal representation of the ASPIRE concepts
(developed in T4.1 “Security Model and Evaluation Methodology”);

• the metrics framework, designed to evaluate software protection strength through the use
of software complexity and protection resilience metrics (developed in T4.2 “Complexity
metrics”);

• the simulation models, designed to compare combination of protections, evaluate impact of
protections and impact of attacks, et.c by means of Petri Nets and Montecarlo simulation
models (developed in T4.2 “Complexity metrics”);

• empirical studies, which have conducted with academic and industrial parties to evaluate
the effectiveness of the ASPIRE protections (developed in T4.3 “Experiments with academic
subjects” and T4.4 “Experiments with industrial tiger teams”).

This deliverable delivers the achievements and progresses in WP4 at M24. The AKB and the
Security Model can be considered stable, minor updates are expected at M30 in the deliverable
D4.04 and possibly in the deliverable D4.06 at M36.
The metrics framework and the simulation models design is also very stable. However, these
T4.2 activities will see important developments that will be documented mainly at M30 in the
deliverable D4.04 with some minor update in the deliverable D4.06 at M36.
Results of all the experiments will be delivered in D4.04 and D4.06. Moreover, T4.5 activities about
the public challenge will be delivered at M30 in the deliverable D4.05.

ASPIRE D4.03 PUBLIC 1

D4.03 — Security Model, Knowledge Base, Human Experiments

This deliverable is organized as follows. Part I presents the updates to the ASPIRE Knowledge
Base. Section 2 concentrates on the updates on the design issues of the ASPIRE Knowledge Base.
Section 3 reports the new version of the ASPIRE Security Model (ASMv1.1) and the changes com-
pared to the preliminary version (ASMv1.0) documented in the deliverable D4.01.
Part II presents the updates to the ASPIRE Security Evaluation. Section 4 concentrates on the
updates on the metrics framework. Section 5 reports the new Software Protection Assessment tool
utilized to edit Petri Nets attack models and assess the protection strength based on the metrics
computed by the metrics framework.
Finally, Part III reports the design and the results of the empirical studies conducted to evaluate the
effectiveness of the ASPIRE protections. The ASPIRE empirical studies are divided into: (1) aca-
demic studies, controlled experiments executed by the academic partners, presented in Section 6
and 7; and, (2) industrial studies, case studies conducted by the industrial partners presented in
Section 8.

ASPIRE D4.03 PUBLIC 2

D4.03 — Security Model, Knowledge Base, Human Experiments

Part I

The ASPIRE Knowledge Base
Section authors:
Cataldo Basile, Daniele Canavese, Leonardo Regano (POLITO)

This part presents the ASPIRE Knowledge Base, the central aggregation of the ASPIRE knowledge,
the place where all the ASPIRE information is described, represented, stored, and used to perform
sophisticated reasoning.
After having introduced the design principles and compared them to the D4.01 preliminary de-
sign, this part describes the problems addressed and the solution for representing, manipulating,
querying, and enriching the ASPIRE Knowledge base.
Moreover, this part introduces the new version of the ASPIRE Security Model, the M24 snapshot of
the security model. This security model is built on top of the Preliminary ASPIRE Security Model
presented in D4.01. For ease of notation, we named the Preliminary ASPIRE Security Model as
ASMv1.0, and the current ASPIRE Security Model, the one presented here, ASMv1.1. Since it
is much easier to present (and use) the entire ASPIRE Security Model in a single self-consistent
document, this deliverable presents the entire model, not only the differences. However, each
section related to the ASPIRE security model (i.e., Section 3 and all its subsections) starts with a
description of the changes compared to ASMv1.0. According to the roadmap presented in D4.01,
the content of this part, together with the deliverable D5.07, are the final delivery of the security
model (D4.03 for the conceptual definition, D5.07 for the knowledge base enrichment).

2 The ASPIRE knowledge base

Section authors:
Cataldo Basile, Daniele Canavese, Leonardo Regano (POLITO)

The ADSS relies on the knowledge in the AKB to perform its activities, which include the iden-
tification of the attacks that attackers can mount against application assets, and to identify the
protections that can be enforced to mitigate the threats of those attacks. Moreover, by using this
knowledge, the ADSS will use security evaluation features developed in the ASPIRE project (see
Part II) to evaluate and measure the level of protection that can be provided by the available pro-
tections to mitigate the threats. The goal is to select the golden combination of protections that
optimizes a set of user-defined criteria.
AKB has been designed to describe statically all the concepts needed by the ADSS and to rep-
resent additional data needed to reason about the knowledge available in the AKB. Therefore,
AKB is provided as a conceptual model, the ASPIRE Security Model, which formally describes
the concepts (i.e., the classes) required by the ADSS to work and their relations (i.e., the associa-
tions). More precisely, AKB contains classes to describe needed concepts listed, a complete object
instantiation of those classes, which has been initially based on deliverable D1.02 (that informally
describes this information) then extended and maintained by Consortium partners.
As anticipated in the deliverable D4.01, AKB represents a priori knowledge and application-
specific knowledge. A priori knowledge comprises information that is independent from the
program to protect. Execution-specific knowledge contains all the user and application-centric
information needed to express the target application and assets the user wants to protect, and
user preferences on how to protect that target application.
Thus AKB includes (but it is not limited to):

• assets, threats, types of security properties to protect in applications;

ASPIRE D4.03 PUBLIC 3

D4.03 — Security Model, Knowledge Base, Human Experiments

• attacks, attack categories, attack tools, expertise/skill/resources needed to perform attacks,
and consequences of attacks;

• software protections, their relations, incompatibilities, and synergies (i.e., the possibility to
use them in combination to improve the overall protection);

• metrics to evaluate the probability of successful attacks, delays etc.;

The a priori knowledge formally represents what can be described, i.e., the classes and the associ-
ations. When these classes and associations are instantiated, we have execution-specific informa-
tion.
However, a priori knowledge is not only formed of classes and associations. It also includes
class instances that serve to describe information that is valid regardless of the application to
protect. For instance, it includes known attacks, attack tools, and the relations between attacks
and attack tools to mount them. It also comprises asset categories, security properties that users
may require on assets, relations among attacks, assets and security properties affected by attacks
and strengthened by protections.
Additionally, a priori knowledge allows the description of the following data:

• several abstract representations of the target application on which the metrics can be com-
puted, including source code, object code, control flow graphs, program dependency graphs,
data dependency graphs, call graphs, etc.;

• platform and other software-related data, OSes, processors and their instructions sets, emu-
lators, interpreters;

• compilers, linkers and their options.

The initial purpose of describing abstract representations of the target applications in the AKB
was to share the results of analysis tools among the ADSS and all the ACTC components. As
agreed by Consortium partners, abstract representations are used by the ACTC components but
not shared globally or made available to the ADSS. Therefore, this part of the AKB (that has not
been extensively instantiated to execution specific knowledge) is still in an embryonal stage and
will need further refinement in the unlikely possibility that these representations will be shared
among components and the ADSS. However, there is an exception. The ADSS uses call graphs to
determine relations among functions thus, relations among assets. This information is not shared
with other tools, one Enrichment Module executes a static analysis tool to build the call graph and
uses this information to identify attack paths against the assets.
The part of the a priori model to describe platform-related information, compilers and linkers
seems expressive enough to cope with the ASPIRE needs. However, it has not been extensively
used as we are concentrating on the ASPIRE use cases, where platform, OS, compilers and linkers
have been selected by the Consortium, thus fixed.
A priori knowledge includes other concepts that only exist in the ASPIRE scope, for instance:

• ASPIRE tool chain and tool chain components, that is, the abstract description of the tools
that will be actually used to implement the protection which must allow the ADSS to select
the tools that will actually implement the protections, to decide which options of the tools
to enable, and to choose the proper value for the tool options;

• ASPIRE annotations, added by the software developer to mark assets and other critical sec-
tions of the application, and other formats used by the ASPIRE tool chain components to
exchange data or to annotate code.

• ADSS-related information, like ADSS-specific preferences, user constraints to consider dur-
ing the selection of the best protection, i.e., limitations on measurable features that are al-
tered during the application of protections (like code size, performance overhead, use of
specific protections), pruning strategies (i.e., how to reduce the size of the problem space to
be computationally feasible), etc.

ASPIRE D4.03 PUBLIC 4

D4.03 — Security Model, Knowledge Base, Human Experiments

Execution-specific knowledge complements the generic a priori knowledge to permit the ADSS
to identify what to protect, decide which is the best protection to apply on the target application,
drive the tool chain components when actually implementing the protections.
Execution-specific knowledge is the instantiation of the abstract models that are part of the a priori
knowledge, and the user-provided information needed to generate that instantiation. Therefore,
execution-specific knowledge includes (but it is not limited to):

• the target application and its application “component”, (like functions, procedures, stubs,
variables);

• the assets, corresponding to data or code regions, as provided by the user, and the corre-
sponding threats;

• user ADSS characterization, that is the ASPIRE tool chain components available at the user
installation ;

• the state of the current tool chain execution and all the output from already executed com-
ponents;

• attacks and protection relations with the program asset and user preferences.

• protection profiles, which summarize how the tools in the tool chain can be applied to pro-
tect the assets and the consequences of the application (performance degradation, network
delays, bandwidth consumption, estimated security level).

The AKB is able to represent the logging information output by the ACTC when applying pro-
tections. This log includes the invoked protection tools, the actually used parameters, and the
annotations consumed1. This ACTC output is currently processed by the security evaluation tools
(to instantiate the Petri nets to simulate). It could also be used to fine-tune the configuration of
protections applied later in the tool chain or as a feedback loop, to re-execute the ACTC. Moreover,
this information will be used to generate a report for the user that links the ADSS decision mak-
ing with the logs produced by the compiler (as needed according to requirement REQ-ASR-005 of
D1.03 v2.0).

Use of Ontologies for the AKB

The AKB has not been designed to be a static knowledge base that simply combines the a priori
knowledge and the execution-specific knowledge. Instead, it is a dynamic knowledge base that is
continuously improved as more knowledge becomes available during the operation of the ADSS.
A priori knowledge has been modelled so that when execution-specific information is inserted,
additional information can be deduced from it by means of ad hoc reasonings. Therefore an ADSS-
driven enrichment process has been added on top of the conceptual model. The purpose is to
minimize the manual input required from the user. Indeed, enrichment helps in completing the
execution-specific knowledge.
Execution-specific knowledge enrichments in fact plays a major role. Starting from general infor-
mation on attacks, protections, and relations to assets, AKB will infer protections and combination
of protections that will work on the target application, given the assets and security properties re-
quested by the user.
After the analysis at the beginning of this project, we adopted Description Logic (DL) ontologies
to both represent the AKB and the enrichment processes needed by the ADSS to work (see D4.01
for further details on this analysis). Furthermore, we created an API to access the AKB ontology
with basic Create Read Update Delete (CRUD) operations and support for complex queries. Both
the AKB and the API have been made them available to the Consortium. To cope with the known

1Last version of annotation format is in the continuously updated WD5.02, it will be delivered in D5.11.

ASPIRE D4.03 PUBLIC 5

D4.03 — Security Model, Knowledge Base, Human Experiments

limitations of DL ontologies, we have designed and reported in D5.01 a modular enrichment archi-
tecture. Within this framework, reasonings that are not well performed with ontological method
(like backward reasoning) or not possible because of the limitations of DL ontologies (like class
level reasoning), are externalized as ad hoc enrichment modules. Enrichment modules only have
to implement a common API and output the results of their inferences into the AKB.
Currently, we are using DL ontologies to represent the static information of the AKB and to per-
form simple reasoning (mainly classifications). The most powerful reasoning and enrichment
have been all outsourced as Enrichment Modules. Enrichment Modules that are needed to deter-
mine the suitable combinations of protections are described in the deliverable D5.07. Final release
of the ADSS Enrichment Modules will be delivered in M36 in the deliverable D5.10. This approach
has shown several advantages: we achieve the best performance as we use the most suitable tools
for each reasoning, we need less time to develop new reasonings as we use the most appropriate
method. Moreover, we maximally exploit the ontology-based repository, API, and queries already
developed and used by all partners to access the AKB.
As anticipated before, we have discovered that almost all the reasonings were better performed
as Enrichment modules. Outside the ontology, where we can relax the DL and Open World as-
sumptions, we were able to infer more information, better customize the reasoning, and in less
(design and implementation) time. The most relevant case is the attack path discovery, based on
backward reasoning, where we have built a very complex fact base based on Prolog.
Moreover, even if we have followed all the best practice, applied optimization tricks, and tailored
our reasonings on the selected ontology reasoners (we used Hermit2 that uses hyper tableaux al-
gorithms and Pellet3 that uses tableaux algorithms), inferences were better performed within the
Enrichment Modules. Currently, only a few classifications and forward reasoning remain in the
ontology, the ones that relate attack steps, attack tools, types of protections, and protections. Our
scalability analysis showed us that performance were not acceptable for supporting protection
decisions of real applications with several assets. To cope with this performance issue, we imple-
mented a simplified ‘adaptive merging approach’, that dynamically included only the needed ax-
ioms from the required sub-ontologies, in order to improve performance of the reasoning process
techniques by reducing the ontology “size”. Even in this case, performance were not satisfactory.
A sophisticated adaptive merging approach (to minimize the ontology size) would have required
too much effort to be correctly implemented. Since ontologies were already fallen in disgrace, it
has not been tried. In short, ontology reasoning was not as promising as we were expecting, thus
we invested more effort in defining and optimizing reasonings in external Enrichment Modules.
However, ontologies still have an important role in the AKB to store static information. Indeed,
for what concerns expressiveness, ontologies are able to represent classes, class instances (called
individuals), associations (called object properties), and attributes (called data properties). That
is, they can model class diagrams and entity-relationship / UML class diagrams. Additionally,
the performance of ontologies for querying data were satisfactory for our purposes.
A further clarification is needed to explain how the AKB supports the Enrichment Modules. En-
richment Modules must not maintain static information. That is, all the information needed to
perform the reasoning (in other words, the facts) must be retrieved from the AKB. Only, infer-
ence rules and model building rules are in the Enrichment Module. For this reason, additional
information used by Enrichment Modules that violates the DL assumptions or it is not usable
by the ontology reasoners, has been encoded into the ontology as additional data properties (of
String type), associated to ontology individuals. When retrieving ontology individuals, Enrich-
ment Modules also access this additional information and also have the responsibility to know
the existence of these fields and correctly interpret them. As an example, additional facts concern-
ing the attack steps (individuals) used by the Prolog-based Enrichment Modules are conveyed by
means of the prologFacts data property. In general, an unlimited number of data properties
can be added to the ontology to support analogous cases.

2http://www.hermit-reasoner.com/
3http://clarkparsia.com/pellet/

ASPIRE D4.03 PUBLIC 6

http://www.hermit-reasoner.com/
http://clarkparsia.com/pellet/

D4.03 — Security Model, Knowledge Base, Human Experiments

3 The ASPIRE security model

Section authors:
Cataldo Basile, Daniele Canavese, Leonardo Regano (POLITO)

3.1 The ASPIRE security model v1.1: main model

Changelog: No changes compared to ASMv1.0.

This section presents a class diagram that represents a formalization of the attack model infor-
mation represented in D1.02. That attack model included the following high-level concepts and
informal relations between them:

• Application;

• Asset;

• Attack;

• Attack path;

• Attacker;

• Software protection;

• Tools.

Figure 1 presents the UML class diagram that shows how these concepts have been formally re-
lated. It is worth noting that associations are all many-to-many associations unless differently
noted in the text.
First of all, we present the Application class. Its instances will be objects abstracting the ap-
plications to protect. Next, the class Asset describes the assets. A preliminary set of assets has
been listed in Section 3 of D1.02. The identified assets in our formal model will be detailed in
Section 3.2.2. Presently, the set of assets we identified suffices to describe the types of assets listed
in D1.02. Nevertheless, we do not exclude the possibility of updates.
Application instances are associated to at least one Asset instance by means of the contains
association. In most cases, we must consider not the whole application but one of its parts. For
this purpose, we introduced the ApplicationPart class, whose instances may describe logi-
cally self-contained components (like server and client stubs, algorithms) or simple pieces of code
or similar abstractions (like fragments and slices). ApplicationPart instances are connected
to the Application instances they are part of by means of the one-to-many hasPart associa-
tion. Additionally, ApplicationPart instances are associated to Asset instances by means of
the partContains association. More details on ApplicationPart class, its subclasses and
associations will be presented in Section 3.2.1, where the Application sub-model is presented.
Assets instances are associated to several security properties a user may be interested in when
protecting the asset. This information is conveyed via the AssetProperty class instances (named
threats in D1.02) that are associated to Asset instances by means of the one-to-many hasProperty
association. Additionally, assets may depend on other assets. The (self) association requires is
used to represent this dependency.
Attacks are represented as instances of the Attack class. Several attacks may threaten an asset,
this scenario is represented by means of the threatens association. Additionally, attacks may com-
promise asset security properties, this is represented by means of the affects association. Having
modelled the attacks, we are able to model attack paths, and naturally, we use the AttackPath
class for this purpose. To represent that an attack can be mounted following an attack path we
use the hasAttackPath association that relates Attack instances to AttackPath instances

ASPIRE D4.03 PUBLIC 7

D4.03 — Security Model, Knowledge Base, Human Experiments

A
tt

ac
k

S
W

P
ro

te
ct

io
n

A
ss

et

A
ss

et
P

ro
p

er
ty

A
tt

ac
kT

o
o

l

A
tt

ac
kP

at
h

A
tt

ac
kS

te
p

A
p

p
lic

at
io

n

S
W

P
ro

te
ct

io
n

Ty
p

e

«
e

n
u

m
e

ra
tio

n
»

A
tt

ac
ke

rI
d

en
ti

fi
ca

ti
o

n
E

n
u

m

A
p

p
lic

at
io

n
P

ar
t

A
tt

ac
ke

r

A
tt

ac
kS

te
p

In
A

tt
ac

kP
at

h

P
ro

te
ct

io
n

To
o

l

a
tt

a
ck

S
te

p
R

e
q

u
ir

e
sS

ki
ll

a
d

d
re

ss
e

sA
ss

e
t

ca
n

U
se

n
e

xt
S

te
p

A
N

D
e

d

h
a

sP
ro

p
e

rt
y

re
q

u
ir

e
sE

xp
e

rt
is

e

a
tt

a
ck

P
a

th
R

e
q

u
ir

e
sS

ki
ll

e
n

fo
rc

e
d

W
it

h

m
o

u
n

ts

re
fe

rs
T

o
A

tt
a

ck
P

a
th

d
e

p
e

n
d

sO
n

m
a

yB
e

P
e

rf
o

rm
e

d
B

yM
e

a
n

sO
f

m
it

ig
a

te
s

co
m

p
ro

m
is

e
s

re
q

u
ir

e
s

d
e

p
e

n
d

sO
n

T
yp

e

h
a

sA
tt

a
ck

P
a

th

p
a

rt
C

o
n

ta
in

s

re
q

u
ir

e
sS

ki
ll

st
a

rt
sW

it
h

h
a

sI
E

xp
e

rt
is

e

a
d

d
re

ss
e

sA
ss

e
tP

ro
p

e
rt

y

ca
n

n
o

tB
e

P
re

ce
d

e
d

B
y

h
a

sP
a

rt

in
va

li
d

a
te

sF
o

rw
a

rd

co
n

ta
in

s im
p

le
m

e
n

te
d

O
n

u
se

s

re
fe

rs
T

o
A

tt
a

ck
S

te
p

o
f

ty
p

e

n
e

xt
S

te
p

O
R

e
d

Figure 1: The main model.

ASPIRE D4.03 PUBLIC 8

D4.03 — Security Model, Knowledge Base, Human Experiments

(one-to-many). Attack paths are decomposed in individual attack steps that are represented as
AttackStep instances. In theory, each attack step can be an entire attack on its own. We de-
picted this scenario by means of the inheritance, that is, Attack is a subclass of AttackStep
(bounded via an ‘is a’ association). This also means that we can describe steps that are not
attacks per se (as do not affect any asset property) as they are only needed within an attack
path. Each AttackStep instance is associated to the tools that can be used to actually mount
it. Attack tools are modelled with the AttackTool class and AttackTool instances are as-
sociated to AttackStep instances via the mayBePerformedByMeansOf association. Since at-
tack steps can be shared among different attack paths, we used the AttackStepInAttackPath
(association) class, which links the AttackStep instance via the refersToAttackPath asso-
ciation and the AttackPath via the refersToAttackStep association. The last two associa-
tions bind an AttackStepInAttackPath instance to exactly one AttackStep instance and one
AttackPath instance. Then, to describe consecutive attack steps we used the nextStepANDed
and nextStepORed associations that serve to also indicate if the consecutive steps must be all
executed or at least one must be executed. The first step of the attack path is indicated by setting
up the startsWith association. It is worth noting that nextStepANDed, nextStepORed, and
startsWith are many-to-many associations as many parallel steps can be performed at the same
time, that is, these associations allow us to model graphs of attack steps (and Petri nets), not only
sequences (see Section 3.2.4).
Attacks are categorized by the level of exploitation (see Section 4.2 of D1.02). As presented in
D1.02, attacks may require different expertise, skill and resources to be mounted, and attacks may
have different levels of exploitation. D1.02 introduced the “identification” concept (and distin-
guished four categories of attackers: gurus, experts, geeks, and amateurs), and the “exploitation”
attribute (and distinguished three categories of exploitation: low, medium, high). We model these
formally with two enumerations: the AttackerIdentificationEnum class with the four iden-
tified attacker categories, and the ExploitationEnum class with the three identified exploitation
levels. We do not expect changes to these enumerations, however it is worth noting how easy it is
to extend or modify these classifications.
AttackStep instances (and Attack instances as well due inheritance) are associated to values
of the AttackerIdentificationEnum enumeration by means of the requiresSkill asso-
ciation and to ExploitationEnum values by means of hasExploitation association. An at-
tack step is associated to exactly one AttackerIdentificationEnum value and exactly one
ExploitationEnum value. Also AttackPath instances and AttackTool instances are asso-
ciated with AttackerIdentificationEnum instances via the attackPathRequiresSkill
and requiresExpertise associations.
Software protections are described by means of instances of the SWProtection class. To re-
fer to the tools actually deploying protection (which we aim at configuring as output of ASPIRE
DSS), SWProtection instances are associated to ProtectionTool class instances by means
of the enforcedWith association. To indicate possible dependencies among software protec-
tions, the dependsOn association is used, while forward incompatibility is represented through
the invalidatesForward association. That will allow us to model when one protection can-
not be enforced after another one because it renders the previous one useless or wrong, like
obfuscating code after having inserted guards, or when the first protection invalidates the pre-
conditions to apply the later one. Software protections are categorized in types by associating
them to SWProtectionType instances via the ofType association. A software protection is as-
sociated to exactly one SWProtectionType instance.
Together with the need of categorizing protections, this class serves to map the ‘lines of defence’
concept, as presented in the DoW (see also Section 3.2.3). Another reason for having this class is
that it will allow class-level reasoning about protections, i.e., to answer questions like “which are
the categories of protections that can be used in combination with strengthen local integrity protec-
tions to increase the protection level?”. Dependencies among SWProtectionType instances are
represented by means of the dependsOnType association. SWProtection instances are related

ASPIRE D4.03 PUBLIC 9

D4.03 — Security Model, Knowledge Base, Human Experiments

to the Asset instances (via the addressesAsset association) and AssetProperty instances
(via the addressesAssetProperty association) that they may mitigate risks on, and to the
Attack instances that they aim at invalidating or making more difficult (via the mitigates associ-
ation). By means of the compromises association, attacks are associated to the SWProtection
instances they can invalidate (or render useless or completely remove).
Attacks are mounted by attackers, represented by instances of the Attacker class, which are
related to the attacks they may be interested in performing by means of the mounts associa-
tion. We just sketch in the main model the relations of the Attacker class, which will be pre-
sented more in details in Section 3.2.6) where the protection requirements sub-model will be pre-
sented. To relate attackers to the attack they can mount, Attacker instances are associated via the
hasExpertise association to the AttackerIdentificationEnum values. The attack paths at-
tackers can mount are represented via the performs association. Attacks are strictly related to the
tools attackers use to actually perform an attack step. Attacker instances are thus related to
AttackTool instances using the canUse association. As anticipated before, to be very precise,
in the security model, each AttackStep instance has been associated to AttackTools instances
that can be used to mount the attack by means of the mayBePerformedByMeansOf association.
At present, we don’t expect to model single attackers, we just need the flexibility to express that
various attacks can be mounted by several attackers that may have different expertise and differ-
ent tastes on the attack paths to follow to mount an attack (see Section 3.2.6).

3.2 Model Extensions: the Sub-Models

Changelog: The asset, the metrics, the protection requirements sub-models have not been
changed. The application, attack, and protection sub-models present new classes and/or associa-
tions. All the changes are described at the beginning of each sub-model presentation. Moreover,
in all the figures, new associations are depicted with a thicker line and new classes have a thicker
border.

The main model presented above depicts the main concepts and their (high-level) relations. How-
ever, a refinement is needed to allow a more fine-grained description of the protection scenarios
ASPIRE has to face. The main tool we use to refine the main model is inheritance. It helps us
to refine main model concepts and at the same time preserve the associations among them. Re-
finements to the main model will be presented by means of a set of sub-models that cover six
areas:

• Assets, which describe what to protect and report categorization already introduced in D1.02.

• Applications and their execution environments, which precisely characterize the application to
protect. This will allow us to better target the protection protection and to provide informa-
tion about the execution environment that may determine classes of attacks and protections.
For example, attacks against an applications running on Windows may be different from the
ones the same application has to face on MacOS, and some protection techniques cannot be
available on all the platforms.

• Protections and protection types, which define a taxonomy of the different protections.

• Attacks, which describe the attacks that can be mounted against applications, including the
attacks already identified in D1.02.

• Metrics, which provide a very preliminary identification of the classes to use to convey in-
formation about metrics and the general types of metrics-related classes.

• Protection requirements, which capture our initial ideas on how to specify protection require-
ments on the target application, and which complete the information presented in D1.03.

The areas and the corresponding list of sub-models is not definitive, as these are the areas we
currently identified. The next sections will present the initial definition of these sub-models.

ASPIRE D4.03 PUBLIC 10

D4.03 — Security Model, Knowledge Base, Human Experiments

3.2.1 Application sub-model

Changelog: With respect to the ASM v1.0, the newer model shows very few changes, essentially
only in the ApplicationParts package. In detail, four new entities were added: the classes
Code and Data, added for easing the reasoning in the AKB, and the associations contains and
uses used to relate the application parts together.

Figure 2: The applications sub-model.

The sub-model shown in Figure 2 presents an initial definition of information about the target
application that the ADSS will require to evaluate the impact of protections and thus decide on
the best protection according to user requirements. We highlight five major concepts, which will
be developed into separate packages:

• the parts and components the application is made of, described with the ApplicationPart
class and detailed in the ApplicationParts package;

• the platform where the target application or some of its components will be executed, such as
client and server stubs. This is described by means of the ExecutionEnvironment class
and detailed in the ExecutionEnvironment package;

• the possible communications between two or more of the application components described
by means of the Communication class and detailed in the Communications package;

• the way the source code is compiled and linked to obtain the executables, described by means
of the Compiler and Linker classes, and detailed in the Compilers & Linkers package;

• the types of abstract representations of the target application that could be needed to evaluate
the impact of protections, select the best protections, and actually enforce them, described
by means of the Representation class and detailed in the Representations package.

These five packages will be independently developed during the next months. This list of pack-
ages is also preliminary. Other packages could be added depending on the ADSS design. From
Figure 2 it is possible to see that an Application instance is connected to:

• its application components and parts, instances of the ApplicationPart class, via the
hasPart association, that has been already illustrated in the main model;

ASPIRE D4.03 PUBLIC 11

D4.03 — Security Model, Knowledge Base, Human Experiments

• ExecutionEnvironment instances where the application can be run via the executedIn
association;

• Representation instances, that abstractly describe these application parts via the one-to-
many associationhasRepresentation association;

• Compiler and Linker instances used to compile it, via the associations compiledWith
and linkedWith, which are valid if the single application components are not compiled
independently;

• Communication instances of which the Application is an endpoint, will be identified by
navigating the endpoint1 and endpoint2 associations in opposite directions.

It is worth noting that the ApplicationPart instances are also linked with the Application
instances in the ApplicationParts package. The ApplicationParts package presented in
Figure 3 describes the parts of an application that are of interest for the protection, for instance
because they contain assets, are targeted by a protection, or are the endpoints of some secure com-
munication channel. We identified several concepts and described them by means of inheritance.
We consider the following subclasses:

• File class is used to model external files and data, such as custom configuration files (repre-
sented by means of the ConfigurationFile class), or registries/manifest files that might
contain relevant data to be taken into account (represented by means of the Manifest class);

• Library class, used to describe static or dynamic libraries, represented as StaticLibrary
and DynamicLibrary class instances. DynamicLibrary instances are connected to in-
stances of the LibraryModule class by means of the containsLibraryModule associa-
tion;

• Code class instances contain all the kind of executable code (functions, methods, snippets,
. . .) than can be found inside an application. Note that a Code instance can contain other
application parts (e.g. a function contains a PIN or a code fragment). This is modeled by the
contains association. Furthermore, this class has several specialized sub-classes:

– Function, and Procedure classes, whose instances explicitly declared functions, pro-
cedures, and methods in the target application;

– Algorithm class, whose instances are algorithms, which may be formed of several
Function and Procedure instances (related by means of the includesAlgorithm
and includesProcedure associations);

– Slice and Fragment classes, whose instances represent parts of the code not neces-
sarily corresponding to entire functions and procedures. Examples are the barrier slices
(investigated in WP2) and the server and client parts generated during code splitting,
represented by ServerStub and ClientStub instances;

– Class is the only element presented in this initial characterization of application com-
ponents originating from object-oriented programming. We added this mainly as a
placeholder to remember us that object-oriented programming constructs and entities
need to be considered while extending or adapting the models. Because of resource
limitations, however, ASPIRE will only implement techniques for C code for the time
being.

• Data class models all the kind of static/dynamic data that an application can contains. Cur-
rently it has only one sub-class, StaticallyAllocatedData, used to describe (security-
sensitive) data embedded in the executable files or libraries, such as cryptographic keys
(represented by means of the CryptoKey class), initialization values for tables (represented
by means of the TablesInitiValues class), etc. A notable example of statically allocated data

ASPIRE D4.03 PUBLIC 12

D4.03 — Security Model, Knowledge Base, Human Experiments

Figure 3: The ApplicationParts package.

ASPIRE D4.03 PUBLIC 13

D4.03 — Security Model, Knowledge Base, Human Experiments

are strings, which attackers look after during certain attack steps, modelled with an ad hoc
sub-class String.

The ApplicationPart instances are connected to:

• themselves via the uses association. This relationship is used to model both data exchanges
and flow-execution jumps between functions, snippets, . . .

• Application instances are part of (via the one to main hasPart association);

• one or more ExecutionEnvironment instances that describe where applications can be
run via the componentExecutedWith association (as some application is made of several
independently executing component, like clients and servers);

• Communication instances they are endpoint of (via the one-to-many associations named
endpoint1 and endpoint2);

• Representation instances, that abstractly describe these application parts (via the one-to-
many componentHasRepresentation association;

• if they are independently compiled and linked, the Compiler and Linker instances via the
componentCompiledWith and componentLinkedWith associations.

Note that we preferred the use of the word “component” instead of “part” for the associations that
are logically self-consistent like executable portions of the application (like clients and servers) or
independently compiled portions of the application.

Figure 4: The Representations package.

The Representations package (see Figure 4) includes all the abstract representations that can
be used by the ADSS or tool chain components. It includes the abstract Representation class
which will be sub-classed any time a new abstract representation will be of interest of the ASPIRE
project. Currently, we included the following subclasses:

• SourceCode, and ObjectCode, whose instances are self-explaining;

• ControlFlowGraph, a graph representation that models how control can be transferred in
the procedure or program, i.e. in which orders instructions can be executed;

ASPIRE D4.03 PUBLIC 14

D4.03 — Security Model, Knowledge Base, Human Experiments

• ControlDependencyGraph, a graph representation that models to what extent the ex-
ecution of instructions in a procedure or program depends on the execution of the other
instructions in that procedure or program;

• DataFlowGraph, a graph that models how values computed in the program are computed
out of other values computed (elsewhere);

• ProgramDependenceGraph, a graph that combines the data flow graph and control de-
pendency graph presentations to model how the execution of instructions depends on other
instructions being executed and on the values being computed by those other instructions;

• CallGraphOfProcedure, a graph representation that models which procedures in a pro-
gram can call with procedures;

• Annotation, that will be used to report the annotations added by the developers or by tool
chain components to tag pieces of code.

Representation instances are associated not only to Application instances, via the one-to-many
hasRepresentation association, but also to ApplicationPart instances, via the one-to-many
componentHasRepresentation association (as abstract representations are in most cases cre-
ated for components, like functions and procedures).

Figure 5: The Compilers&Linkers package.

For the Compilers&Linkers package depicted in Figure 5, we highlighted two main concepts:
compilers, described as instances of the Compiler class, and linkers, described as instances of the
Linker class. Application instances are associated to Compiler and Linker class instances
via the compiledWith and linkedWith one-to-many associations, and to ApplicationPart
instances via the compiledWith and linkedWith one-to-many associations.
For the ASPIRE project, it is important to model the options/flags that can be selected during
compilation because they can affect the performance and structure of the code and may also be in-
compatible with the processes performed by some protection tools. For example, Diablo requires
the availability of separate object files and a map file of the linked binary or library, all of which
can be generated by employing the appropriate options on existing compilers. Furthermore, to
select the most appropriate protections to be applied, it can be useful to know, e.g. whether an
asset in the form of a code fragment is duplicated because of compiler optimizations such as
inlining. For these reasons, we have foreseen the CompilerOption class. Application and
ApplicationPart instances are bound to the options used to compile them by means of the
compiledWithOption and componentCompiledWithOption associations. We want also to
note that CompilerOption instances are independent of the compilers. Each of them models
(equivalent) options that can be invoked with different commands on different compilers. So each
option is represented as a single CompilerOption instance and associated via the validFor

ASPIRE D4.03 PUBLIC 15

D4.03 — Security Model, Knowledge Base, Human Experiments

association to the Compiler instances where they are available. The reason for this design ap-
proach is that the alternative method, i.e. creating instances of all the options for each compiler
and then explicitly requiring their equivalence, is less efficient from the reasoning point of view.
Other code manipulations could also be of interest in this package. In particular, the description of
the optimizations that are performed by the compilers can be interesting in order to derive some
general information of the object produced and may serve to the decision process. The ASPIRE
Consortium is still debating the need to include this information in this package.

Figure 6: The Communications package.

Figure 6 displays the structure of the Communications package. Its main class is the abstract
Communication class. We foresee two types of communications, channel-oriented and message-
oriented communications. Therefore Communication has been sub-classed in the Channel
and the MessageExchange classes. The Channel class has been further sub-classed in the
ProtectedChannel class to describe protected channels. Instances of the ProtectedChannel
class are bounded to the security properties they guarantee by means of an ad hoc association:
enforcesChannelProtection. Security properties are represented by means of instances of
the SecurityPropertyEnum class, an enumeration listing all the possible security properties
that can be enforced on communications (e.g. integrity and confidentiality). A MessageExchange
instance is composed of a set of messages, represented as CommunicationMessage instances.
To mark protected messages, i.e. messages that have been processed to ensure some security
property (for instance, message authentication, integrity, and confidentiality), we use an ad hoc
class : ProtectedCommunicationMessage. Its instances are also connected to instances of the
SecurityPropertyEnum c;ass, via the association named enforcesMessageProtection.
Communications are characterized by their endpoints. In order to support non-oriented com-
munications as well, endpoints are described with the one-to-many endpoint1 and endpoint2
associations from Communication instances to Application instances. In case we want to de-
scribe oriented communication, the application referenced by the endpoint1 association can be
considered the originator and the application referenced by the endpoint2 association the con-
sumer. It is worth adding that this enables the description of communications between instances
of the ApplicationPart class, e.g. when their components are to be executed on different ma-
chines, such as the different forms of stubs that will execute on the client and on the server. For that
reason, we introduced the one-to-many endpointComponent1 and endpointComponent2 as-
sociations.

ASPIRE D4.03 PUBLIC 16

D4.03 — Security Model, Knowledge Base, Human Experiments

Figure 7: The ExecutionEnvironments package.

Finally, the ExecutionEnvironments package, depicted in Figure 7, refines the abstract class
ExecutionEnvironment by sub-classing it. Our initial list of the execution environments we
consider includes:

• OS class, which describes the operating systems where applications may be executed;

• Processor and InstructionSet classes, which allows us to describe the processing unit
for which the application will be compiled;

• VM, Emulator, Interpreter and InstrumentationToolkit classes that describe vir-
tual execution environments. Moreover, we will add more information on Virtual machines
as they are managed by one-to-many hypervisors, as described using the Hypervisor class
instances associated with the managedByHyperVisor assocation, and run an operating
system, as modeled with the hasOS association.

3.2.2 Assets sub-model

Changelog: No changes compared to ASMv1.0.

Figure 8 reports the categorization of assets presented in D1.02. The different asset categories
have been modelled with the sub-classing paradigm. The classes PublicData, TraceableData,
TraceableCode, ApplicationExecution, UniqueData, GlobalData, PrivateData, and
Code are subclasses of the main Asset class. Moreover, the Code class has been further sub-
classed in SecurityLibrary, CustomAlgorithm, and PrivateProtocol.

ASPIRE D4.03 PUBLIC 17

D4.03 — Security Model, Knowledge Base, Human Experiments

Figure 8: The asset sub-model.

3.2.3 SW Protection sub-model

Changelog: The SW protection sub-model was expanded by adding a new class
(SWProtectionProfile) and two new associations (cannotBePrecededBy and
hasProfile). Moreover, we added an entire sub-model part to describe annotations.

Figure 9 shows the categorization of the protection techniques that are considered of interest for
the ASPIRE project. First of all, it is possible to see the five lines of defence, i.e. the main, more ab-
stract categories of protections as detailed in the ASPIRE DoW. These techniques are represented
by means of the DataHiding, AlgorithmHiding, AntiTampering, RemoteAttestation,
and Renewability classes, all subclasses of the SWProtectionType class. Together with the
five lines of defence, we also added some more concrete protection types that play a major role
in the ASPIRE project. They are represented by ClientSideCodeSplitting, ClientServer-
CodeSplitting, ClientServerDataSplitting, and ReactiveTechnologies.
All the previously mentioned classes are the first level of categorization. We also specialized some
of these techniques, for instance:

• DataHiding has been sub-classed in Source2SourceDataObfuscation and WBC (white-
box crypto);

• AlgorithmHiding has been sub-classed in:

– SourceLevelAlgorithmHiding, further sub-classed in PatternRemoval;

– ClientSideVM;

– BinaryCodeObfuscation, further sub-classed in CodeFlattening, BranchFunc-
tions and OpaquePredicates;

• AntiTampering, has been sub-classed in AntiCodeInjection, AntiLibraryCallback,
AntiDebug and CodeGuards;

• Renewability has been sub-classed in RenewabilityInSpace and RenewabilityIn-
Time

• ReactiveTechnique has been sub-classed in TimeBombs.

ASPIRE D4.03 PUBLIC 18

D4.03 — Security Model, Knowledge Base, Human Experiments

Figure 9: The SW protections sub-model.

ASPIRE D4.03 PUBLIC 19

D4.03 — Security Model, Knowledge Base, Human Experiments

Integrity protection techniques, like remote attestation and anti-tampering techniques, are also
categorized as either static and dynamic. However, instead of using the sub-classing paradigm
we plan to add a Boolean attribute (dynamic) in those classes.
A protection technique exposes one or more protection profiles (see D5.01), implemented as in-
stances of the SWProtectionProfile class. The hasProfile annotation is used to link the
profiles to their related SWProtection objects.
Some protection techniques cannot be applied on the same asset in any order, so that a (partial) or-
dering is needed. The ASM models this by making use of the cannotBePrecededBy association,
used to express the fact that a protection technique cannot used after another one.

Annotation AttackFact

ApplicationPart

CodeReference

SourceCodeReference

SecurityRequirementAnnotation ProtectionAnnotation

«enumeration»

SecurityAttribute

AttackFact

SWProtectionType
ProtectionParameter

annotationAppliesTo

partEnds

annotationHasParameter

containsIndirectly

dependsOn

partBegins

contains

annotationIsOfTyperequires

Figure 10: The annotation part of the SW protections sub-model.

The main class of this part of the SW protections sub-model is the Annotation class (see Fig-
ure 10). All instances of the Annotation class contain the attribute annotationID to univocally
identify them (within the application to protect, of course).
Annotations apply to specific part of the application to protect. These parts are represented with
ApplicationPart instances available in the Application. To univocally identify the appli-
cation parts, we introduced the CodeReference class. Each ApplicationPart instances is
associated to two CodeReference instances: one indicates where the part begins and the other
one where the application part ends. This scenario is modelled through the partBegins and
partEnds associations. Currently, we only need to refer to source code, therefore, file names and
the line numbers where the part starts and ends are enough to describe the application part. There-
fore, we subclassed the CodeReference into the SourceCodeReference class, which contains
the filename and line number attributes.
Moreover, there are several associations to express dependencies among Annotation instances.
These dependencies will be exploited by the ADSS or protection tools able to process them. The
contains association is used to describe nested annotations4 The containsIndirectly asso-
ciation to represent annotations that are reached when the code within an annotation is executed.
For instance, the fact that an Annotation instance a2 in a function called from within the ap-
plication part associated to the another Annotation instance a1 is represented by associating
a1 containsIndirectly a2. Finally, to represent dependencies among annotations, e.g., to re-
late annotations that are part of the same technique, like parts protected with the same guards,
or different parts that need to be protected analogously, the dependsOn association has been
introduced. The exact semantics of this association depends on the technique that will actually
consume/use it.

4It is worth noting that the ASPIRE consortium has decided that valid annotations can be either nested or disjoint.
No cases of partly overlapping annotations is possible. Moreover, they have to start and end in the same file.

ASPIRE D4.03 PUBLIC 20

D4.03 — Security Model, Knowledge Base, Human Experiments

Annotations are divided in security requirement annotations and protection specific annotations
(see deliverable D5.01). Therefore, we introduced two subclasses of the Annotation class, the
SecurityRequirementAnnotation and ProtectionAnnotation classes.
SecurityRequirementAnnotation instances reflect the security requirements defined in the
deliverable D1.04, thus, SecurityRequirementAnnotation instances point to instances of the
SecurityAttribute enumeration class through the requires association. These enumeration
includes the following values: confidentiality, integrity, privacy, nonRepudiation,
executionCorrectness.
ProtectionAnnotation instances refer to the SWProtectionType instances they ask to en-
force on that application part (via the annotationIsOfType association). Moreover, Protec-
tionAnnotation instances link all the protection specific parameters that need to be passed
to the protection technique to be enforced according to the software engineer in charge for pro-
tecting the application (or the ADSS) by means of the annotationHasParameter association.
These parameters are characterized as name, value pairs. Therefore, ProtectionAnnotation
instances are associated to instances of the ProtectionParameter class, which contains two
attributes, name and value.

3.2.4 Attacks sub-model

Changelog: The ASM v1.1 attack sub-model contains only two new entities: the AttackTarget
class and the hasTarget association, used to related the attack target instances to an attack.

Figure 11: The attacks sub-model.

Figure 11 presents the attack sub-model. The categorization of the attacks comes directly from
D1.02, that distinguished static, dynamic, and hybrid attacks. To that extent, we introduced the
top-level sub-classes StaticAttack, DynamicAttack, HybridAttack, PassiveAttack, and
ActiveAttack.
Static attacks are further sub-classed in StructuralCodeRecovery, StructuralDataRecovery,
StructuralMatchingOfBinaries, and StaticTampering. Dynamic attacks are further sub-
classed in DynamicTampering, DynamicDataAnalysis, Debugging, AttacksOnCommunica-
tionChannels, DynamicStructuralAnalysis and Fuzzying. AttacksOnCommunication-
Channels has been further sub-classed in APIExploitation, Spoofing, Sniffing, Replay
and AttacksOnProtec-tedChannels.
The attack sub-model also includes the part of the conceptual model that is needed to represent
the Petri nets that will be used for the simulation. Figure 12 depicts this part.
There are two ways to support the simulation with Petri nets: (i) static descriptions of known at-
tack paths, and (ii) dynamic discovery of attack paths from descriptions of attack steps. The latter

ASPIRE D4.03 PUBLIC 21

D4.03 — Security Model, Knowledge Base, Human Experiments

Figure 12: The attacks, goals and Petri nets.

paths will be generated by the enrichment phases, e.g. when constructing Petri nets for specific
scenarios. This capability will allow the developers of the AKB and the ADSS to populate it with
generic, widely applicable attack steps that can be reused in many attack and protection scenar-
ios. The former, static descriptions will be useful to manually populate the model with known
attacks, e.g., because they are very specific combinations of attack steps that make sense only in a
very limited set of scenarios, or, during the project itself, because the automated enrichment and
reasoning in the ADSS is not yet mature enough to derive all relevant attack path automatically.
The transitions of a Petri net are instances of the class AttackStepInAttackPath, which refers
to the AttackStep via the refersToAttackStep. Places of a Petri Net are instances of the class
AttackState. The relationships decomposedAND and decomposedOR are needed to further
specify dependencies among attack states, that is, it an attack state can be reached if one or more
previous states have been reached.
Goal is a generalization of AttackState, which means that some of them are goals as they
contain relevant information on assets or on the state of protections being undone or worked
around, like intermediate achievements. Moreover, some of the goals are the final objectives of an
attack, i.e. the targeted asset properties. This is represented by defining the AssetProperty as a
subclass of Goals.
Each arc in a Petri net connects one AttackState to an AttackStepInAttackPath or vice
versa; the relationship movesTo represents arcs connecting a transition to a place, while the re-
lationship enablesAttackStep represents arcs connecting a place to a transition; in this way
the whole static structure of a Petri net can be modelled. Starting from the final goal of an at-
tack the model can be navigated through the relationships movesTo and enablesAttackStep
to dynamically discover all the transitions and places leading to this final attack goal. Together
with the nextStepORed and nextStepANDed associations, we introduced their reciprocal as-
sociations to improve querying and reasoning. The relationship follows further specifies the fact
that one attack step follows another one and can be reached if at least one of the previous attack
steps has been completed, and followsAll can represent the fact that to perform one attack step
more than one previous steps must have been performed.

ASPIRE D4.03 PUBLIC 22

D4.03 — Security Model, Knowledge Base, Human Experiments

AttackState instances might require some information to be executed, might be performed
with an AttackTool and will produce some information. Any information used throughout the
attack has been named AttackFact as the most generic information represented as a fact into a
fact base, described by means of the FactBase class, composed of AttackFact instances.
We can use this information to dynamically discover attack paths. Indeed, AttackStep enabling
constraints are depicted by (optionally) associating an AttackState instance to a Condition
instance, representing a predicate on some of the facts in the knowledge base, by means of the
attackStateRequires association between AttackState and Condition instances, and the
on association, between Condition and AttackFact instances. The description of the informa-
tion we expect to use has been obtained by subclassing the AttackFact class. Our expectation
is to use as facts the ApplicationPart instances (as it is important to know what to attack), the
associated Representation instances (as obtaining AttackTool he has at his disposal (as we
need to know what the attacker is able to do), and the AttackPaths the attacker likes. Addition-
ally, having performed and completed some AttackStep or reached some AttackState (and
Goal) is also important to evaluate if attack steps and states can be executed (and determine de-
pendencies). The known facts are updated when attack steps and attack states are completed. In-
deed, we have foreseen two associations to this purpose, produces from AttackStep instances to
AttackFact instances, and attackStateProduces, from AttackState instances to Attack-
Fact instances. In some cases, it is needed to explicit state that an attack step enables other attack
steps (without the need to dynamically derive it). This is done by using the enables self-association
of the class AttackStep.
The fact that Attack instances are also AttackStep instances (by generalization) shows another
advantage of the attack sub-model: it can manage composition of attack paths. This result will
be achieved by hierarchical composition of Petri nets, where one transition (an AttackStep in-
stance) can actually represent another sub-net included in the main Petri net.
An Attack class instance is related to one or more asset since its ‘job’ is to disrupt some assets’
security property. This is modeled by the AttackTarget class and the hasTarget one-to-many
relationship.

3.2.5 Metrics sub-model

Changelog: No changes compared to ASMv1.0.

Figure 13: The metrics sub-model.

The metrics sub-model, depicted in Figure 13, considers the relations among metrics, represented
by the Metric, application parts, and attacks. Metrics are computed on specific portions of the
application, therefore we added the association computedOn between Metric instances and
ApplicationPart instances. The actual values of metrics will be conveyed by means of at-
tributes whose type (integer or real) will be decided depending on the metrics.

ASPIRE D4.03 PUBLIC 23

D4.03 — Security Model, Knowledge Base, Human Experiments

Additionally, the metrics will be used to quantify the impact of a protection, applied on an appli-
cation part, against a specific attack. For this purpose, we make use of the evaluatesImpact-
Against association between Metric instances and Attack instances. In this case, we expect
to have several attributes as a protection might influence the attack probability, the attack time or
expertise required, etc.

3.2.6 Protection requirements sub-model

Changelog: No changes compared to ASMv1.0.

Figure 14: The protection requirements sub-model.

One of the ASPIRE project objectives is to allow an Application Vendor without being an expert on
software protection. Therefore, we must allow an ADSS user without an in-depth knowledge on
software protection to easily specify his protection requirements. To this purpose, we introduced a
set of predefined protection profiles. However, ADSS users can have a strong background on soft-
ware protection. Therefore, the ADSS must also allow them to fine tune their protection require-
ments by precisely specifying the attackers they want to face, the attacks they think are relevant,
and to restrict the software protection to use. That is, they may want to constrain with precise
directives the selection of the best protection for their application. Figure 14 shows the classes,
and their associations, used to model this situation.
To describe this scenario, we first introduced a utility concept, the User class, which just serves
to relate different protection profiles (to different ADSS users). User class instances are related
via the requiresProfile association to the ProtectionProfile class instances, the class
we introduced to convey information about software protection profiles. Each protection profile
is composed of a set of ProtectionRequirementForAssetProperty instances that serve to
specify the desired protection for a single asset property. The target AssetProperty instance is
specified by means of the many-to-one protectionFor association.
We initially see two types of protection specifications, thus we sub-classed ProtectionFor-
AssetProperty in the SimplifiedProtectionRequirement and CustomProtectionRe-
quirement.
Instances of SimplifiedProtectionRequirement can be used to specify the intended hard-
ening level by directly referring to an enumeration that determines the attacker expertise, the
AttackerIdentificationEnum class. That is, it will be possible for a user to specify that he
wants to protect against amateurs, geeks, experts or gurus (see D1.02). The ADSS will first auto-
matically select for the user all the attacks, attack paths and attack tools to protect from, and then
investigate the protection techniques to implement.

ASPIRE D4.03 PUBLIC 24

D4.03 — Security Model, Knowledge Base, Human Experiments

For a more fine grained specification of the requirements, we introduced the CustomProtection-
Requirement class, whose instances are composed of a set of ProtectionTarget instances.
ProtectionTarget instances allow users to define a set of “attackers” to protect against. The
attackers to protect against can be defined as an Attacker instances, which are related with their
expertise (i.e. with the AttackerIdentificationEnum class), the attack tools at their disposal
(i.e. with the AttackerTool class), and the attack path they may be interested in perfoming (i.e.
with the AttackPath class). Therefore, the ProtectionTarget is associated to the Attacker
instances via the restrictAttacker association. Morever, a ProtectionTarget instance is
also associated to AttackStep instances (via the restrictAttackStepTo) to permit a more
fine-grained definition of the weapons available to the attacker. A CustomProtectionTarget
instance is associated to the SoftwareProtection or SoftwareProtectionTypes instance
the user wants to consider during the selection of protections (via the restrictProtectionsTo
and restrictProtectionTypesTo associations).

ASPIRE D4.03 PUBLIC 25

D4.03 — Security Model, Knowledge Base, Human Experiments

Part II

Security Evaluation
This part introduces the new framework for computing software complexity metrics and the Soft-
ware Protection Assessment tool created to edit the attacks models, used with the metrics to eval-
uate the strength of the types of software protections integrated in the ASPIRE Toolchain.

4 Tool Support for Computing Software Complexity Metrics

Section authors:
Bjorn De Sutter (UGent)

At the end of the first year of the project, deliverable D4.02 Part II introduced a whole new frame-
work for computing software complexity metrics and so-called software resilience metrics that would
be useful to evaluate the strength (potency, resilience, and stealth) of the types of software protec-
tions developed and integrated in the ASPIRE project against a wide range of attacks.
In this section, we report on the follow-up work that has since been performed with regards to
those two types of metrics.
Furthermore we report the progress that was made in year 2 regarding an alternative method of
evaluating protection strength. That alternative method, as described in the DoW, comprises the
use of real-life attacker tools such as IDA Pro and Bindiff, using automation scripts to mimick
the attackers’ use of those tools and automated techniques to quantify the value of the tools for
the attacker. That quantification is performed by comparing the tools’ output to the ground truth
(known to the user of the protection tool), and by quantifying the outcome.

4.1 Automated support for tool-based metrics

In this line of research, we can report progress on two fronts.

4.1.1 Diffing tools

First, we migrated and extended UGent’s existing background for semi-automated diffing of x86
binaries on Windows hosts to fully automated diffing of ARM binaries on Linux hosts.
This approach consists of a number of scripts that invoke Diablo (the link-time rewriter in which
most of the binary-level processing steps of the ACTC are implemented), IDA Pro and BinDiff.
Based on a binary or library i Diablo produces two different, protected binary versions o1 and o2,
along with two mapping files m1 and m2 that describe where in o1 and o2 all of the assets of the
input binary i ended up.
IDA Pro is then invoked to disassemble the two binaries o1 and o2 like an attacker would do in
a collusion attack on two program versions (e.g., one original binary and one renewed binary),
and BinDiff is invoked to find the matching fragments. Using some custom scripts we developed
to serialize the data that is normally visualized in a GUI, the invocation in BinDiff produces a
mapping mbd in a file.
Using the ground truth encoded in m1 and m2, automated scripts then determine two scores for
BinDiff. First, the scripts compute how many code fragments BinDiff matched correctly between
the versions o1 and o2.
Secondly, the scripts compute whether or not the diffing results are sufficiently accurate to match
the assets in both binaries. This way, the scripts compute whether or not the differ helps an at-
tacker in finding assets in o2 if he would have already found them in o1 during a previous attack.
Furthermore, the scipts compute whether or not the diffing tools help an attacker in identifying the
differences in the protections applied to some asset in o1 and o2. The scripts can take into account

ASPIRE D4.03 PUBLIC 26

D4.03 — Security Model, Knowledge Base, Human Experiments

multiple attacker heuristics and mimick the behavior of an attacker. For example, if the diffing
tool would show the control flow graphs of two matched functions in the two binaries on screen,
and highlight the differences in the two functions’ graphs, the attacker would inadvertently also
see the neighbouring code of the highlighted differences. So even if the differ does not highlight a
meaningful difference between o1 and o2, the attacker’s attention might already be drawn to it as
a side effect.
This effect and several heuristics an attacker might deploy to focus his attack on the most relevant
program fragments are incorporated in the scripts, and can be disabled/enabled easily to model
different attackers with different skill sets.
The overall approach was already described in literature by UGent. In this project, UGent imple-
mented the necessary support to integrate the approach and to automate it in the context of the
ACTC and the project demonstration and validation on the ARM Android platform.

4.1.2 Disassemblers and control flow reconstruction

One of the most basic attacker tools are disassemblers like IDA Pro: they identify code bytes in a
binary or library text segment, disassemble the code bytes into instructions, partition those into
basic blocks, and then partition those in functions while reconstructing those functions’ control
flow graphs.
Thwarting the tools with respect to all of these steps is one of the main goals of binary code
obfuscation. In the ASPIRE project, this obfuscation is delivered by means of binary code control
flow obfuscations (Task T2.4 in WP2), by replacing native code by bytecode to be interpreted (Task
2.3 in WP2), and by means of code mobility (Task 3.1 in WP3).
To measure the effectiveness of a disassembler, the notion of a confusion factor was introduced in
literature. See Section 5.1.3 in D4.02 in this regard. That metric models the fraction of the static
code that can be disassembled correctly using state-of-the-art static, recursive-descent disassem-
blers (like the one from IDA Pro). On the ARM architecture, however, with its fixed word width,
a thus defined confusion factor makes little sense, because all code is aligned.
Instead, we therefore aim to measure the more abstract goal of tools like IDA Pro to reconstruct
control flow graphs correctly. To that extent, we developed the necessary scripts on top of IDA
Pro and Diablo. When Diablo is invoked (as the final step in the ACTC) to protect an application,
it outputs a ground truth mapping mp of instructions to functions. In essence, this maps defines
which instructions belong together in a function.
The scripts invoke IDA Pro to compute control flow graphs of all functions, and let IDA Pro
output a list of functions ep, indicating which instructions it grouped per function. The scripts
then compare ep to mp to compute how many of the instructions were correctly assigned to the
same function by IDA Pro. Furthermore, the scripts count the number of functions supposedly
found in the binary code by IDA Pro.
In deliverable D2.06, Section 4.2, which was delivered at M18, the strength of Diablo’s binary
control flow obfuscations was already evaluated by means of these scripts and metrics.

4.2 Automated Tool Support for Complexity Metrics

Section 5.1 of deliverable D4.02 defines a number of static complexity metrics to be computed
on graph representations of the programs, and a number of dynamic complexity metrics to be
computed on program traces. For a number of them, we developed a concrete formulazation in
the form or a reference implementation in Diablo and in external scripts, such that the metrics can
now be computed on protected libraries and binaries generated by the ACTC.

4.2.1 Static metrics

As for the static metrics, Diablo now features support for three different metrics:

ASPIRE D4.03 PUBLIC 27

D4.03 — Security Model, Knowledge Base, Human Experiments

• Halstead’s program size metric that combines the number of operations and the number of
operands in a static program representation. This is the SPS metric as defined in deliverable
D4.02 Section 5.1.1.

• Cyclomatic number, a metric for the complexity of control flow graph structures. This is the
CC metric as defined in deliverable D4.02 Section 5.1.3.

• The number of indirect control flow branches in the program, (excl. standard switch state-
ments). This is the CFIM metric as defined in deliverable D4.02 Section 5.1.3.

These metrics are now always computed for any program protected with the ACTC. Moreover,
they are computed per code region corresponding to an ASPIRE source code annotation. This
allows the ADSS to evaluate the strength of the tried protections per specific asset in the code.

4.2.2 Dynamic metrics

We also developed the necessary support in the Diablo rewriter for one of the most fundamental
dynamic metrics: the dynamic program length or DPL as defined in Section 5.1.2 of deliverable
D4.02.
To increase the flexibility with which these metrics can be computed, both by users of the ACTC
and by automated tools like the ADSS, we developed two mechanisms to compute the metrics.
In the first mechanism, an unprotected binary is first profiled. To that extent, Diablo now includes
the necessary profiling support for ARM Android & Linux binaries. It suffices to pass the binary
or library through Diablo without deploying any protections to generate a version of the binary
or library that can profile itself. To achieve this, Diablo instruments the program as follows:

1. Diablo inserts a static initializer function into the binary to reset the basic block counters;

2. Diablo inserts code to increment a basic block counter upon entry to each basic block in the
program;

3. Diablo inserts a static finalizer function that ensures the collected basic block counters are
written to a file on disk when the execution of the binary or library finishes.

In a second run of Diablo (i.e., of the ACTC invoking Diablo), Diablo will read the collected profile
information. In this run, Diablo also deploys all requested protections, for which it repeatedly
transforms the program’s control flow graphs. While doing so, it keeps track of the basic block
execution counts. So after the final protection is applied, Diablo can estimate rather precisely how
many times each block will be executed in the protected binary (assuming, of course, that the used
profile inputs were representative). On the basis of these execution count estimates, Diablo then
outputs the dynamic metrics.
To make this first mechanism more useful in the context of ASPIRE, the necessary bookkeeping
support was also developed to translate profile information from one version of a binary to other
versions. In particular, a user can collect profile information on one version, and reuse that infor-
mation in another version that is identical to the first version, but with additional objects linked
into it. In the context of ASPIRE, this is useful, because the linking step in the ACTC not only links
in all object files of the original application or library, but also a number of protection libraries such
as the SoftVM, the ASPIRE Common Communication Logic, the remote attestation routinges, the
Code Mobility Binder and Downloader, etc.
In the second mechanism, no profiling version of an unprotected binary is generated. Instead,
Diablo applies the protections right away, after which it produces two binaries: a standard pro-
tected binary, and an instrumented protected binary. The latter one is nothing more than a version
of the standard protected binary, augmented with the instrumentation code. In addition, Diablo
produces some auxiliary files that store, per basic block, the relevant features to compute dynamic
complexity metrics. When the protected, instrumented binary is executed, it will write out basic
block counts to a file, just like a non-protected version would do.

ASPIRE D4.03 PUBLIC 28

D4.03 — Security Model, Knowledge Base, Human Experiments

A number of Python scripts developed at UGent then combine the stored basic block counts with
the information in the auxiliary files to compute the dynamic metric.
The advantage of the second approach is that it requires only one run of Diablo: the run in which
the protected binary is generated, together with the instrumented version thereof. The downside
is that for every protected version for which one wants to collect the metrics, a new profiling run
using the protected binary is needed.
In the first approach, the situation is exactly the opposite: only one profiling run is needed, on the
unprotected binary. In some cases, though, the first approach might produce inaccurate results,
because it is not always possible to perform accurate bookkeeping of the execution counts while
the program is being transformed.

4.3 Automated Tool Support for Resilience Metrics

Section 5.2 of deliverable D4.02 introduced the notion of resilience metrics. Two of the proposed
metrics, Intra-Execution Variability (Section 5.2.2 of D4.02) and Semantic Relevance (Section 5.2.3
of D4.02) are to be computed on the basis of full execution traces.
At the time of writing of this deliverable, we still lack full tracing capabilities. Those are planned
to be developed in the first months of year 3 of the project.For the time being, we therefore use the
existing profiling capabilities, as discussed in the previous section, as a first-order approximation.
We do so in two ways.
First, we use the profile information consisting of basic block counts to evaluate which conditional
branches in the program display intra-execution variability. Concretely, we use the basic block
execution counts to evaluate which conditional branches are executed in both directions (branch
taken and branch not taken) during the execution of the program. As discussed in Section 5.2.2 of
deliverable D4.02, this is an important property in light of trace-based attacks that replace quasi-
invariant instructions by simpler variants.
Secondly, we use the basic block execution counts as an indication of semantic relevance. The sim-
plified rule or underlying assumption is that any block that is executed in the program contributes
to the program’s semantics, while any block not executed (such as code checking for normally not
occurring out-of-memory scenarios) does not contribute to the program semantics.
While this is only a rough estimation of true semantic relevance, that can certainly not match the
taint-based approach of Debray et al (see the updated D1.04 v2.0, Section 4.4.4.2), we still consider
it useful. As already noted in D4.02 Section 5.1.2, a natural extension of the dynamic code size
metrics (and of any dynamic metric for that matter) consists of coverage-based metrics. In such
metrics, features of executed (i.e., covered) fragments are counted, but not weighed by execution
counts. This is exactly what our first-order approximation of semantic relevance achieves: covered
code is considered semantically relevant, non-covered code is considered semantically irrelevant.
For all of the mentioned static and dynamic metrics of Section 4.2, our tools therefore also report
a coverage variant. In those variants, only covered elements (nodes, edges) are counted. These
variants correspond to the weighted complexity metrics of D4.02 Section 6, i.e., complexity metrics
computed on weighted representations of the programs in which each node or edge has a so-
called simplification weight determined on the basis of (a) semantic relevance, (b) intra-execution
variability, (c) the attack step in an attack model (i.e., transition in a Petri Net) for which the metric
is computed, and for which it is known whether or not the attacker has already been able to collect
a trace or not.

4.4 Evolution of the Metrics

During year 2, there were several occasions at which we considered adapting the proposed metrics
of D4.02. We also presented the overall approach to experts in the software protection domain on
several occasions:

• The project coordinator presented the approach at the invitation-only ARO workshop co-
located with the ACM CCS conference (Nov 2014).

ASPIRE D4.03 PUBLIC 29

D4.03 — Security Model, Knowledge Base, Human Experiments

• The project coordinator gave a keynote presentation on the approach at the SPRO workshop
organized by the consortium in May 2015 and co-located with ICSE 2015.

• The project coordinator presented the approach to the Scientific and Industrial Advisory
Boards during their meetings in May 2015.

• The project coordinator presented the approach to external experts from NAGRA (physical
meeting, Mar 2015) and to external experts from SFNT & GTO (conf call, June 2015).

• The consortium submitted a paper on the approach to the IEEE Security & Privacy special
issue call for papers on the topic of Economics of Cybersecurity in January 2015.

The four live presentations were followed by extensive discussion on the challenges and oppor-
tunities of the proposed approach. At all these occasions, the message was that this approach
seemed promising, albeit very challenging. Although the submitted paper was not accepted for
publication, the approach itself was not criticized by the reviewers, only the lack of maturity and
experimental confirmation were mentioned as reasons not to accept the paper in the special issue
call for papers.
We therefore decided to keep the approach as it was presented in M12 for the time being, and
first try to gain some experience with it and new insights. Now that the necessary tool support is
ready, we hope to gain this experience soon.

5 Security Evaluation

Section authors:
Paolo Falcarin, Elena Gómez-Martı́nez, Gaofeng Zhang (UEL)

The Software Protection Assessment (SPA) tool has been developed at UEL with the purpose of
evaluating the strength of a particular configuration of protections applied to a software applica-
tion.
The ACTC (ASPIRE Compiler Tool Chain) is used to build a protected application by applying
different ASPIRE protections (at source code level and/or binary level). Each protection can offer
many configuration parameters, each one having a set of possible values, and during the build
process each protection can consume one or more source code annotations.
The main goal of the ASPIRE Decision Support System (ADSS) is to search for the best ACTC con-
figuration of such protections and parameters, the one that maximizes the protection of the code.
This is a complex search problems, and the ADSS might implement different heuristics to search
the problem space for the optimal configuration among all the possible ACTC configurations.
Whatever search algorithm is used by the ADSS to search for the optimum, it will need to com-
pare the strength of two or more ACTC configurations, thus we need to define a Protection Fitness
(PF) Function to measure the strength of an ACTC protection configuration. In the ASPIRE Secu-
rity Model we decided to implement such PF function by estimating the extra effort necessary to
perform the attacks modelled with Petri Nets.
The SPA client utilizes the SPA tool to calculate the Protection Fitness of the current ACTC config-
uration, i.e. an estimation of its level of protection, with the goal of helping the ADSS in searching
for the best ACTC configuration of protections. The SPA has been designed as an independent
tool which can be used by a human user or by a software client:

1. The SPA client is any software agent (like the ADSS) that can invoke the Java API of the SPA
tool to calculate the level of protection of an ACTC configuration.

2. The SPA user is the actual security expert using the SPA’s Extended PN Editor, to create mod-
els and assess their protection; the SPA user extends the capabilities of the SPA client as it can
use the PN editor to insert models and then trigger the same back-end logic implemented
by the SPA tool via its Java API.

ASPIRE D4.03 PUBLIC 30

D4.03 — Security Model, Knowledge Base, Human Experiments

In a Petri Net attack model, each transition is an attack step the attacker has to perform and the SPA
user can use the SPA tool to define which code metrics are related to each attack step; moreover
the SPA user can specify a linear combination of such metrics. However, as we aim at measuring
the extra-effort introduced by a set of protections identified by an ACTC configuration, we can-
not consider the absolute values of such metrics, but we have to consider their potency, i.e. the
ratio between the metric measured after the protections have been applied and the same metric
measured on the clear code before applying any protection. Moreover metrics can be combined
with sign: positive if the attack step complexity increases as the metric increase, negative if the
complexity increases when a metric decreases.
The SPA tool is an Eclipse plugin that implements the Protection Fitness function to estimate the
strength of the ACTC configuration with respect to the known related attacks stored in the ASPIRE
Knowledge Base (AKB) and the metrics associated by the user to each of its attack steps.
Figure 15 describes how the SPA interacts with the other main components of the ASPIRE archi-
tecture. The SPA collects the attack model data from the AKB in the ADSS, and obtains the metrics
files, the log files and the version built data from the ACTC. After that, the SPA tool can be called
by the ADSS (through the SPA plugin Java API) or by a user (through the SPA plugin GUI) to pro-
vide the assessment results of protection configurations under software attacks for the protection
optimization of ADSS.

SPA

Extended PN Editor

ADSS

ACTC

Knowledge Base

ePNK
PN editor

Build Log
file

Versions
Builds

DB

Metrics
Framework

Metrics
file

PN Simulator

Protection Fitness
Function

Figure 15: The Software Protection Assessment tool: ACTC and ADSS dependencies.

The SPA tool will load once the attacks and all the related useful information from the AKB
through the ADSS interface: for example, the AKB contains information about which protection
affects which metrics. The user must provide the information of which metric might be relevant
for measuring the effort in performing a particular attack step: for this task, the user currently
uses the PN editor included in the SPA tool and these data are stored in a local Petri Net Markup
Language (PNML) file5. When the ADSS invokes the SPA tool to compute the overall metrics the
(metric, attack step) associations stored in the file are used; in future versions we might consider
to allow the editor to store these (metric, attack step) associations in the AKB. During the ADSS
search for the optimum, the SPA protection assessment will receive one ACTC configuration, and
it will invoke the ACTC to build the version of the protected application, in order to calculate the
related binary code metrics, or it will load such metrics from the internal build versions database,
in case such configuration has been already built during the previous searches. The attacker’s ad-
ditional effort (due to the applied protections configuration) for each attack step can be estimated
by calculating the Protection Fitness function with a linear combination formula of the associated
code metrics: this formula is more precisely described in the next section.

5PNML is the de facto standard format to represent Petri nets.

ASPIRE D4.03 PUBLIC 31

D4.03 — Security Model, Knowledge Base, Human Experiments

The SPA user can interact by means of two main phases, the setup phase and the assessment
phase. In the SPA setup phase:

1. The SPA user can edit Petri Nets attack models and store them in PNML files (or in the
format used by the AKB).

2. The SPA user can set the location of the software application to be assessed (or this can be
sent as parameter by the ADSS).

3. The SPA user can associate any combination of metrics (from a list of metrics currently im-
plemented by the metrics framework) to any attack step, and can edit the weights used for
calculate such linear combination, for each attack step.

4. The relationship between protections and metrics is loaded once from the AKB;

5. The metrics on the software application without protections are calculated;

6. The attack paths subsumed by the Petri Net are calculated by the SPA tool (or they can be
loaded by the AKB).

In the Assessment phase:

1. The SPA user chooses an ACTC protection configuration and runs the ACTC to build the
software application and generate the corresponding metrics set.

2. The SPA user runs the Protection Fitness function which provides a quick estimation of the
overall additional effort for each attack path subsumed by the Petri Net (or provided at
setup time by the ADSS): the minimum additional effort calculated by the Protection fitness
function can be considered an estimation of the additional effort introduced by the ACTC
configuration in input.

3. In the case of random decision points in the PN diagram or in case of incomplete data (i.e.
attack steps for the identified metric is not implemented), then random variables can be
used to replace the missing data. A random number can be picked out of a selected range
for each random variable and the PN simulator can be run to calculate the expected value
and variance of the overall additional effort taking into account all the random variables.

4. The SPA user might want to run the simulator and/or the effort estimation algorithm on
different versions of the code stored in the versions builds database.

The following sections provide details of the extended PN editor for attacks and metrics formula
editing, the PN simulator, and some experiments with the metrics and effort estimation calculated
on some simple examples.

5.1 Extended Petri Net based Editor for Protection Assessment

The Extended Petri Net (PN) editor is the tool to model software attacks. So, users can create
PN-based attack models to visually describe software attacks, edit transitions’ information for
protection assessment, and export such models in the standard PNML file format. This file will be
converted into the format used in the AKB (ASPIRE Knowledge Base).
The Extended PN editor is an Eclipse6 plug-in that reuses an existing open-source editor for Petri
Nets with Discrete Variables (PNDV), named ePNK7. This open-source editor is an Eclipse plug-in
designed to create standard-compliant PNML models8. PNs with Discrete Variables (PNDVs) are
a more recent PN extension that adds modelling convenience and compactness to PNs, while at

6https://www.eclipse.org/
7http://www.imm.dtu.dk/˜ekki/projects/ePNK/
8PNML is the ISO standard Petri Net file format based on XML for general purposes, specified by ISO/IEC 15909-2.

ASPIRE D4.03 PUBLIC 32

https://www.eclipse.org/
http://www.imm.dtu.dk/~ekki/projects/ePNK/

D4.03 — Security Model, Knowledge Base, Human Experiments

the same time ensuring that most of the mathematical properties of PNs are still valid [3]. This
model is a PN extended with a set of finite global integer variables, used in pre-conditions, which
are saved on transitions: this type of extension better matches the requirements of ASPIRE security
modelling.
In fact, all the information used by the attackers can be decomposed and mapped to a set of
global integer variables. For example, when looking for a cryptographic key into a binary file,
the attacker usually needs to identify some areas of code worth further investigation. Such in-
termediate knowledge could be represented with an array of code areas, where each code area is
represented by a couple of integer numbers. These numbers represent the initial offset and final
offset with respect to the base address of the binary code.
Hence, to use PNDVs for assessing software protection, we added the transition editing function
in our tool, which allows users to edit information for each attack step (transition). In this way,
the user choose which metrics can be considered good indicators of the complexity in performing
the attack step, and how to make a linear combination of such metrics, by entering the weights for
each metric potency.
As it can be observed in Figure 16, our extended PN editor provides extended Place/Transition
(P/T) editors allowing the SPA user to type formulas and condition to each place and transition
and to save it within the PNML file. The SPA implements two protection assessment methods: the
protection fitness and the PN simulator. This editor is a supplementary tool for SPA users, which
can create and modify PN attack models manually and then store them locally in PNML files or
decide to upload such models on the AKB.

Figure 16: Extended PN editor based on ePNK.

This extended PN editor tool has two main functionalities: PN model editing and extended PN
editing (with Transition Information Editing for Protection Assessment).

5.1.1 Petri Net Model Editing

The function of PN model editing in our Extended PN editor is provided by ePNK, including two
parts: PN file creation and standard Place/Transition editing.

Creating a PN file. The ePNK editor can be used to visually create the PN attack models and
save them as PNML standard files (ISO/IEC 15909-2). So, users can create a PNML file as a
regular XML file in Eclipse. In this way, the users can use the SPA plugin as an independent tool
with which they can create attack models in PNML files, associate metrics to attack steps and
manually estimate the software protection fitness by interacting with the ACTC and the Metrics
framework. In a the more advanced scenario, the ADSS can automatically invoke the API of
the SPA plugin, to use its Protection Fitness function during the search for the optimal ACTC
configuration, combined with all the additional information stored in the AKB. More in general
the PN editor could be used as a user-friendly interface to insert attacks into the AKB, instead of
editing the AKB directly; the PNML model edited via the PN editor can be eventually translated
to AKB, but this engineering task will not be developed in the project.

ASPIRE D4.03 PUBLIC 33

D4.03 — Security Model, Knowledge Base, Human Experiments

Editing Places and Transitions. As introduced in the ASPIRE deliverable D4.01, software attack
steps can be described by places and transitions. Therefore, we need to edit them to modify attack
steps. Based on ePNK, there are two modes to edit places and transitions: the text editing and
graphical editing.
The first one is the text editing to modify directly places, transitions, and arcs in the XML format. If
users are very confident in PNML files and XML formats, it is an available path to edit PN models
on software attacks. However, the easiest way to edit PN models is by means of the graphical
editing.
Figure 17 is a screenshot depicting our editor tool. The central view is the graphical editing space
with the “Palette“ menu to edit places, transition and arcs in the Extended PN-based attack mod-
els. For example, users can add places, transitions and arcs by clicking the corresponding options
in the “Palette“ panel.

Figure 17: The graphical editing for PN models.

Besides, it also includes “Outline” view, “Property” view, and “UEL-ASPIRE” menu to start as-
sessing (including run the simulator), as can be observed in Figure 17. The “Outline” view pro-
vides a schematic diagram about the PN model in the edition process. The “Property” view helps
to display some information on selected places or transitions. The “UEL-ASPIRE” menu provides
the triggers to run diverse assessment methods.
In this editor tool, SPA users can edit PN models to represent software attacks and add weights to
the metric formulas attached to the attack steps (transitions). The editor features are introduced
in the next section.

5.1.2 Transition Information Editor for Protection Assessment

The Transition Information Editor for protection assessment allows entering two kinds of infor-
mation needed to be edited in PN based attack models. The first one is the relevance or weight
of each attack step; the other one is the formula with the involved metrics considered good effort
indicators for a specific attack step. The editor process them as string data types.
To edit these two kinds of information, users can create string data type for each transition using
the “Label” option of the “Palette” menu. Figure 18 illustrates an OTP attack model with transition
information for protection assessment taken from ASPIRE document D4.02. For this attack model,
SPA users can set all transition information based on their expertise and knowledge. Note that the

ASPIRE D4.03 PUBLIC 34

D4.03 — Security Model, Knowledge Base, Human Experiments

values on this transition information of the present subsection are only used as example.

Figure 18: PN models with transition information for protection assessment.

Let us take transition T3 in Figure 18 contains the string label “9 : 0.2 ∗ SDFC + 0.1 ∗DDFC”.
The “SDFC” and “DDFC” are two software metrics taken from a list of the available metrics im-
plemented by the Metric Framework: section 5.4 will discuss the software metrics implemented.
As it can be observed, this string label includes the Relevance (weight of the transition) T3, which
is “9” and means the significance of this transition in the whole attack, as explained later in Sec-
tion 5.2.1. The metric formula of the transition T3 is “0.2 ∗SDFC + 0.1 ∗DDFC”, being “0.2” and
“0.1” are the weights for the metrics “SDFC” and “DDFC”, respectively, in transition T3. The
labels “SDFC” and “DDFC” will be actually represented by the corresponding metric potency,
as defined in Section 5.2.1.

5.1.3 Property View in the Graphical Editing Model

In our extended editor, to facilitate the edition of a P/T and its transition information, the property
view has been created to display some information about selected places or transition as shown
Figure19.

Figure 19: Property view of the editor tool.

In summary, the extended editor provides a tool that allows SPA users to edit PN based attack
models by editing places and transitions that represent software attacks and attach information to
transitions (attack steps), such as relevance and metric formula of each transition. The editor can
also be used to invoke the different protection assessment methods, such as the protection fitness
function and the PN simulator described in the next sections.

5.2 Protection Fitness Function

In this section, we will introduce the protection fitness function based on the transition informa-
tion for protection assessment.

ASPIRE D4.03 PUBLIC 35

D4.03 — Security Model, Knowledge Base, Human Experiments

5.2.1 Transition Information for Protection Assessment

Weight of a Transition. In PN based attack models, each transition can have different relevance
(weight) depending on the attacker skills. For instance, if attackers spend more time in one tran-
sition (attack step) than others. So, the relevance of this transition (attack step) should be higher,
since it represents its significance within the attack. In the current implementation of the SPA tool
the relevance parameter for each transition is set to 1 by default, but the SPA user can use this
multiplier of the corresponding metric formula to represent the attacker skills for a particular at-
tack step; for example the SPA user might want to set the relevance (weight) value close to zero
for expert attackers for attack steps which can be automated by using tools known by the expert
attacker; instead a non-expert attacker might be better represented by a value greater than 1 as
their limited knowledge contributes to the increase of the effort in performing the attack: we will
explore how to map this additional parameter to the attacker profile in the next year of the project.
The transitions’ weights are defined with the formula shown in the vector 1.

W = {w1, w2, . . . , wt} (1)

being t is the number of transitions (attack steps) in the Petri Net model. For instance, we can find
out that the weight of T3 is w3 = 9 in Figure 18.

The Metric Formula of Transition. In PN based attack models, each transition has a different
metric formula to represent a linear combination of the potency of the metrics considered good
effort indicators for that specific attack step. This formula has similarly been presented in other
ASPIRE documents, such as Section 6 in deliverable D4.02. In this section, we define all metric
formulas as follows:

F = {f1, f2, . . . , ft} (2)

where t is the number of transitions of the Petri Net model.
Hence, the specific metrics formulas are:

fi(PCk) = wi,1 ×
ma

1(PCk)

mb
1(PCk)

+ wi,2 ×
ma

2(PCk)

mb
2(PCk)

+ . . . =
p∑

j=1

wi,j ×
ma

j (PCk)

mb
j(PCk)

(3)

In this equation, ma
j (PCk) and mb

j(PCk) are two parts of software metrics, as introduced in equa-
tions 4 and 5. PCk is the Protection Configuration which is under assessment, ma(PCk) is the
software metric values AFTER protection configuration: PCk being executed, and mb(PCk) is the
software metric values BEFORE protection configuration: PCk being executed. p is the number of
software metrics being evaluated.

Ma(PCk) = {ma
1(PCk),ma

2(PCk), . . . ,ma
p(PCk)} (4)

Mb(PCk) = {mb
1(PCk),mb

2(PCk), . . . ,mb
p(PCk)} (5)

The wi,j parameters in metric formulas, are stored in the Weight Matrix (t× p) for metrics in each
transition:

WM =

 w1,1 · · · w1,p
...

. . .
...

wt,1 · · · wt,p

 = (w1, . . . , wp) (6)

Besides, if the value of wi,j is zero, it means that the related software metrics: ma
j (PCk) and

mb
j(PCk) have no influences on this transition: Ti.

In ASPIRE, currently, all weights and metric formulas of transitions from PN based attack models
will be decided by security experts, based on their personal knowledge on the specific software

ASPIRE D4.03 PUBLIC 36

D4.03 — Security Model, Knowledge Base, Human Experiments

attacks. They can be stored locally or in AKB (in future) to support the reuse and the automatic
assessment. If not specified by the user, all the weights of the chosen metrics are set at 1 by default.
For example, in case of the metric formula: f3 = 0.2 ∗ SDFC + 0.1 ∗ DDFC, there are only two
metrics: SDFC and DDFC in this metric formula, which means that all other metrics’ weights wi,j

are zero, while for these two metrics in this transition, there are two weight values: “0.2” and
“0.1”, respectively.

5.2.2 Protection Fitness Function Method

In this section, we will introduce the protection fitness function, on the basis of the transition
information for protection assessment and software metrics from software needed to be assessed.
Based on equations 2-6, this method generates attack paths in this attack model (depending on the
attack model input), calculates the potency for each attack path, and obtains the final assessing
result.

Attack Path Generation. When the SPA plugin is used as an standalone tool, we generate all
possible attack paths from the Petri Net attack model. When the SPA tool is used within the
ADSS, the attack paths are computed by the ADSS and loaded from the AKB. In both cases, we
generate a Path Matrix (PM) to store attack paths.
The value of each item in the PM is 1 or 0. For example, pmi,j = 0 means that attack step Tj is not
in the path Pi; otherwise, pmi,j = 1 means that attack step Tj is in the path Pi.

PM =

 pm1,1 · · · pm1,n
...

. . .
...

pmt,1 · · · pmt,n

 (7)

The Effort Calculation for One Path is based on Equation 1 and Equation 3 to compute the Effort
Increase (∆E) for each transition.

∆E(Ti, PCk) = wi × fi(PCk) (8)

Then, for one attack path, we can do the weighted sum for all attack steps included in order to
obtain the ∆E for one attack path by Equation 9.

∆E(Pi, PCk) =
n∑

j=1

(∆E(Ti, PCk)× pmi,j)) (9)

Protection Assessment. To consider the worst condition on protection, the lowest one of all ∆E
values from these attack paths represents the general Delta Effort of the whole Petri Net attack
model under the specific protection configuration, as indicated in Equation 10. In case of two
protection configurations to be compared, we should compute the two assessment results for both
protection methods, respectively: in this case, the better protection method will be the one with a
higher ∆E.

ProtectionF itness(PCk) = min(
t∑

i=1

(∆E(Pi, PCk)) (10)

5.3 PN Simulator

For protection assessment, another tool is the PN simulator to compute the Monte Carlo simula-
tion of PN attack models. In this section, this simulator is designed to run protection assessments
based on Monte Carlo simulation to be used to extend the Protection Fitness function when ran-
dom variables can be used to represent missing data, and choices in the Petri Net models.

ASPIRE D4.03 PUBLIC 37

D4.03 — Security Model, Knowledge Base, Human Experiments

The simulator will be introduced in two parts: Single Attack Process simulation and Monte Carlo
simulation. The first part focuses on the execution of the single attack simulation for one specific
attack process. The attack can be successful or unsuccessful, so the result of this simulation will
be TRUE or FALSE. The input for this part includes PN attack models and simulation informa-
tion (attacker effort and effort consumption, which are random variables). For example, these
effort consumptions are decided by specific protection configurations for assessing the potency of
protection configuration. The second part is the Monte Carlo simulation, which can execute the
previous single attack process simulation repeatedly and determine the probability of successful
attacking as the result of this simulation, based on the TRUE/FALSE results from the repeated
single attack process simulation. The greater probability means lower potency for this protection
configuration.

5.3.1 Single Attack Process Simulation

In this section, we introduce the single attack process simulation, including two parts: simulation
information and single attack process simulation.

Simulation Information Based on the PN attack models, there are two kinds of simulation in-
formation for PN simulator: Effort Consumption (EC) and Attacker Effort (AE).

• EC represents the Effort Consumption. It is a finite set of attacker’s effort consumed at each
transition, where EC = {ec0, . . . , ect}.

• AE represents the Attacker Effort. It is a finite set of attacker’s effort in each state in P,
where AE = {ae0, . . . , aen}. And n is the number of places in the PN model. Attackers have
the capability including resources and skills to execute attacks on protected or unprotected
software. This “capability” is AE. And this capability will be “consumed” in transitions of
attack processes via EC in attack simulations.

Effort Consumption—EC and eci can be described by the uniform distribution as random vari-
ables. For each eci, a Maximum boundary −Maxi and a Minimum boundary −Mini determine
the random variable by the uniform distribution, by Equation 11.

EC = {ec0, . . . , eci, . . . , ect}, eci = fec(Mini,Maxi), i ∈ [0, t] (11)

In Equation 11, fec() represents the sampling process of the uniform distribution with two bound-
aries: Mini and Maxi. For example, T0 in the OTP attack model as described in Figure 18 is to
“Identify the PIN check portion of the code”. Both Max0 and Min0 can be pre-set in the attack
modelling, based on real attack data provided by security experts in industry. After that, ec0 is
the random variable with the uniform distribution and two boundaries: Max0 and Min0. Max0
and Min0 can be increased due to the fact that some protections have been applied: for example,
when some software protection methods increase the code size or complexity, this can make the
T0 attack step more difficult, which will change the uniform distribution for ec0 with Max0 and
Min0. These methods could be specific PSs to change ec0. The relations between methods and
transitions are decided by security experts, too.
Another item is AE, which represents the current effort of the attacker in the state of this attack
process. AndAE can be described by equation 12. In this equation, ac0 is the attacker effort before
attack processes, as a random variable with a normal distribution. In the simulation process, this
random variable has been set by security experts.

AE = {ac0, . . . , aci, . . . , acn} (12)

ASPIRE D4.03 PUBLIC 38

D4.03 — Security Model, Knowledge Base, Human Experiments

Single Attack Process Simulation The general process of Single Attack Process Simulation (SAPS)
works as follows: in a PN model (as a Directed Acyclic Graph), one attacker will try to find a path
from the starting state to the final state. If he/she finds one, the result of this SAPS is TRUE;
otherwise, it is FALSE. It is a route searching process in a directed acyclic graph.
In SAPS, in each node, e.g. transition, the Passing Probability (PP) is used to control the proba-
bility that the attacker can complete this transition and reach the next state. We can set them by
Equation 13. Passing Probability (PP) is a finite set for each transition in T , and ppi ∈ PP, i ∈ [0, t].

ppi =

{
0, aeCUR < eci
tanh(aeCUR

eci−1), aeCUR ≥ eci

}
i ∈ [0, t] (13)

In equation 13, eci comes from equation 11, which is the effort consumption for each attack step.
And aeCUR comes from equation 12, which is the current attacker effort in one attack simulation
process. If aeCUR is smaller than eci, the probability is zero, which means that the current at-
tacker effort is too low to complete this attack step. Otherwise, if aeCUR is not smaller than eci,
the passing probability is supported by the hyperbolic tangent function: tanh(x) = 1−e−2x

1+e−2x . It is
monotonically increasing and in the range of [0, 1).

AENEW = aeCUR − eci (14)

In transition Ti, on the probability of ppi, equation 14 will be executed, which means that the
attacker passes this transition. Otherwise, the attacker needs to go back to the previous state to
find out other paths to reach the final state.

5.3.2 Monte Carlo Simulation

The Monte Carlo method can be used to manage SAPS and provide a Monte Carlo based attack
simulation to assess software protection, as depicted in Figure 20. The central component is the
SAPS. To run SAPS, we need to do an initialisation (build the PN model with EC and AE). The
result of each SAPS is a boolean value. Then, the Monte Carlo method executes the SAPS several
times. At last, the simulation provides a probability of attack success (the ratio of SAPSs with
TRUE in all SAPSs).

Figure 20: Monte Carlo based Attack Simulation.

In future, the simulator is planned to be updated to cooperate with the protection fitness function
introduced in Section 5.2: in the process of protection fitness function, if some necessary transition
information is missing (such as weights of attack steps, or the metrics formula of attack steps),
which means the protection fitness function cannot be executed, the PN simulator can be triggered
to use the Maximum boundary−Maxi and the Minimum boundary−Mini for each eci of theEC
to execute the protection assessment.
In other words, the simulator will be used to aid the protection fitness function to integrate ACTC
and ADSS together from the perspective of protection assessment in ASPIRE project.

ASPIRE D4.03 PUBLIC 39

D4.03 — Security Model, Knowledge Base, Human Experiments

5.4 Obtaining Metrics with ACTC

Software metrics measure quality of software from a quantitative viewpoint. Specifically, security
metrics allow to measure security features of a software protection against attackers. In the ab-
sence of generally accepted metrics for software protection algorithms, ASPIRE project proposes
concrete metrics in order to evaluate software protection tools.
The first proposal of the measurable features and their corresponding security metrics was pre-
sented in the deliverable D4.02. This section describes the subset of metrics resulting from the
execution of the ASPIRE Compiler Tool Chain, named ACTC, and will be used to evaluate and
assess protection tools.
Complexity metrics can be static or dynamic, being obtained in different phases of the ACTC. So,
static metrics are resulting from tool chain when the protected application or library, called d.out
and libd.so respectively, is obtained in BC05 (see Section 9 in deliverable D5.01). Dynamic metrics
are obtained after running the aforementioned protected application, for instance, on an ARM
board. As commented in the deliverable D4.02, dynamic metrics depend on the program inputs
that are selected to execute and trace the programs. These metrics that we can currently obtained
after executing the ACTC are summarized in Table 1. These metrics do not take into account if the
protection tool is applied to the entire source code or only a part of it. Moreover, remark that these
metrics do not correspond with those ones supported in Section 4.2, since this is a preliminary
version for the security evaluation.

Description Static/Dynamic
NB Number of bytes in the executable measured by means Static

of the following command line: wc -c
INS Number of instructions Static

EDG Number of edges Static
IND Number of index edges Static
SRC Number of source operations Static
DST Number of destination operations Static
EXE Number of executed instructions Dynamic
SOP Number of source register operands Dynamic
DOP Number of destination register operands Dynamic
JMP Number of computed jumped instructions Dynamic

Table 1: Metrics resulting from the ACTC execution.

The metrics described in Table 4.2 allow us to calculate the metrics supported by Diablo in Sec-
tion 4.2:

SPSsource = SRC + SOP (15)

SPSdest = DST +DOP (16)

CC = EDG (17)

CFIM = IND (18)

To study these metrics, we have executed the ACTC with a simple example. With this aim, we
recall a software attack model taken from literature. Wang et al. [4] use a Serial Number Certifica-
tion program to evaluate software protection. So, they protect this example with code obfuscation
techniques by means of a protection tool. Moreover, they model the attack against this example
using a Software Attack Model based on Marked Petri Net (SAMMPN). For the sake of clarifica-
tion, we include the Petri net representing the software attack process, depicted in Figure 21, as

ASPIRE D4.03 PUBLIC 40

D4.03 — Security Model, Knowledge Base, Human Experiments

well the meaning of each Place/Transition, described in Table 2. As the authors pointed out and
it can be observed in Figure 21, there are two path for the attack: i) the attack destroys the Serial
Number checking by modifying the key instruction, and ii) the attack destroys the Serial Number
checking by adding new codes into the program.

0p 0t 1p 1t 2p

2t 3p 3t

4t 4p 5t

5p

Figure 21: SAMMPNN taken from Wang et al. [4].

P/T Meaning
p0 Get the program.
p1 Get the assembly code.
p2 Get the Basic Blocks.
p3 Get the performed Basic Blocks.
p4 Get the Key Block.
p5 Get the cracked program, which always succeed.
t0 Disassemble the program.
t1 Split the code into Basic Blocks, mark the Success Block and the Fail

Block.
t2 Debug the program, and mark the performed Basic Blocks.
t3 According to the Running Sequence of Success and performed Basic

Blocks, locate the Key Block and amend Key instruction in it.
t4 Monitor the change of memory while performing the program and stop

when the address of Fail block was generated and mark the stopped
blocks as the Key Block.

t5 Add New Codes into redundant space of the program: amend Key
Blocks so that it always jumps to New Codes.

Table 2: Meaning of States(P) and Techniques (T) of Figure 21.

We have implemented a simplistic version of a serial number generator, as well as the correspond-
ing certification program. We protect the certification program by means of ACTC under different
options. Table 3 summarizes the obtained metrics. Note that we compute these metrics consider-
ing that a particular protection tool is applied to the entire source code.
Column Original of Table 3 shows the size of the original binary, i.e., the executable compiled and
linked using gcc command. Obviously, this is an unprotected program. Columns a.out, c.out and
d.out detail the size of the executable generated with different steps of the ACTC (version 1.1.0),
where WBC was still implemented by means of simple XOR-ing instead of proper AES. It is for
that reason that the WBC-protected binaries are smaller than the unprotected version: a complex
AES was replaced by a simple XOR algorithm. For more information about that ACTC version,
we refer to the deliverables of WP5. Sizes are always measured using the following command
line: wc -c *.out.
Once we executed the ACTC and we obtained the metrics, the next step is to map these metrics
into the PN. Wang et al. [4] propose six grades to classify each attack step: Grade A is for attack

ASPIRE D4.03 PUBLIC 41

D4.03 — Security Model, Knowledge Base, Human Experiments

Size (bytes) Static Metrics
Protection Original a.out c.out d.out INS EDG IND SRC DST

None (original) 8768 - - - - - - - -
Static Plain - 709802 765726 483616 93670 40225 819 111747 130072
linker WBC - 708495 764403 483576 93642 40204 819 111696 129981

Obf. merge - 709858 765782 483680 93687 40227 819 111764 130088
Obf. xor - 709782 765690 483624 93673 40227 819 111748 130076

Dynamic Plain - 12254 69536 30987 5970 1645 120 7177 7207
linker WBC - 10010 68225 30891 5942 1626 120 7126 7116

Obf. merge - 12306 69596 31059 5987 1647 120 7194 7223
Obf. xor - 12226 69516 31003 5973 1647 120 7178 7211

Table 3: Metrics obtained with Serial Certification example.

techniques that can be performed automatically and Grade F is for those techniques that attackers
perform manually, i.e., without any assistant tools. We reinterpret this scale in order to predict
what metrics should be involved in each attack step, see Table 4.

Transition Grade Involved metrics
t0 Grade A SIZ
t1 Grade B INS, EDG, IND
t2 Grade B EXE
t3 Grade C EXE(t3) - EXE(t2)
t4 Grade E EXE(t3) - EXE(t2)
t5 Grade D SIZ

Table 4: Metrics involved in each attack step.

In the next year, we will study how to improve the usage of metrics shown in Table 4 in our
assessment tool described in Section 5.1 and 5.3.
For example, once a set of ACTC configurations have been run to build different application ver-
sions (along with the corresponding set of metrics), this dataset can be then used to further refine
the metrics formula in each attack step. The main problem of a linear combination of metric po-
tencies is how to set the weights for each metric in order to be able to normalize each metric
contribution to the overall sum. Once a set of metrics has been calculated, the maximum value
of each metric can be stored and used as denominator to achieve normalization of each metric
potency: indeed the weight of particular metric could be assigned a value of 1/max, where max
is the maximum value calculated so far for that metric. In this way the SPA tool will be able to
implement machine learning techniques on this dataset with different goals:

• Refine the maximum metric value to be used for normalization of weights.

• Perform ANOVA and factor analysis on the matrix protection/metrics to identify which
subset of protections are actually the main factors of variance for each metrics; this infor-
mation can be used by the SPA plugin to implement heuristics for searching for an optimal
ACTC configuration by prioritizing the protections causing more metric variability in the
search the identified factors, in case the full search by the ADSS will take too much time to
converge.

• Use such statistical tests to verify whether the relationship between protections and metrics
is actually confirmed or rejected by data analysis.

ASPIRE D4.03 PUBLIC 42

D4.03 — Security Model, Knowledge Base, Human Experiments

Part III

Experiments
The objective of the experiments is to investigate the level of protection offered by ASPIRE pro-
tections from and empirical point of view. They are divided in experiments with academic partic-
ipants and experiments with industrial participants.
In the experiments with academic participants, the experimental setting is represented by an ar-
tificial environment (i.e., in vitro experiment) where the experimenter controls and objectively
measures all the relevant variables. This allows to apply statistical analysis to elaborate objec-
tive observations. Academic participants are involved in multiple rounds of experiments to test
ASPIRE protection, but each of them in isolation.
In experiments with industrial participants, conversely, we intent to assess ASPIRE protection in a
more realistic setting, with many protections applied to real code that will be attacked by real and
expert hackers. This setting does not allow to apply statistical test and only subjective evaluations
will be formulated, however they will be more realistic and representative of a real attack scenario.

6 Data obfuscation experiment

Section authors:
Mariano Ceccato, Paolo Tonella (FBK), Marco Torchiano (POLITO),

Goal Analyze the ability of data obfuscation to protect sensitive data
inside the code

Treatments T0 = clear code; T1 = RNC data obfuscation; T2 = XOR data ob-
fuscation; T3 = var merge data obfuscation

RQ1 How effective is data obfuscation in protecting data inside the
code as compared to the clear code?

RQ2 What data obfuscation technique is most effective between
T1/2/3 in protecting data inside the code?

Subjects Students from FBK, UEL, POLITO and UGent (working on the
binary code)

Objects P1=Lottery, P2=Lotto (C code): programs for the extraction of lot-
tery/lotto numbers

Tasks Force the program to extract only numbers between 1 and 20; leak
the winning sequence from the program

Metrics Success rate; time to mount a successful attack
Design Lab1: P1-T0; P1-T1/2/3 (Repl 1/2/3); P2-T1/2/3 (Repl 1/2/3);

P2-T0
Lab2: P2-T1/2/3 (Repl 1/2/3); P2-T0; P1-T0; P1-T1/2/3 (Repl
1/2/3)

Table 5: Data obfuscation experiment

Table 5 provides a schematic overview of the data obfuscation experiment. The goal of this exper-
iment is to analyse the degree of protection offered by the ASPIRE data obfuscation techniques,
when these are applied to some sensitive data that reside inside the source code. Specifically, three
different data obfuscation techniques have been investigated in this experiment:

Residue Number Coding (RNC): numeric values are protected by encoding them as a tuple of
integers computed as the respective residues over a tuple of moduli.

ASPIRE D4.03 PUBLIC 43

D4.03 — Security Model, Knowledge Base, Human Experiments

XOR: numeric values are masked through the XOR boolean operation.

Variable merge: different variables are merged into a single variable.

In each replication of the experiment, one of these three data obfuscation technique is evaluated
in comparison with the clear code. This allows for a direct measurement of the reduced suc-
cess rate/increased attack effort associated with each protection, but it also allows for an indirect
comparison among different alternative techniques, achieved through different replications that
involve different protections. The replication at UGent has been carried out directly on the binary
code. At UGent, the project’s coordinator’s research group organized an Ethical Hacking Student
Work Group in the academic years 2012–2013, 2013–2014, and 2014–2015, in which students were
introduced to the reverse engineering of binary code. As a result, sufficient students are available
with (some) experience with binary code reverse engineering tools such as IDA Pro to partici-
pate in this experiment. None of the students had received training by the UGent with respect to
obfuscations, however.
The first three replications of this experiment, conducted respectively at FBK, UEL and POLITO,
evaluated treatment T1 (RNC), T2 (XOR) and T3 (Var merge) in comparison with the baseline
treatment T0 (clear code). The replication at UGent evaluated T1 (RNC) against T0, with the
binary code instead of the source code provided to the students.

6.1 Research questions

The experiment aims at answering the following two research questions:

• RQ1: How effective is data obfuscation in protecting data inside the code as compared to
the clear code?

• RQ2: What data obfuscation technique is most effective between T1/2/3 in protecting data
inside the code?

The first research question deals with the effectiveness of data obfuscation protection. Data obfus-
cation might result in a higher time to successfully complete an attack task or might result in the
failure to complete the attack task when this is conducted on protected code. There is an economic
advantage in adopting a data obfuscation protection if the probability that an attack is successfully
completed within a limited amount of time is drastically reduced by the protection. Hence, RQ1
is a key research question for the ASPIRE project.
The second research question is a comparative one. By contrasting the effectiveness of the protec-
tion across different replications of the experiment we get insights about the relative effectiveness
of T1 (RNC), T2 (XOR) and T3 (Var merge).

6.2 Objects

The objects of this experiment are two C programs, Lotto and Lottery, obtained from the web and
developed by third parties who are not involved in any way in the ASPIRE project.

Lotto is a C program for machines that let users play lotto. A new program is generated ev-
ery week, with the winning sequence embedded in the source code. The JACKPOT is hit
when all 7 numbers are matched (i.e., all six numbers plus the bonus number). The source
code of Lotto consists of 234 SLoC (Source Lines Of Code), as measured by the UNIX utility
sloccount [5].

Lottery is a C program for machines that let users play lottery. Lottery uses a random sequence
of bytes (called a challenge) generated by a remote server to extract 7 numbers (without
repetitions) between 1 and 39. The challenge is logged in the remote server, to allow for
later anti-tampering check. A legal extraction consists of 7 numbers that match one of the

ASPIRE D4.03 PUBLIC 44

D4.03 — Security Model, Knowledge Base, Human Experiments

challenges stored inside the remote server. 50 extractions are repeated in 3 iterations. Lottery
prints the 50× 7 extracted numbers and the statistics collected in such extractions, consisting
of the frequency of occurrence of numbers 1, . . ., 39 in the extractions. The source code of
Lottery consists of 196 SLoC, as measured by the UNIX utility sloccount.

Both Lotto and Lottery have been obfuscated by means of T1 (RNC), T2 (XOR) and T3 (Var merge).
The two attack tasks to be executed on the two objects are respectively:

Lotto: Determine the JACKPOT sequence, consisting of 7 winning numbers, which is embedded
in the C source code (specifically, inside some variables) of the Lotto program. While exe-
cuting the task, subjects are allowed to read, modify, compile, debug and execute the source
code. The program should be modified so that it prints the winning sequence to the stan-
dard output as soon as the program is launched (subjects working on the binary code have
been asked just to write down the winning sequence on paper).

Lottery: Modify the program Lottery so that it extracts only numbers between 1 and 20 in a legal
extraction (i.e., one matching the logged challenge). When any of the 7 extracted numbers
is greater than 20, the extraction is redone, by requesting a new challenge to the remote
server. In fact, the extracted numbers are checked for validity against the challenge stored
in the remote server. After successfully completing the task, the reported frequencies shall
be equal to zero for all numbers greater than 20.

In the pilot experimental sessions conducted to fine tune the experimental material, we realised
that the attack task on Lotto is substantially easier to perform than the attack task on Lottery. We
think this increases the range of validity of the experimental results, since they span from simpler
to more complex attack tasks.
The Powerpoint presentation used to introduce the experiment and the tasks to the subjects is
provided in Appendix B.

6.3 Metrics

The two metrics collected to answer research questions RQ1 and RQ2 are:

AT: Attack time

SR: Success rate

Subjects are asked to mark down the start and end time when starting and after finishing the
attack task, so one key metric collected during the experiment is the attack time (AT). Subjects are
also asked to show their attack, in case they deem it successful, to the researchers, who verify if
the attack was successful or not. Students were originally told they could spend two hours on
the task. But since the classroom was available much longer, many of them actually tried much
longer, up to 5 hours before giving up. The times after which the subjects gave up in the UGent
experiment are visualized in Figure 22. As they stopped their attempt for very different reasons,
it is not useful to include these times in any statistical analysis or hypothesis testing. So the times
are only provided for the sake of completeness, and because they provide useful insights, albeit
not backed up by statistical analysis. Metrics AT is meaningful only for successful attacks. The
proportion of successful attacks provides a second metric, which complements AT, called success
rate (SR). SR measures the proportion of subjects that successfully completed the attack task either
on the clear code or on code protected by data obfuscation.
Based on the metrics chosen to quantify the effectiveness of the protections, we can formulate null
and alternative hypotheses associated with research questions RQ1 and RQ2:

• H1-AT0: There is no difference in AT between subjects working on obfuscated and subjects
working on clear code

ASPIRE D4.03 PUBLIC 45

D4.03 — Security Model, Knowledge Base, Human Experiments

• H1-SR0: There is no difference in SR between subjects working on obfuscated and subjects
working on clear code

• H2-AT0: There is no difference in AT between subjects working on code obfuscated by tech-
nique T and subjects working on code obfuscated by T’

• H2-SR0: There is no difference in SR between subjects working on code obfuscated by tech-
nique T and subjects working on code obfuscated by T’

• H1-ATa: Data obfuscation increases AT for subjects working on obfuscated as compared to
subjects working on clear code

• H1-SRa: Data obfuscation decreases SR for subjects working on obfuscated as compared to
subjects working on clear code

• H2-ATa: Data obfuscation technique T is more effective than T’ for what concerns AT

• H2-SRa: Data obfuscation technique T is more effective than T’ for what concerns SR

where T and T’ indicate two different data obfuscation techniques taken from the set T1, T2, T3.
In addition to the metrics AT and SR, we ask subjects to answer a pre-questionnaire and a post-
questionnaire. Both are included in the instructions for the subjects provided in Appendix D. The
pre-questionnaire collects information about the abilities and experience of the involved subjects.
This is very important to analyse the effect of ability and experience in the successful completion of
the attack tasks, either on clear or on obfuscated code. The post-questionnaire collects information
about clarity and difficulty of the task, availability of sufficient time to complete it, and on the tools
used and the activities carried out to complete the task.

6.4 Design

The design of this experiment is counterbalanced so as to ensure that each subject works both
on clear code and on protected code, and to ensure at the same time that each subject works on
different objects during different labs. In this way, learning effects that might occur across labs are
to some extent compensated by the balanced design.

Lab P1-T0 P1-T’ P2-T0 P2-T’
Lab1 G1 G2 G3 G4
Lab2 G4 G3 G2 G1

Table 6: Design for the data obfuscation experiment: each group of subjects (G1/G2/G3/G4) is
assigned a different object (P1/P2) and treatment (T0/T’) in each lab (Lab1/Lab2)

Table 6 shows the counter-balanced design of the experimental sessions. Subjects are divided into
four groups, G1, G2, G3 and G4. Objects (P1 = Lottery; P2 = Lotto) are provided as clear code (T0)
or obfuscated code (T’). In the latter case, the obfuscation varies across replications (T’ = T1, T2
or T3 depending on the replication). In the two consecutive laboratories, each group of subjects
receives both a different object and a different treatment.

6.5 Statistical analysis

The difference between the output variable (AT or SR) obtained under different treatments (clear
code vs. obfuscated code) is tested using non-parametric statistical tests, assuming significance
at a 95% confidence level (α=0.05); so we reject the null-hypotheses having p-value<0.05. In par-
ticular, we perform paired Wilcoxon test when applicable i.e., when subjects took part in both
labs of each experiment, and non-paired Mann-Whitney test on all samples when data are not

ASPIRE D4.03 PUBLIC 46

D4.03 — Security Model, Knowledge Base, Human Experiments

Histogram of Time

Time [hours]

F
re

qu
en

cy

0 1 2 3 4

0
1

2
3

4
5

Figure 22: Time spent by UGent’s subjects to work the attack task (successful and not successful,
both on clear and obfuscated code).

paired because of subjects that participated just to one lab [6]. Regarding the analysis of pre and
post questionnaires whose answers are on a Likert scale, we test the difference of the medians by
means of the non-parametric Mann-Whitney statistical test, assuming significance at a 95% confi-
dence level (α=0.05). For correlation analysis, the Spearman’s rank correlation test [1] is used, still
with significance level set to α=0.05.

6.6 Experimental results

6.6.1 UGent results

At UGent, the researches provided a warm-up exercise to student (in line with the advice obtained
from the project’s Scientific Advisory Board). Trying out the attacker tools on this example was
voluntary, and the subjects could do it by themselves beforehand, or under guidance the hour
before the first experiment session.
The binary code was generated with a recent version of gcc, without letting the compiler perform
code optimization.
Figure 23 shows some descriptive statistics about the participants involved in the UGent’s ex-
periment, which was carried out on binary code. These data were collected by means of the
pre-experiment questionnaire reported in Appendix C.
At UGent 10 MSc or PhD students participated to the two sessions of the experiment. Most of
them had no previous experience as professional programmers. On the other hand, the majority
declared two or more years of experience with the C programming language and with a C pro-
gramming IDE (Integrated Development Environment), such as Eclipse or Visual Studio. Their
experience with the Assembly language was a bit shorter; still, most of them have been using
Assembly for at least one year. Their experience with reverse engineering of Assembly code was
relatively short but significant, ranging between 6 months and one year for the majority of the
subjects. All subjects declared good knowledge of the C and Assembly debuggers.
Overall, subjects participating in this experiment have little professional experience, substantial
experience with C and Assembly, some previous experience with reverse engineering and they
know the debugger pretty well.
Figure 24 shows the results of UGent’s experiment. Histograms on the top-left show the suc-

ASPIRE D4.03 PUBLIC 47

D4.03 — Security Model, Knowledge Base, Human Experiments

No
Yes,

 part−time
Yes,

 full−time

Worked as professional programmer

F
re

qu
en

cy

0
1

2
3

4
5

6
7

<3M 6M 1Y 2Y >3Y

Experience in C

F
re

qu
en

cy

0
1

2
3

4
5

6

Never 6M 1Y 2Y >3Y

Use of IDE for C

F
re

qu
en

cy

0
1

2
3

4

<3M 6M 1Y 2Y >3Y

Experience in Assembly

F
re

qu
en

cy

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

<3M 6M 1Y 2Y >3Y

Experience with reverse engineering

F
re

qu
en

cy

0
1

2
3

4

Break−
points

Stepwise
 exe

Inspect
 stack

Inspect
 vars

Use of C debugger

F
re

qu
en

cy

0
2

4
6

8
10

Break−
points

Stepwise
 exe

Inspect
 stack

Inspect
 vars

Use of Assembly debugger

F
re

qu
en

cy

0
2

4
6

8
10

Figure 23: Demographics of UGent’s subjects

ASPIRE D4.03 PUBLIC 48

D4.03 — Security Model, Knowledge Base, Human Experiments

Lotto
clear

Lotto
RNC

Lottery
clear

Lottery
RNC

Success rate

F
re

qu
en

cy

0
1

2
3

4
5

Lotto clear Lotto RNC

50
10

0
15

0
20

0

A
tta

ck
 ti

m
e

(m
in

ut
es

)

Percentage success rate
Lotto clear Lotto RNC Lottery clear Lottery RNC

80% 60% 20% 0%
Average attack time (minutes)

Lotto clear Lotto RNC Lottery clear Lottery RNC
23.5 141.0 111 NA

Correlation between experience and success rate
Professional prog Exp in C Exp in Assembly Exp with reveng

0.02 0.10 -0.04 0.26

Figure 24: UGent experiment: effectiveness of RNC protection (boldface values have statistical
significance at level 0.05)

cess rate, depicted as two stacked histograms for each pair program-treatment. The lower (red)
histogram depicts the number of successful attacks for the given program-treatment; the upper
(yellow) histogram depicts the number of unsuccessful attacks.
When moving from the clear version of the program to the RNC-obfuscated one, the success rate
decreases substantially. No participant was able to successfully attack program Lottery obfuscated
with RNC in this experiment. The percentage success rate is shown in the table at the bottom of
Figure 24 (upper part of the table). The probability of a successful attack decreases by 20% both in
program Lotto and Lottery when the obfuscated version is provided instead of the clear version.
In Figure 25 (upper part) success rate is split by subjects’ experience. We classify a subject as
Expert when she/he has one year or more of experience with C. No clear pattern emerges from
the plot. ANOVA table (reported in Figure 25, lower part) confirms no statistical significant effect
of experience.
In Figure 24, boxplots on the top-right show the distribution of the attack time across subjects, for
Lotto-clear and for Lotto-RNC. Since no subject successfully attacked Lottery-RNC, only boxplots
for Lotto are shown. When moving from the clear to the obfuscated version of Lotto, the attack
time increases substantially. The average attack time in minutes is reported in the table at the
bottom of Figure 24 (middle part of the table). According to the Wilcoxon non parametric test,
the difference between the attack time observed for Lotto-clear and the attack time observed for
Lotto-RNC is statistically significant at level 0.05. For this reason the average attack time for Lotto
is shown in boldface in the table at the bottom of Figure 24. On average, the attack time on
obfuscated code is six times higher than the attack time on clear code.
We have investigated the relationship between the subjects’ experience and their capability to
successfully complete the attack task. Results of the Spearman’s test for statistical correlation
are shown in the table at the bottom of Figure 24 (bottom part). Subjects’ experience has been
measured as the answer to the pre-questionnaire questions about their previous activities as pro-

ASPIRE D4.03 PUBLIC 49

D4.03 — Security Model, Knowledge Base, Human Experiments

Expert Non−expert Expert Non−expert Expert Non−expert Expert Non−expert

Success rate

F
re

qu
en

cy

0
1

2
3

4
5

Lotto Clear Lotto Rnc Lottery Clear Lottery Rnc

Df Sum Sq Mean Sq F value Pr(>F)
Application 1 1.80 1.80 10.96 0.0052
Treatment 1 0.20 0.20 1.22 0.2885
Experience 1 0.36 0.36 2.16 0.1634
Application:Treatment 1 0.04 0.04 0.27 0.6111
Application:Experience 1 0.10 0.10 0.61 0.4483
Residuals 14 2.30 0.16

Figure 25: Ugent experiment: effectiveness of RNC protection split by subjects experience (bold-
face values have statistical significance at level 0.05)

Factor p-value
Program 0.00549
Protection 0.30091
Program:Protection 1.00000

0.
0

0.
2

0.
4

0.
6

0.
8

Interaction plot

Program

S
uc

ce
ss

 r
at

e

Lottery Lotto

Figure 26: UGent experiment: interaction of Program (Lotto vs. Lottery) and Protection (Clear vs.
RNC) with Success rate (boldface values have statistical significance at level 0.05; a dashed line
indicates the clear version; a solid line the obfuscated version)

ASPIRE D4.03 PUBLIC 50

D4.03 — Security Model, Knowledge Base, Human Experiments

Strong
agree Agree Uncertain

Dis−
agree

Strong
disagree

Clarity of task

F
re

qu
en

cy

0
2

4
6

8
10

12

Strong
agree Agree Uncertain

Dis−
agree

Strong
disagree

Enough time for the task

F
re

qu
en

cy

0
2

4
6

8
10

Strong
agree Agree Uncertain

Dis−
agree

Strong
disagree

Task was easy to perform

F
re

qu
en

cy

0
1

2
3

4
5

Disassem−
bler IDE Debugger

Web
search Other

Tools used

F
re

qu
en

cy

0
5

10
15

Code
reading Debugging

Changing
execution

Usage of time

F
re

qu
en

cy

0
2

4
6

8
10

12

Figure 27: Post-questions answered by UGent’s subjects

fessional programmers, their knowledge of C and Assembly, and their previous experience with
binary reverse engineering. None of these measures of experience has a strong correlation with
the subjects’ success rate. In particular, no correlation achieves statistical significance at level 0.05.
There is however a weak positive correlation between experience in C and in reverse engineering,
and the subjects’ capability to perform a successful attack.
Figure 26 shows the results of the interaction analysis. The outcome of the two-way ANOVA test
is shown on the left. The specific program being considered (either Lotto or Lottery) affects sig-
nificantly the success rate, with Lotto being substantially easier to attack than Lottery, as apparent
from the interaction plot depicted on the right. The protection does not have a statistically signif-
icant effect (at level 0.05) on the success rate, as indicated also at the bottom in Figure 24 (upper
part of the table), where the percentage success rates are not in boldface. This might be due to the
small number of data points available from the experiment. Moreover, there is no significant in-
teraction between the two factors Program and Protection, considered jointly, and the success rate.
This is also visible graphically in the interaction plot displayed on the right, where the dashed line
(for the clear code) and the solid line (for the obfuscated code) are parallel.
In summary, based on the data collected in UGent’s experiment, we can answer research question
RQ1 as follows:

RQ1: when attackers work on the binary code, RNC data obfuscation reduces the probability of a
successful attack by 20% and increases the attack time by 6 times. The actual effectiveness of the
protection is strongly dependent on the program being protected. Subjects with previous experi-
ence in C and in binary reverse engineering seem to have slightly more chances of completing the
attack task successfully.

According to the post-questionnaire (see Figure 27), tasks were generally clear to subjects, but the

ASPIRE D4.03 PUBLIC 51

D4.03 — Security Model, Knowledge Base, Human Experiments

No
Yes,

 part−time
Yes,

 full−time

Worked as professional programmer

F
re

qu
en

cy

0
2

4
6

8
10

<3M 6M 1Y 2Y >3Y

Experience in C

F
re

qu
en

cy

0
2

4
6

8
10

12

Never 6M 1Y 2Y >3Y

Use of IDE for C

F
re

qu
en

cy

0
2

4
6

8
10

Break−
points

Stepwise
 exe

Inspect
 stack

Inspect
 vars

Use of C debugger

F
re

qu
en

cy

0
2

4
6

8
10

Figure 28: Demographics of FBK’s subjects

time to perform them was judged neither sufficient nor insufficient (most subjects were uncertain
about this question; see Figure 27). This might be due to the difficulty of the tasks to be carried out
on obfuscated code. In fact, histograms on the top-right in Figure 27 indicate a mixed perception
about the difficulty of tasks, with some prevalence of “difficult” over “easy”.
UGent’s subjects, who worked on binary code, used mostly the disassembler and the debugger.
They also navigated the web to find solutions to the problems they encountered. They spent most
time reading and debugging the program to be attacked.

6.6.2 FBK results

At FBK, subjects are MSC students attending the course of Security Testing. As such, they have at
least a basic background on C its standard API. However, they are fluent on other programming
languages (e.g., Java) that have been used to deliver course projects. Before the experiment, they
attended and introduction lecture on code protection and code obfuscation in general.
Differently from the UGhent experiment, in this case the lab was limited to 2 hours and subjects
were not supposed to continue on the assignment as homework after the lab.
Figure 28 shows some descriptive statistics about the participants involved in the FBK’s experi-
ment, which was carried out on C source code. These data were collected by means of the pre-
experiment questionnaire reported in Appendix D.
In total, 16 MSc students participated to the experiment, however some of them attended only
one of the two sessions. Most of them had no previous experience as professional programmers.
The majority declared also limited (less than three months) experience with the C programming
language and with a C programming IDE. All subjects declared good knowledge of the features

ASPIRE D4.03 PUBLIC 52

D4.03 — Security Model, Knowledge Base, Human Experiments

Lotto
clear

Lotto
RNC

Lottery
clear

Lottery
RNC

Success rate

F
re

qu
en

cy

0
1

2
3

4
5

6

Lotto
clear

Lotto
RNC

Lottery
clear

Lottery
RNC

20
40

60
80

A
tta

ck
 ti

m
e

(m
in

ut
es

)

Percentage success rate
Lotto clear Lotto RNC Lottery clear Lottery RNC

100% 20% 20% 16%
Average attack time (minutes)

Lotto clear Lotto RNC Lottery clear Lottery RNC
29.7 45.0 20 93

Correlation between experience and success rate
Professional programmer Experience in C

-0.22 0.14

Figure 29: FBK experiment: effectiveness of RNC protection (boldface values have statistical sig-
nificance at level 0.05)

of C debuggers, with the exception of call stack inspection, which was known only to half of the
respondents.
Overall, subjects participating in this experiment have little professional experience and limited
experience with C; they know the C debugger reasonably well.
Figure 29 shows the results of FBK’s experiment. Histograms on the top-left show the success rate,
depicted as two stacked histograms for each pair program-treatment. The lower (red) histogram
depicts the number of successful attacks for the given program-treatment; the upper (yellow)
histogram depicts the number of unsuccessful attacks.
When moving from the clear version of the program to the RNC-obfuscated one, the success rate
decreases substantially. The percentage success rate is shown in the table at the bottom of Figure 29
(upper part of the table). The probability of a successful attack decreases by 80% in program Lotto
and by 4% in the case of Lottery when the obfuscated version is provided instead of the clear
version. In the case of Lotto, such a difference is statistically significant at level 0.05. On average,
across programs we observe a 42% decrease of the probability of a successful attack mounted
against the RNC protected version of the program. However, it should be noticed that the actual
decrease changes substantially between the two considered programs, Lotto-clear being much
easier to attack than Lottery-clear. Such a difference tends to disappear on the RNC-obfuscated
versions. Hence, obfuscated programs seem to be equally difficult to attack, regardless of the
difficulty of attack for the original, clear programs.
In Figure 30 (upper part) success rate is split by subjects’ experience. We classify a subject as
Expert when she/he has one year or more of experience with C. No clear pattern emerges from
the plot. ANOVA table (reported in Figure 30, lower part) confirms no statistical significant effect
of experience.
In Figure 29, boxplots on the top-right show the distribution of the attack time across subjects,
for Lotto-clear/RNC and for Lottery-clear/RNC. When moving from the clear to the obfuscated

ASPIRE D4.03 PUBLIC 53

D4.03 — Security Model, Knowledge Base, Human Experiments

Expert Non−expert Expert Non−expert Expert Non−expert Expert Non−expert

Success rate

F
re

qu
en

cy

0
1

2
3

4
5

Lotto Clear Lotto Rnc Lottery Clear Lottery Rnc

Df Sum Sq Mean Sq F value Pr(>F)
Application 1 0.69 0.69 4.12 0.0619
Treatment 1 0.71 0.71 4.20 0.0596
Experience 1 0.02 0.02 0.11 0.7457
Application:Treatment 1 0.75 0.75 4.50 0.0523
Application:Experience 1 0.03 0.03 0.18 0.6789
Residuals 14 2.35 0.17

Figure 30: FBK experiment: effectiveness of RNC protection split by subjects experience (boldface
values have statistical significance at level 0.05)

Factor p-value
Program 0.0488
Protection 0.0468
Program:Protection 0.0449

0.
2

0.
4

0.
6

0.
8

1.
0

Interaction plot

Program

S
uc

ce
ss

 r
at

e

Lottery Lotto

Figure 31: FBK experiment: interaction of Program (Lotto vs. Lottery) and Protection (Clear vs.
RNC) with Success rate (boldface values have statistical significance at level 0.05; a dashed line
indicates the clear version; a solid line the obfuscated version)

ASPIRE D4.03 PUBLIC 54

D4.03 — Security Model, Knowledge Base, Human Experiments

version of Lotto/Lottery, the attack time increases substantially. The average attack time in min-
utes is reported in the table at the bottom of Figure 29 (middle part of the table). According to
the Wilcoxon non parametric test, the difference between the attack time observed for Lotto-clear
and the attack time observed for Lotto-RNC (shown in boldface) is statistically significant at level
0.05. Even if a remarkable difference in the amount of time required to attack the clear and the
obfuscated version of Lottery (20 versus 93 minutes), due to the small number of successful cases
on Lottery, this observation is not statistical significant.
For Lotto the attack time on RNC-obfuscated code is 1.5 times higher than on clear code; for
Lottery it is 4.6 times higher. On average, the attack time on obfuscated code is 3 times higher
than the attack time on clear code.
We have investigated the relationship between the subjects’ experience and their capability to
successfully complete the attack task. Results of the Spearman’s test for statistical correlation are
shown in the table at the bottom of Figure 29 (bottom part). Subjects’ experience has been mea-
sured as the answer to the pre-questionnaire questions about their previous activities as profes-
sional programmers and their knowledge of C. None of these measures of experience has a strong
correlation with the subjects’ success rate. In particular, no correlation achieves statistical signif-
icance at level 0.05. There is however a weak positive correlation between experience in C and
the subjects’ capability to perform a successful attack. Quite surprisingly, there is also a weakly
negative correlation between previous experience as professional programmers and attack success
rate. This might indicate that the typical industrial programming tasks are quite different from the
tasks carried out to attack a program. Then again, that difference would also exist between typical
university programming tasks and the attack task. Several project partners discussed this correla-
tion, and decided that it is impossible to confidently pinpoint the reason for this correlation. It is
therefore purely accidental, as a result of the low sample size.
Figure 31 shows the results of the interaction analysis. The outcome of the two-way ANOVA test
is shown on the left. The specific program being considered (either Lotto or Lottery) affects signif-
icantly the success rate, with Lotto-clear being substantially easier to attack than Lottery-clear, as
apparent from the interaction plot depicted on the right (dashed line). The presence of a protection
has a statistically significant effect on the success rate, as indicated also at the bottom in Figure 29
(upper part of the table), where the percentage success rates are in boldface for Lotto. Protected
programs are substantially more difficult to attack than clear code programs. Moreover, there is
a statistically significant interaction between the two factors Program and Protection, considered
jointly, and the success rate. This is also visible graphically in the interaction plot displayed on
the right, where the dashed line (for the clear code) and the solid line (for the obfuscated code) di-
verge. On programs that are easier to attack (Lotto) the application of data obfuscation increases
the level of protection much more than for programs (Lottery) that are difficult to attack even
when distributed as clear code. In other words, the effect of a protection gets amplified if it is
applied to programs that are otherwise relatively easy to attack.
In summary, based on the data collected in FBK’s experiment, we can answer research question
RQ1 as follows:

RQ1: when attackers work on the C source code, RNC data obfuscation reduces the probability
of a successful attack by 42% and increases the attack time by 3 times. The actual effectiveness
of the protection is strongly dependent on the program being protected. Moreover, the magnitude
of the protection is greater when the program to be protected is relatively easy to attack. Subjects
with previous experience in C seem to have slightly more chances of completing the attack task
successfully.

According to the post-questionnaire (see Figure 32), tasks were generally clear to subjects, but
the time to perform them was not always judged to be sufficient (many subjects were uncertain
about this question; see Figure 32). This might be due to the difficulty of the tasks to be carried
out on obfuscated code. In fact, histograms on the top-right in Figure 32 have a peak on “Dis-
agree”, indicating the prevalence of judgment “task was difficult to perform” over “task was easy

ASPIRE D4.03 PUBLIC 55

D4.03 — Security Model, Knowledge Base, Human Experiments

Strong
agree Agree Uncertain

Dis−
agree

Strong
disagree

Clarity of task

F
re

qu
en

cy

0
1

2
3

4
5

6

Strong
agree Agree Uncertain

Dis−
agree

Strong
disagree

Enough time for the task

F
re

qu
en

cy

0
1

2
3

4
5

6

Strong
agree Agree Uncertain

Dis−
agree

Strong
disagree

Task was easy to perform

F
re

qu
en

cy

0
1

2
3

4
5

6

Editor IDE Compiler
Web

search

Tools used

F
re

qu
en

cy

0
2

4
6

8
10

12
14

Code
reading

Code
changing Debugging

Usage of time

F
re

qu
en

cy

0
2

4
6

8

Figure 32: Post-questions answered by FBK’s subjects

ASPIRE D4.03 PUBLIC 56

D4.03 — Security Model, Knowledge Base, Human Experiments

No
Yes,

 part−time
Yes,

 full−time

Worked as professional programmer

F
re

qu
en

cy

0
5

10
15

<3M 6M 1Y 2Y >3Y

Experience in C

F
re

qu
en

cy

0
2

4
6

8
10

12

Never 6M 1Y 2Y >3Y

Use of IDE for C

F
re

qu
en

cy

0
2

4
6

8
10

Break−
points

Stepwise
 exe

Inspect
 stack

Inspect
 vars

Use of C debugger

F
re

qu
en

cy

0
5

10
15

20
25

30

Figure 33: Demographics of all participating subjects

to perform”.
FBK’s subjects, who worked on C source code, used mostly the editor and the compiler. They
also navigated the web to find solutions to the problems they encountered. They spent most time
reading and changing the program to be attacked.

6.6.3 Overall results

Figure 33 shows some descriptive statistics about all participants involved in the ASPIRE experi-
ments. These data were collected by means of the pre-experiment questionnaire reported in Ap-
pendixes C, D.
In total, 26 MSc students participated to the two sessions of the data obfuscation experiments.
Most of them had no previous experience as professional programmers. Subjects are split into
two groups, having respectively limited (less than three months) and substantial (more than three
years) experience with the C programming language and with a C programming IDE. These two
groups correspond roughly to UGent’s and FBK’s subjects, respectively. All subjects declared
good knowledge of the features of C debuggers.
Figure 34 shows the overall results of ASPIRE’s data obfuscation experiments. Histograms on
the top-left show the success rate, depicted as two stacked histograms for each pair program-
treatment. The lower (red) histogram depicts the number of successful attacks for the given
program-treatment; the upper (yellow) histogram depicts the number of unsuccessful attacks.
When moving from the clear version of the program to the RNC-obfuscated one, the success rate
decreases substantially. The percentage success rate is shown in the table at the bottom of Figure 34
(upper part of the table). The probability of a successful attack decreases by 48% in program Lotto

ASPIRE D4.03 PUBLIC 57

D4.03 — Security Model, Knowledge Base, Human Experiments

Lotto
clear

Lotto
RNC

Lottery
clear

Lottery
RNC

Success rate

F
re

qu
en

cy

0
2

4
6

8
10

Lotto
clear

Lotto
RNC

Lottery
clear

Lottery
RNC

50
10

0
15

0
20

0

A
tta

ck
 ti

m
e

(m
in

ut
es

)

Percentage success rate
Lotto clear Lotto RNC Lottery clear Lottery RNC

88% 40% 20% 9%
Average attack time (minutes)

Lotto clear Lotto RNC Lottery clear Lottery RNC
26.6 117.0 20 93

Correlation between experience and success rate
Professional programmer Experience in C

-0.10 0.10

Figure 34: Overall results: effectiveness of RNC protection (boldface values have statistical signif-
icance at level 0.05)

and by 11% in the case of Lottery when the obfuscated version is provided instead of the clear
version (the difference is statistically significant at level 0.05 in the case of Lotto). On average,
across programs we observe a 30% decrease of the probability of a successful attack mounted
against the RNC protected version of the program. However, it should be noticed that the actual
decrease changes substantially between the two considered programs, probably because Lottery-
clear is already quite difficult to attack as compared to Lotto-clear.
In Figure 35 (upper part) success rate is split by subjects’ experience. We classify a subject as
Expert when she/he has one year or more of experience with C. As we can see from the graph,
when working on Lotto expert subjects have higher success rate than non-expert subjects both on
clear code and on code obfuscated with RNC. However, an opposite trend is observed on Lottery
where expert subjects have lower success rate than non-expert subjects (both on clear and on
obfuscated code). This fact trend is evident also in the ANOVA table (reported in Figure 35, lower
part) where experience is not an influencing effect by itself, but only considered together with the
main treatment and the application.
In Figure 34, boxplots on the top-right show the distribution of the attack time across subjects,
for Lotto-clear/RNC and for Lottery-clear/RNC. When moving from the clear to the obfuscated
version of Lotto/Lottery, the attack time increases substantially. The average attack time in min-
utes is reported in the table at the bottom of Figure 34 (middle part of the table). According to
the Wilcoxon non parametric test, the difference between the attack time observed for Lotto-clear
and the attack time observed for Lotto-RNC (shown in boldface) is statistically significant at level
0.05. For Lotto the attack time on RNC-obfuscated code is 4.3 times higher than on clear code; for
Lottery it is 4.6 times higher. On average, the attack time on obfuscated code is 4.4 times higher
than the attack time on clear code.
We have investigated the relationship between the subjects’ experience and their capability to
successfully complete the attack task. Results of the Spearman’s test for statistical correlation

ASPIRE D4.03 PUBLIC 58

D4.03 — Security Model, Knowledge Base, Human Experiments

Expert Non−expert Expert Non−expert Expert Non−expert Expert Non−expert

Success rate
F

re
qu

en
cy

0
1

2
3

4
5

6
7

Lotto Clear Lotto Rnc Lottery Clear Lottery Rnc

Df Sum Sq Mean Sq F value Pr(>F)
Application 1 2.38 2.38 16.05 0.0003
Treatment 1 0.84 0.84 5.63 0.0238
Experience 1 0.12 0.12 0.83 0.3704
Application:Treatment 1 0.28 0.28 1.88 0.1801
Application:Experience 1 0.25 0.25 1.72 0.1997
Treatment:Experience 1 0.07 0.07 0.48 0.4942
Application:Treatment:Experience 1 0.68 0.68 4.58 0.0401
Residuals 32 4.75 0.15

Figure 35: Overall results: effectiveness of RNC protection split by subjects experience (boldface
values have statistical significance at level 0.05)

Factor p-value
Program 0.000471
Protection 0.028770
Program:Protection 0.144256

0.
2

0.
4

0.
6

0.
8

Interaction plot

Program

S
uc

ce
ss

 r
at

e

Lottery Lotto

Figure 36: Overall results: interaction of Program (Lotto vs. Lottery) and Protection (Clear vs. RNC)
with Success rate (boldface values have statistical significance at level 0.05; a dashed line indicates
the clear version; a solid line the obfuscated version)

ASPIRE D4.03 PUBLIC 59

D4.03 — Security Model, Knowledge Base, Human Experiments

Strong
agree Agree Uncertain

Dis−
agree

Strong
disagree

Clarity of task

F
re

qu
en

cy

0
5

10
15

Strong
agree Agree Uncertain

Dis−
agree

Strong
disagree

Enough time for the task

F
re

qu
en

cy

0
2

4
6

8
10

12
14

Strong
agree Agree Uncertain

Dis−
agree

Strong
disagree

Task was easy to perform

F
re

qu
en

cy

0
2

4
6

8
10

Figure 37: Post-questions answered by all participating subjects

are shown in the table at the bottom of Figure 34 (bottom part). Subjects’ experience has been
measured as the answer to the pre-questionnaire questions about their previous activities as pro-
fessional programmers and their knowledge of C. None of these measures of experience has a
strong correlation with the subjects’ success rate. In particular, no correlation achieves statisti-
cal significance at level 0.05. There is however a weak positive correlation between experience
in C and the subjects’ capability to perform a successful attack. Quite surprisingly, there is also a
weakly negative correlation between previous experience as professional programmers and attack
success rate. This might indicate that the typical industrial programming tasks are quite different
from the tasks carried out to attack a program.
Figure 36 shows the results of the interaction analysis. The outcome of the two-way ANOVA test
is shown on the left. The specific program being considered (either Lotto or Lottery) affects sig-
nificantly the success rate, with Lotto being substantially easier to attack than Lottery, as apparent
from the interaction plot depicted on the right. The protection also has a statistically significant
effect (at level 0.05) on the success rate, as indicated also at the bottom in Figure 34 (upper part
of the table), where the percentage success rates for Lotto are in boldface. Overall, there is no
significant interaction between the two factors Program and Protection, considered jointly, and the
success rate. This is also visible graphically in the interaction plot displayed on the right, where
the dashed line (for the clear code) and the solid line (for the obfuscated code) are almost parallel
(actually, there is some divergence, indicating that the effect of protection is higher on Lotto than
on Lottery, but such divergence does not reach statistical significance).
In summary, based on the data collected in all data obfuscation experiment, we can answer re-
search question RQ1 as follows:

RQ1: when attackers work either on the C source code or on the binary code, RNC data ob-
fuscation reduces the probability of a successful attack by 30% and increases the attack time by
4.4 times. The actual effectiveness of the protection is strongly dependent on the program being
protected. Subjects with previous experience in C and no previous experience as professional
programmers seem to have slightly more chances of completing the attack task successfully.

According to the post-questionnaire (see Figure 37, where only questions in common between
binary code and C source code assignments are considered), tasks were generally clear to all par-
ticipating subjects, but the time to perform them was not always judged to be sufficient (many
subjects were uncertain about this question; see Figure 37). This might be due to the difficulty of
the tasks to be carried out on obfuscated code. In fact, histograms on the top-right in Figure 37 are
slightly peaked around “Disagree”, indicating some prevalence of judgment “task was difficult to
perform” over “task was easy to perform”.

ASPIRE D4.03 PUBLIC 60

D4.03 — Security Model, Knowledge Base, Human Experiments

6.7 Comparison Results Source Code Attacks vs. Binary Code Attacks

The results of the attack experiments conducted at UGent on binary code and at FBK on source
code are mostly in line with each other. This was not a big surprise to the researchers.
The investigated RNC data obfuscation is performed entirely on an application’s source code. As
the program was compiled at UGent without compiler optimizations enabled, the attack subjects
there studied disassembled code that was mostly a straightforward translation of the original
source code to the assembly level.
After applying the obfuscation, the increase in source code complexity as perceived by a program-
mer experienced with C is not significantly different from the increase in assembler code complex-
ity as perceived by a binary code reverse engineer. Moreover, the one aspect that is very different
between source code and binary code attacks, was omitted from the experiment at UGent: the ac-
tual editing of the code to alter its behavior. In source code, the required changes, once identified,
are trivial to implement. They hence did not really contribute to the attack complexity in FBK.
And at UGent, they were omitted. So in both experiments, the attack complexity was more or less
bound by the reverse engineering part, not by the tampering part of the attack.
This experiment therefore to some extent validates the idea of the project’s PIs that for some forms
of obfuscations, performing experiments in source code can be a good proxy for experiments at
the binary level.

6.8 Threats to validity

The main threats to the validity of this experiment belong to the conclusion, internal, construct
and external validity threat categories.
Conclusion validity threats concern the relationship between treatment and outcome. We use sta-
tistical tests to draw our conclusions. Inability to reject the null hypothesis exposes us to type II
errors (incorrectly accepting a false null hypothesis). We mitigate this threat by replicating the
experiment four times, so as to increase the number of participants, N . In fact, the probability
of a type II error can be reduced by increasing the sample size. We used two-way ANOVA for
the interaction analysis. Although ANOVA requires data to be normally distributed and our data
may not satisfy such assumption, when used for interaction analysis, two-way ANOVA is known
to be quite robust with respect to deviations from normality [2].
Subjects are provided with the source code, not the binary code, because students are not profi-
cient enough in binary and assembly code analysis at FBK, UEL and POLITO. This might make
our conclusions not applicable when only the binary is available to attackers. To mitigate this
threat, the replication at UGent is conducted on the binary.
Internal validity threats concern external factors that may affect the independent variable. Subjects
are not aware of the experimental hypotheses. At FBK, subjects are not rewarded for the participa-
tion in the experiment. At UGent, students got a 50 euro gift certificate for their participation, but
students that were identified as having insufficient experience with x86 binary code (i.e., no more
experience than what they learn in UGent’s courses on basic computer architecture and operating
systems) were not allowed to participate. This ensured that only students with at least some pas-
sion for binary code and reverse engineering participated. All students were informed that they
are not evaluated on their performance in doing the experiment.
Construct validity threats concern the relationship between theory and observation. They are
mainly due to how we measure the effectiveness of data obfuscation. We manually assess the
successful completion of each task in order to measure SR. During the labs, the experimenters
made sure that times are accurately marked in the time sheets upon start and completion of the
attack task.
External validity concerns the generalisation of the findings. In our experiment we considered two
small programs, Lotto and Lottery, to allow for potentially successful attacks within experimental
sessions with a limited time bound (2h). Results may not generalise to different programs. On
the other hand, we expect that larger programs will be more difficult, not easier, to attack, both

ASPIRE D4.03 PUBLIC 61

D4.03 — Security Model, Knowledge Base, Human Experiments

with and without protections. Moreover, the chosen programs have been written by third parties,
completely unrelated with ASPIRE, so as to ensure that they are not crafted to provide optimal
application conditions for the ASPIRE protections. Further replications of the study on additional
objects will corroborate the external validity of our findings.

6.9 Lessons Learned

The results of this first round of experiments have been discussed internally to the consortium.
Moreover, we asked the ASPIRE Scientific Advisory Board to comment on them and to formulate
potential recommendations for improvement. Here we summarize the points that we intend to
change on the experimental design before the next replications:

• Profiling questionnaire: We will add new questions, intended to ask participants explicitly
about their experience with C/C++ in projects, to estimate the projects’ size (such as lines of
code) to have a more objective quantification of their experience.

Moreover, will add a new question on experience with Java. In fact, most of the MSC stu-
dents are quire fluent on Java, acquired when working on many academic or open source
projects. This familiarity with programming could influence the success rate of attack tasks,
even if on a different, but quite similar, language.

• Decompiled code: The SAB suggested to use decompiled source code instead of original
source code. We plan to check the output of a decompiler on code compiled with different
levels of optimization, and verify if the result can be still used in the tasks. In fact, decom-
piled code might look strange at the first sight and very different than source code. In this
case, the ability to understand decompiled code could be largely affected by the experience
of subjects in working with decompiled code.

• New obfuscations: The SAB suggested not to limit to state-of-the-art protections, but to ex-
periment also with new protections developed by the project. Even if this was already in
our initial plan (code splitting in as new protection, and all the new protections will be ex-
perimented with professional hackers) we intend to go further and experiment also the new
version of data obfuscation elaborated by the project. The second replication in UGhent was
meant to compare clear code and code protected with Code Splitting. We are considering to
change the plan and study the additional level of protection offered by the dynamic variant
of XOR Masking (elaborated in task T2.1) with the state-of-the-art version of XOR Masking.

• Training: As suggested by the SAB, we plan to include a mandatory training phase before
the experimental lab. The aim is to make sure that all the subjects are familiar with an attack
task before the actual lab, so they do not waste time during the lab to familiarize with the
experimental setting. This will help in limiting learning effect and to measure only the time
actually spent in attacking the code.

6.10 Dates

The next two replications, with treatments T2 (XOR) and T3 (Var merge), of the data obfusca-
tion experiment will be conducted at University of East London and at Politecnico of Torino in
Autumn, 2015.

7 Code splitting experiment

Table 7 provides a schematic overview of the code splitting experiment. The goal of this experi-
ment is to analyse the degree of protection offered by the ASPIRE code splitting technique, when
it is applied to increasingly large code portions. Splitting larger code portions is expected to bring

ASPIRE D4.03 PUBLIC 62

D4.03 — Security Model, Knowledge Base, Human Experiments

Goal Analyze the ability of code splitting to prevent malicious attacks
and measure the performance penalty to be paid

Treatments T0 = original code; T1 = small code portion split; T2 = medium
code portion split; T3 = large code portion split

RQ1 How much does code splitting increase the attack time as com-
pared to the attack time for the clear code?

RQ2 How do different code splitting choices (T1/2/3) affect the attack
time?

RQ3 What is the performance impact of different code splitting
(T1/2/3)?

Subjects Students from FBK, UEL, POLITO and UGent (working on the
binary code)

Objects P1: space game
Tasks Make spacecraft move faster by doubling the effect of a move
Metrics Success rate; time to mount a successful attack
Design Lab1: P1-T0; P1-T1/2/3 (Repl 1/3/4)

Table 7: Code splitting experiment

increased protection but also to cause increasing performance degradation, due to the need for
more frequent synchronisations between the code remaining on the client and the code moved to
the trusted server/device. In order to evaluate the impact of the split code size on both the level
of protection and the performance penalty to be paid, we consider three treatments, in addition
to the baseline T0, which is the original code: T1/T2/T3, associated with a small/medium/large
code portion being moved from the client to the trusted server/device.
In each replication of the experiment, one of the three split code size (T1/T2/T3) is evaluated
in comparison with the clear code (T0). This allows for a direct measurement of the increased
attack effort associated with each level of protection and it also allows for a direct measurement
of the associated performance degradation. Moreover, by comparing the data collected in the
three replications where the split code portion is increasingly large (i.e., Repl1, Repl3, Repl4),
it is possible to quantitatively assess the trade off between degree of protection and associated
performance penalty. The replication at UGent (Repl2) will be carried out directly on the binary
code, since students at UGent are specifically trained on binary and assembly code analysis.
The three replications Repl1, Repl3, Repl4 of this experiment with increasingly large split code will
be conducted respectively at POLITO, FBK and UEL, and will evaluate the treatment (T1/T2/T3)
in comparison with the baseline treatment T0 (clear code). The replication at UGent will evaluate
one of the three treatments (not yet decided, but probably T2) against T0 when the binary code
instead of the source code is provided to the students. The tentative dates for the four replications
of this experiment are shown in Table 7.

7.1 Research questions

The experiment aims at answering the following three research questions:

• RQ1: How much does code splitting increase the attack time as compared to the attack time
for the clear code?

• RQ2: How do different code splitting choices (T1/2/3) affect the attack time?

• RQ3: What is the performance impact of different code splitting (T1/2/3)?

The first research question is about the effectiveness of code splitting as a code protection tech-
nique. The evidence collected in the four replications of the experiment will be used to assess the

ASPIRE D4.03 PUBLIC 63

D4.03 — Security Model, Knowledge Base, Human Experiments

average increased attack time provided by code splitting, regardless of the split code size. The sec-
ond research question aims at contrasting the degree of protection offered at different split code
size. The third research question deals with the performance degradation associated with code
splitting, depending on the size of the code portion being split.

7.2 Object

Figure 38: Screenshot of SpaceGame

The object of this experiment is an open source C program, SpaceGame, obtained from Source-
Forge. SpaceGame is a demonstrator for the framework GAME (Geometrical Ascii Multigame En-
vironment), a C language framework for creating geometrical games using ncurses text screens.
While GAME was originally created for unix platforms, it can be ported to more systems, because
it uses standard ansi C. The framework and the demonstrator amount to 1,873 SLoC (measured
by sloccount), including header files. Players can move on the screen by means of the numeric
keyboard or by pressing the keys for characters ’h’, ’j’, ’k’, ’l’ (’s’ stops the game, while ’q’ quits it).
Figure 38 shows a screenshot of SpaceGame.
The attack task to be executed by the experiment subjects on SpaceGame aims at gaining an unfair
advantage over other competing players:

Attack task: Modify the source code of SpaceGame so as to move twice as fast as allowed by
the game rules. Specifically, each key press must translate into a 2-character length move,
instead of a 1-character move.

While in the clear code the required modification consists just of changing the unitary increment
or decrement of the position into a double increment/decrement, when the code handling player
movements is moved from client to server, the modification to be done becomes increasingly more
difficult, depending on the split code size. It might for instance involve a double function call that
replaces a single call, or a modification of some client-server messages.

7.3 Metrics

The metrics collected to answer research questions RQ1, RQ2 and RQ3 are:

AT: Attack time

ASPIRE D4.03 PUBLIC 64

D4.03 — Security Model, Knowledge Base, Human Experiments

SR: Success rate

ET: Execution time

Subjects are asked to mark down the start and end time when starting and after finishing the
attack task, so one key metrics collected during the experiment is the attack time (AT). Subjects
are also asked to send the attacked code to the experimenters, who manually verify if the attack
was successful or not. Metrics AT is meaningful only for successful attacks. The proportion of
successful attacks provides a second metrics, which complements AT, called success rate (SR).
SR measures the proportion of subjects that successfully completed the attack task either on the
original code or on code protected by code splitting.
The execution time (ET) measures the time for a complete execution of SpaceGame under a pre-
defined interaction scenario. In order to obtain meaningful and comparable execution times, a
program driver is used to stimulate the program without requiring any user intervention. The
driver sends a predefined key sequence to SpaceGame, so as to simulate the interaction of the user
with the game. To accommodate for random fluctuations in the execution time measurements, ET
is measured multiple (100) times.
The performance overhead (PO) is the relative increase of the average execution time between
split code and original code:

PO =
ET (P ′)− ET (P)

ET (P)
(19)

where P , P ′ indicate the original and protected program, respectively
Based on the metrics chosen to quantify the effectiveness and penalty of the code splitting protec-
tion, we can formulate null and alternative hypotheses associated with research questions RQ1,
RQ2 and RQ3:

• H1-AT0: There is no difference in AT between subjects working on split and subjects work-
ing on original code

• H1-SR0: There is no difference in SR between subjects working on split and subjects working
on original code

• H2-AT0: There is no difference in AT between subjects working on code with a small/medium/large
code portion being split

• H2-SR0: There is no difference in SR between subjects working on code with a small/medium/large
code portion being split

• H3-ET0: There is no difference in performance between original program and split program
(i.e., PO ∼ 0)

• H1-ATa: Code splitting increases AT for subjects working on split code as compared to
subjects working on original code

• H1-SRa: Code splitting decreases SR for subjects working on split code as compared to
subjects working on original code

• H2-ATa: The code split size affects AT

• H2-SRa: The code split size affects SR

• H3-ETa: Code splitting introduces a non negligible performance overhead (i.e., PO > 0)

ASPIRE D4.03 PUBLIC 65

D4.03 — Security Model, Knowledge Base, Human Experiments

In addition to the metrics AT, SR and ET, we ask subjects to answer a pre-questionnaire and a
post-questionnaire. The pre-questionnaire collects information about the abilities and experience
of the involved subjects. This is very important to analyse the effect of ability and experience
in the successful completion of the attack tasks either on original or on split code. The post-
questionnaire collects information about clarity and difficulty of the task, availability of sufficient
time to complete it, and on the tools used and the activities carried out to complete the task.

7.4 Design

The design of the family of experiments associated with replications Repl1, Repl3, Repl4 aims at
exploring the trade off between increased protection and performance penalty associated with
different levels of code splitting. Specifically, three levels of code splitting are applied in these
three replications, T1/T2/T3 (with respectively a small/medium/large code portion being split),
while T0 indicates no code splitting at all.

Lab P1-T0 P1-T’
Lab1 G1 G2

Table 8: Design for the code splitting experiment: group G1 is assigned object P1 in its original
form, while group G2 is assigned P1 protected with code splitting T’ (either of T1/T2/T3), in a
single lab (Lab1)

Table 8 shows the design of each experimental session (Lab1). Subjects are divided into two
groups, G1 and G2. Object P1 (SpaceGame) is provided as clear code (T0) or split code code
(T’). In the latter case, the amount of code splitting varies across replications (T’ = T1, T2 or T3
depending on the replication).

7.5 Statistical analysis

The difference between the output variable (AT, SR, ET) obtained under different treatments (orig-
inal code vs. split code) is tested using the Wilcoxon non-parametric statistical test, assuming sig-
nificance at a 95% confidence level (α=0.05); so we reject the null-hypotheses having p-value<0.05.
Regarding the analysis of pre and post questionnaires whose answers are on a Likert scale, we test
the difference of the medians by means of the non-parametric Mann-Whitney statistical test, as-
suming significance at a 95% confidence level (α=0.05).

7.6 Threats to validity

The main threats to the validity of this experiment belong to the conclusion, internal, construct
and external validity threat categories.
Conclusion validity threats concern the relationship between treatment and outcome. We use sta-
tistical tests to draw our conclusions. Inability to reject the null hypothesis exposes us to type II
errors (incorrectly accepting a false null hypothesis). We mitigate this threat by replicating the
experiment four times, so as to increase the number of participants, N . In fact, the probability of a
type II error can be reduced by increasing the sample size. Subjects are provided with the source
code, not the binary code, because students are not proficient enough in binary and assembly code
analysis at FBK, UEL and POLITO. This might make our conclusions not applicable when only
the binary is available to attackers. To mitigate this threat, the replication at UGent is conducted
on the binary.
Internal validity threats concern external factors that may affect the independent variable. Subjects
are not aware of the experimental hypotheses. Subjects are not rewarded for the participation in
the experiment and they are not evaluated on their performance in doing the experiment.

ASPIRE D4.03 PUBLIC 66

D4.03 — Security Model, Knowledge Base, Human Experiments

Construct validity threats concern the relationship between theory and observation. They are
mainly due to how we measure the effectiveness of code splitting and the related performance
overhead. We manually assess the successful completion of each task in order to measure SR.
During the labs, the experimenters make sure that times are accurately marked in the time sheets
upon start and completion of the attack task. Performance measurements are repeated 100 times
so as to remove the effect of the possible random fluctuations of the measured execution time
under slightly different conditions.
External validity concerns the generalisation of the findings. In our experiment we considered one
program, SpaceGame. Results may not generalise to different programs. However, the chosen
program has been written by third parties, completely unrelated with ASPIRE, so as to ensure that
it is not crafted to provide optimal application conditions for the ASPIRE protection. Moreover,
the chosen program is publicly available as an open source project in SourceForge. Hence, it can
be regarded as a representative for this category of software. Further replications of the study on
additional objects will corroborate the external validity of our findings.

7.7 Dates

The four replications of the code splitting experiment will be conducted at Fondazione Bruno
Kessler, Ghent University, University of East London and Politecnico di Torino between Autumn,
2015 and Spring, 2016.

8 Industrial case studies

Goal Analyze the ability of ASPIRE to prevent DRM at-
tacks

Treatments T0 = original code; T1 = multiple protections applied
RQ1 To what extent do ASPIRE protections prevent at-

tacks against DRM?
RQ2 What ASPIRE protections are most effective in pre-

venting attacks against DRM?
Subjects 3-4 hackers from the NAGRA tiger team
Objects DemoPlayer (binary code)
Tasks Violate specific DRM protection
Data Report about the different reverse engineering and

attack activities (e.g., data de-obfuscation; identifier
renaming; control flow reconstruction; code under-
standing; decompilation) carried out by attackers

Design Long running (30+ days) case study

Table 9: Nagravision case study

Tables 9, 10, 11 provide a schematic overview of the industrial case studies. The goal of these
case studies is to evaluate the degree of protection offered by the ASPIRE techniques as a whole,
considering those operating on the source code as well as those operating on the binary code.
The entire ASPIRE tool chain is applied to the industrial case studies, so as to ensure maximum
protection. The subjects involved in these case studies are professional hackers employed by the
industrial partners of ASPIRE.

8.1 Research questions

The case studies aim at answering the following research questions:

ASPIRE D4.03 PUBLIC 67

D4.03 — Security Model, Knowledge Base, Human Experiments

Goal Analyze the ability of ASPIRE to prevent attacks
against license protections

Treatments T0 = original code; T1 = multiple protections applied
RQ1 To what extent do ASPIRE protections prevent at-

tacks against license management?
RQ2 What ASPIRE protections are most effective in pre-

venting attacks against license management?
Subjects 3-4 hackers from the SFNT tiger team
Objects Diamante (binary code)
Tasks Forge valid license
Data Report about the different reverse engineering and

attack activities (e.g., data de-obfuscation; identifier
renaming; control flow reconstruction; code under-
standing; decompilation) carried out by attackers

Design Long running (30+ days) case study

Table 10: SafeNet case study

Goal Analyze the ability of ASPIRE to prevent attacks
against secure authentication

Treatments T0 = original code; T1 = multiple protections applied
RQ1 To what extent do ASPIRE protections prevent at-

tacks against secure authentication?
RQ2 What ASPIRE protections are most effective in pre-

venting attacks against secure authentication?
Subjects 3-4 hackers from the GTO tiger team
Objects OTP (binary code)
Tasks Authenticate with no valid credentials available
Data Report about the different reverse engineering and

attack activities (e.g., data de-obfuscation; identifier
renaming; control flow reconstruction; code under-
standing; decompilation) carried out by attackers

Design Long running (30+ days) case study

Table 11: Gemalto case study

• RQ1 To what extent do ASPIRE protections prevent attacks against DRM/license manage-
ment/secure authentication?

• RQ2 What ASPIRE protections are most effective in preventing attacks against DRM/license
management/secure authentication?

These research questions deal with the effectiveness of the ASPIRE protections, when these are
applied to the industrial case studies. We want to assess the capability of the ASPIRE protections
to resist to a massive attack mounted by professional hackers during a long time period. Moreover,
we want to assess the relative importance of different defence lines implemented by the various
components in the ASPIRE tool chain, by analysing the activities carried out by the professional
hackers to defeat each specific ASPIRE protection.

8.2 Objects

The objects of this experiment are programs provided by the industrial ASPIRE partners:

ASPIRE D4.03 PUBLIC 68

D4.03 — Security Model, Knowledge Base, Human Experiments

Object C SLoC H SLoC Java SLoC Cpp SLoC Total
DemoPlayer 2,595 644 1,859 1,389 6,487
Diamante 53,065 6,748 819 - 58,283
OTP 284,319 44,152 7,892 2,694 338,103

Table 12: Size of case study objects (measured by sloccount), divided by file type.

DemoPlayer: Media player provided by Nagravision and requiring DRM protection

Diamante: License manager provided by SafeNet

OTP: One time password authentication server and client

Table 12 shows some size data about the involved objects (reported SLoC include any library that
must be compiled with the application code). The tasks that hackers are asked to perform on these
programs are respectively:

• Nagravision: Violate a specific DRM protection of DemoPlayer

• SafeNet: Forge a valid license key that is accepted by Diamante

• Gemalto: Authenticate on OTP without having any valid credential

8.3 Data

Professional hackers are asked to compile a Final Attack Report. The attack report will cover the
following points in detail:

1. Type of activities carried out during the attack: detailed indications about the type of ac-
tivities carried out to perform the attack and the proportion of time devoted to each activity.
For instance, hackers may want to indicate the following activities: (1) data de-obfuscation;
(2) identifier renaming; (3) control flow reconstruction; (4) code understanding; (5) decom-
pilation; (6) execution inspection (e.g., via debugger); (7) execution modification (e.g., via
debugger scripts). Hackers should provide such classification for each working day, not just
for the whole attack session.

2. Encountered obstacles: detailed description of the obstacles encountered during the attack
attempts. In particular, hackers should report any software protection that they think was
put into place to prevent the attack and that actually represented a major obstacle for their
work.

3. Attack strategy: description of the attack strategy and how it was adjusted whenever it
proved ineffective. Hackers should describe the initial attempts and the decisions (if any) to
change the strategy and to try alternative approaches.

4. Return of the attack effort: quantification of the attack effort, if possible economically, so as
to provide an estimate of the kind of remuneration that would justify the amount of work
done to carry out the attack.

8.4 Design

The design of this experiment is a long running case study, with loose control on the involved
subjects and mostly qualitative data collected during the execution of the experiment.

ASPIRE D4.03 PUBLIC 69

D4.03 — Security Model, Knowledge Base, Human Experiments

8.5 Qualitative analysis

Qualitative analysis of the reports collected from hackers will be the basis to answer RQ2. Evi-
dence about the activities performed and the obstacles encountered will be mapped to the ASPIRE
protections that were most effective in blocking the attacks mounted by professional hackers.
For what concerns RQ1, the answer may be boolean, i.e., the attack was or was not successful.
However, in case of a non-successful attack, there might still be some degree of exploitation that
was achieved, such as leakage of sensitive information, denial of service, or any other attack that
was not the direct goal of the case study task. For this reason RQ1 is formulated in terms of
the extent to which the attack is prevented. Again, qualitative data analysis will be employed to
answer this question.

8.6 Threats to validity

The main threats to the validity of the case studies belong to the conclusion, internal, construct
and external validity threat categories.
Conclusion validity threats concern the relationship between treatment and outcome. We assume
that unsuccessful attacks can be attributed to the ASPIRE protections and that the obstacles en-
countered during successful attacks can be also attributed to the ASPIRE protections, while we do
not know what would have happened without the ASPIRE protections. To mitigate this threat,
we collect extensive feedback from the professional hackers, in order to be able to support our
conjectures with objective evidence collected in the field.
Internal validity threats concern external factors that may affect the independent variable. While
subjects are professional hackers who are used to the kind of attack tasks requested to them during
the study, there might be factors out of our control that affect their performance. Being a long
running case study, the degree of control that we can have on the activities performed daily by the
professional hackers is limited. We reduce this threat to validity by introducing a structured and
systematic data collection procedure.
Construct validity threats concern the relationship between theory and observation. They are
mainly due to how we measure the effectiveness of the ASPIRE protections. We manually as-
sess the successful completion of the attack tasks to decide on the answer to RQ1. For RQ2, we
perform a qualitative analysis of the reports to obtain evidence in support to our conjectures.
External validity concerns the generalisation of the findings. Being based on a set of three case
studies, results may not generalise to different cases. On the other hand, the considered objects
are industrial applications, which make them quite meaningful cases, and the protected assets
span across a wide and meaningful range (i.e., DRM, licenses, authentication), so we expect some
degree of generalisability to similar applications and to similar industrial contexts.

8.7 Dates

The industrial case studies will be conducted at Gemalto, Nagravision and SafeNet between
Spring, 2016 and Autumn 2016.

ASPIRE D4.03 PUBLIC 70

D4.03 — Security Model, Knowledge Base, Human Experiments

List of abbreviations

ACM CCS Association for Computing Machinery Conference on Computer and Communica-
tions Security

ACTC ASPIRE Compiler Tool Chain

ADSS ASPIRE Decision Support System

AKB ASPIRE Knowledge Base

API Application Programming Interface

ARO Army Research Office

ASPIRE Advanced Software Protection: Integration, Research, and Exploitation

ASM ASPIRE Security Model

AT Attack Time

CC Cyclomatic Complexity

CFIM Control Flow Indirection Metric

CRUD Create, Read, Update, Delete

DOP Number of destination register operands

DoW Description of Work

DPL Dynamic Program Length

DL Description Logic

DRM Digital Rights Management

DST Number of destination operations

EDG Number of edges

ET Execution Time

E/R DB Entity-Relationship DataBase

EXE Number of executed instructions

GUI Graphical User Interface

ICSE International Conference on Software Engineering

IDA Pro For clarification: IDA is not an abbreviation

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

INS Number of instructions

IND Number of index edges

JDK Java Development Kit

ASPIRE D4.03 PUBLIC 71

D4.03 — Security Model, Knowledge Base, Human Experiments

JMP Number of computed jumped instructions

MCAS Monte Carlo-based Attack Simulation

NB Number of bytes

OTP One Time Password

OWL Web Ontology Language

PF Protection Fitness Function

PO Performance Overhead

PN Petri Net

PNML Petri Net Markup Language

PNDV Petri Nets with Discrete Values

PSAM PN-based Software Attack Model

RNC Residue Number Coding

SAPS Single Attack Process Simulation

SAMMPN Software Attack Model based on Marked Petri Net

SLoC Source Lines Of Code

SOP Number of source register operands

SPRO Software Protection (Workshop)

SPA Software Protection Assessment

SR Success Rate

SRC Number of source operations

UML Unified Modeling Language

WP Work Package

XOR Exclusive OR

XML eXtensible Markup Language

ASPIRE D4.03 PUBLIC 72

D4.03 — Security Model, Knowledge Base, Human Experiments

References

[1] Gregory W Corder and Dale I Foreman. Nonparametric statistics: A step-by-step approach. John
Wiley & Sons, 2014.

[2] Jay L Devore and Kenneth N Berk. Modern mathematical statistics with applications. Cengage
Learning, 2007.

[3] K. Jensen and L.M. Kristensen. Coloured Petri Nets: Modelling and Validation of Concurrent Sys-
tems. Springer Publishing Company, Incorporated, 1st edition, 2009.

[4] H. Wang, D. Fang, N. Wang, Z. Tang, F. Chen, and Y. Gu. Method to Evaluate Software Pro-
tection Based on Attack Modeling. In 10th IEEE International Conference on High Performance
Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous
Computing, HPCC/EUC, pages 837–844. IEEE, 2013.

[5] David A Wheeler. More than a gigabuck: Estimating gnu/linux’s size, 2001.

[6] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A. Wesslén. Experimentation in
Software Engineering - An Introduction. Kluwer Academic Publishers, 2000.

ASPIRE D4.03 PUBLIC 73

D4.03 — Security Model, Knowledge Base, Human Experiments

A Introduction slides for the data obfuscation experiment on binary
code

About	 this	 empirical	 study:	
•  It	 is	 useful	 for	 the	 research	 on	 so0ware	 protec3on	 carried	 out	 in	
the	 EU	 project	 Aspire	

•  You	 will	 not	 be	 evaluated	 on	 the	 results	 that	 you	 deliver	 while	
execu3ng	 the	 programming	 tasks	

•  Results	 will	 be	 used	 only	 in	 anonymous	 and	 aggregated	 form,	 just	
for	 research	 purposes	

•  Please,	 don’t	 talk	 with	 each	 other	 during	 and	 a0er	 the	 lab	
•  If	 you	 don’t	 understand	 some	 task,	 ask	 us	
•  You	 need	 Internet	 access	 to	 download	 the	 so0ware;	 if	 you	 don’t	
have	 it,	 we	 can	 provide	 you	 the	 so0ware	 on	 a	 USB	 key	

•  You	 need	 a	 working	 C	 environment,	 including	 at	 least	 code	 editor	
and	 compiler	

•  STEP0:	 Write	 your	 personal	 data	 at	 top	 of	 instruc8on	 sheet	
•  Write	 your	 name,	 surname,	 email	 (the	 one	 you	 will	 use	 later	 to	 send	 the	 result	 of	 the	

task	 execu8on)	 and	 the	 present	 date	 in	 the	 instruc8on	 sheet,	 at	 the	 top	
•  STEP	 1:	 Answer	 pre-‐ques8ons	 	

•  Pre-‐ques8onnaire	 about	 competence	 and	 previous	 experience	 with	 C	 programming	
•  STEP	 2:	 Read	 introduc8on	

•  Brief	 descrip8on	 of	 the	 func8onali8es	 of	 the	 C	 program	 (LoDery	 or	 LoDo)	 to	 be	
changed	

•  STEP	 3:	 Download	 and	 execute	 the	 program	
•  Download	 the	 program	 using	 the	 URL	 in	 the	 instruc8on	 sheet;	 execute	 the	 program	

and	 prac8ce	 with	 it	 to	 understand	 its	 inputs	 and	 outputs	
•  STEP	 4:	 Read	 the	 task	 descrip8on	

•  Make	 sure	 you	 understand	 the	 tampering	 task	 to	 be	 executed	 on	 the	 program	
•  STEP	 5:	 Write	 down	 start	 8me	

•  Write	 the	 8me	 (hh:mm)	 when	 you	 start	 working	 on	 the	 task	
•  STEP	 6:	 Execute	 the	 task	 (max	 8me	 =	 2h)	

•  Execute	 the	 tampering	 task;	 write	 the	 end	 8me	 (hh:mm)	 in	 the	 instruc8on	 sheet;	 call	
assistants	 and	 show	 them	 the	 results	 of	 tampering.	 Those	 working	 on	 LoDery	 are	 not	
allowed	 to	 inspect	 or	 debug	 any	 file	 inside	 directory	 loDery-‐server.	 	

•  STEP	 7:	 Answer	 post-‐ques8ons	 	
•  Ques8onnaire	 about	 difficulty	 of	 the	 task	 and	 about	 the	 tools	 used	 to	 solve	 it	

ASPIRE D4.03 PUBLIC 74

D4.03 — Security Model, Knowledge Base, Human Experiments

B Introduction slides for the data obfuscation experiment on C source
code

About	 this	 empirical	 study:	
•  It	 is	 useful	 for	 the	 research	 on	 so0ware	 protec3on	 carried	 out	 in	
the	 EU	 project	 Aspire	

•  You	 will	 not	 be	 evaluated	 on	 the	 results	 that	 you	 deliver	 while	
execu3ng	 the	 programming	 tasks	

•  Results	 will	 be	 used	 only	 in	 anonymous	 and	 aggregated	 form,	 just	
for	 research	 purposes	

•  Please,	 don’t	 talk	 with	 each	 other	 during	 and	 a0er	 the	 lab	
•  If	 you	 don’t	 understand	 some	 task,	 ask	 us	
•  You	 need	 Internet	 access	 to	 download	 the	 so0ware;	 if	 you	 don’t	
have	 it,	 we	 can	 provide	 you	 the	 so0ware	 on	 a	 USB	 key	

•  You	 need	 a	 working	 C	 environment,	 including	 at	 least	 code	 editor	
and	 compiler	

•  STEP0:	 Write	 your	 personal	 data	 at	 top	 of	 instruc8on	 sheet	
•  Write	 your	 name,	 surname,	 email	 (the	 one	 you	 will	 use	 later	 to	 send	 the	 result	 of	 the	

task	 execu8on)	 and	 the	 present	 date	 in	 the	 instruc8on	 sheet,	 at	 the	 top	
•  STEP	 1:	 Answer	 pre-‐ques8ons	 	

•  Pre-‐ques8onnaire	 about	 competence	 and	 previous	 experience	 with	 C	 programming	
•  STEP	 2:	 Read	 introduc8on	

•  Brief	 descrip8on	 of	 the	 func8onali8es	 of	 the	 C	 program	 (LoDery	 or	 LoDo)	 to	 be	
changed	

•  STEP	 3:	 Download,	 compile	 and	 execute	 the	 program	
•  Download	 the	 program	 using	 the	 URL	 in	 the	 instruc8on	 sheet;	 compile	 and	 execute	

the	 program;	 prac8ce	 with	 it	 to	 understand	 its	 inputs	 and	 outputs	
•  STEP	 4:	 Read	 the	 task	 descrip8on	

•  Make	 sure	 you	 understand	 the	 tampering	 task	 to	 be	 executed	 on	 the	 code;	 do	 not	
read	 the	 source	 code	 in	 this	 phase	

•  STEP	 5:	 Write	 down	 start	 8me	
•  Write	 the	 8me	 (hh:mm)	 when	 you	 start	 working	 on	 the	 task	

•  STEP	 6:	 Execute	 the	 task	 (max	 8me	 =	 2h)	
•  Execute	 the	 code	 tampering	 task;	 write	 the	 end	 8me	 (hh:mm)	 in	 the	 instruc8on	 sheet;	

send	 the	 modified	 code	 to	 ceccato@Nk.eu.	 Those	 working	 on	 LoDery	 are	 not	 allowed	
to	 read	 or	 modify	 any	 file	 inside	 directory	 loDery-‐server.	 	

•  STEP	 7:	 Answer	 post-‐ques8ons	 	
•  Ques8onnaire	 about	 difficulty	 of	 the	 task	 and	 about	 the	 tools	 used	 to	 solve	 it	

ASPIRE D4.03 PUBLIC 75

D4.03 — Security Model, Knowledge Base, Human Experiments

C Instructions for the data obfuscation experiment on binary code

Group: C/T
Surname: Name:
Date: Email:

Lotto

STEP 1: Please, answer the following questions:
1. Have you ever worked as a professional programmer (in industry or in a computer house)?

¢ No ¢ Yes, part-time ¢ Yes, full-time

2. What is your cumulative programming experience in C?
 < 3 Months 6 Months 1 Year 2 Years > 3 Years
 ¢ ¢ ¢ ¢ ¢

3. How long have you been using an IDE for C programming?
 Never 6 Months 1 Year 2 Years > 3 Years
 ¢ ¢ ¢ ¢ ¢

4. Can you do the following actions on a C debugger (multiple answers allowed)?
 ❏ Add breakpoints
 ❏ Execute the program stepwise
 ❏ Inspect the call stack
 ❏ Inspect the program variables

5. What is your cumulative programming experience in assembly?
 < 3 Months 6 Months 1 Year 2 Years > 3 Years
 ¢ ¢ ¢ ¢ ¢

6. What is your cumulative programming experience with reverse engineering?
 < 3 Months 6 Months 1 Year 2 Years > 3 Years
 ¢ ¢ ¢ ¢ ¢

7. Can you do the following actions on an assembly-level debugger (multiple answers allowed)?
 ❏ Add breakpoints
 ❏ Execute the program stepwise
 ❏ Inspect the call stack
 ❏ Inspect the program variables

STEP2: Please, read the following brief introduction
Lotto is a C program for machines that let users play lotto. A new program is generated every
week, with the winning sequence embedded in the source code. The JACKPOT is hit when all 7
numbers are matched (i.e., all six numbers plus the bonus number).

STEP3: Compile, execute and practice

• Download the compiled code from:
o <UGENT-URL>/Lotto-C0234/T1298.zip

• Execute Lotto, e.g., by running the command ./lotto
• Practice with Lotto, playing Lotto for a few minutes, to get an understanding of how it can

be played by users

ASPIRE D4.03 PUBLIC 76

D4.03 — Security Model, Knowledge Base, Human Experiments

STEP4: Please, read the following description of the task you will execute at STEP6
Determine the JACKPOT sequence, consisting of 7 winning numbers, which is embedded in the C
source code (specifically, inside some variables) of the Lotto program. While executing the task,
you are allowed to debug and execute the program. Write down the winning sequence below
(under STEP 6).

STEP5: Write down the start time
Start time: ____________

STEP6: Execute the task described at STEP 4, write the stop time and the winning sequence
Stop time: ____________ Winning sequence: ________________________

STEP 7: Please, answer the following questions:
1. The task was clear to me.
 Strongly agree Agree Not certain Disagree Strongly disagree
 ¢ ¢ ¢ ¢ ¢

2. There was enough time to perform the task.
 Strongly agree Agree Not certain Disagree Strongly disagree
 ¢ ¢ ¢ ¢ ¢

3. The task was easy to perform.
 Strongly agree Agree Not certain Disagree Strongly disagree
 ¢ ¢ ¢ ¢ ¢

4. I have used the following tools to perform the task (multiple answers allowed):
 Disassembler IDE Debugger Internet search Other: ____________
 ❏ ❏ ❏ ❏ ❏

5. I have spent most of the time:
 Reading and understanding Inspecting the execution Changing the execution
 the binary by means of the debugger by means of the debugger
 ¢ ¢ ¢

ASPIRE D4.03 PUBLIC 77

D4.03 — Security Model, Knowledge Base, Human Experiments

Group: C/T
Surname: Name:
Date: Email:

Lottery

STEP 1: Please, answer the following questions:
1. Have you ever worked as a professional programmer (in industry or in a computer house)?

¢ No ¢ Yes, part-time ¢ Yes, full-time

2. What is your cumulative programming experience in C?
 < 3 Months 6 Months 1 Year 2 Years > 3 Years
 ¢ ¢ ¢ ¢ ¢

3. How long have you been using an IDE for C programming?
 Never 6 Months 1 Year 2 Years > 3 Years
 ¢ ¢ ¢ ¢ ¢

4. Can you do the following actions on a C debugger (multiple answers allowed)?
 ❏ Add breakpoints
 ❏ Execute the program stepwise
 ❏ Inspect the call stack
 ❏ Inspect the program variables

5. What is your cumulative programming experience in assembly?
 < 3 Months 6 Months 1 Year 2 Years > 3 Years
 ¢ ¢ ¢ ¢ ¢

6. What is your cumulative programming experience with reverse engineering?
 < 3 Months 6 Months 1 Year 2 Years > 3 Years
 ¢ ¢ ¢ ¢ ¢

7. Can you do the following actions on an assembly-level debugger (multiple answers allowed)?
 ❏ Add breakpoints
 ❏ Execute the program stepwise
 ❏ Inspect the call stack
 ❏ Inspect the program variables

STEP2: Please, read the following brief introduction
Lottery is a client-server C program for machines that let users play lottery. Lottery uses a random
sequence of bytes (called a challenge) generated by a lottery server to extract 7 numbers (without
repetitions) between 1 and 39. The challenge is stored on the server, where it is used for anti-
tampering check. A legal extraction consists of 7 numbers that match one of the challenges stored
on the server. 10 extractions are performed by Lottery. The extracted numbers are printed by the
lottery server into its log file (log.txt).

STEP3: Compile, execute and practice

• Download the compiled code from:
o <UGENT-URL>/Lottery-C5567/T8943.zip

ASPIRE D4.03 PUBLIC 78

D4.03 — Security Model, Knowledge Base, Human Experiments

• Execute Lottery, e.g., by running the commands:
o ./lottery-server > log.txt &
o ./lottery

• Look at the output produced by Lottery (file log.txt), to get a sense of the reported
statistics

STEP4: Please, read the following description of the task you will execute at STEP6
Using the debugger (either manually or through scripts), modify the execution of the program
Lottery so that it extracts only numbers between 1 and 20 in a legal extraction (i.e., one matching
the logged challenge). When any of the 7 extracted numbers is greater than 20, the extraction is
redone, by requesting a new challenge to the lottery server. In fact, the extracted numbers are
checked for validity against the challenge stored on the server. After successfully completing the
task, the logged numbers shall be all less than or equal to 20. You are allowed to inspect and
modify only program lottery; the lottery server must not be inspected or debugged in any way.

STEP5: Write down the start time
Start time: ____________

STEP6: Execute the task described at STEP4, mark the stop time and show the log file to the
assistants running the experiment
Stop time: ____________

STEP 7: Please, answer the following questions:
1. The task was clear to me.
 Strongly agree Agree Not certain Disagree Strongly disagree
 ¢ ¢ ¢ ¢ ¢

2. There was enough time to perform the task.
 Strongly agree Agree Not certain Disagree Strongly disagree
 ¢ ¢ ¢ ¢ ¢

3. The task was easy to perform.
 Strongly agree Agree Not certain Disagree Strongly disagree
 ¢ ¢ ¢ ¢ ¢

4. I have used the following tools to perform the task (multiple answers allowed):
 Disassembler IDE Debugger Internet search Other: ____________
 ❏ ❏ ❏ ❏ ❏

5. I have spent most of the time:
 Reading and understanding Inspecting the execution Changing the execution
 the binary by means of the debugger by means of the debugger
 ¢ ¢ ¢

ASPIRE D4.03 PUBLIC 79

D4.03 — Security Model, Knowledge Base, Human Experiments

D Instructions for the data obfuscation experiment on C source code

Group: C/T
Surname: Name:
Date: Email:

Lotto

STEP 1: Please, answer the following questions:
1. Have you ever worked as a professional programmer (in industry or in a computer house)?

¢ No ¢ Yes, part-time ¢ Yes, full-time

2. What is your cumulative programming experience in C?
 < 3 Months 6 Months 1 Year 2 Years > 3 Years
 ¢ ¢ ¢ ¢ ¢

3. How long have you been using an IDE for C programming?
 Never 6 Months 1 Year 2 Years > 3 Years
 ¢ ¢ ¢ ¢ ¢

4. Can you do the following actions on a C debugger (multiple answers allowed)?
 ❏ Add breakpoints
 ❏ Execute the program stepwise
 ❏ Inspect the call stack
 ❏ Inspect the program variables

STEP2: Please, read the following brief introduction
Lotto is a C program for machines that let users play lotto. A new program is generated every
week, with the winning sequence embedded in the source code. The JACKPOT is hit when all 7
numbers are matched (i.e., all six numbers plus the bonus number).

STEP3: Compile, execute and practice

• Download the code from:
o http://selab.fbk.eu/asp/Lotto-C0234/T1298.zip

• Compile Lotto, e.g., by entering directory src and running the command: make
• Execute Lotto, e.g., by running the command ./lotto
• Practice with Lotto, playing Lotto for a few minutes, to get an understanding of how it can

be played by users (do NOT look at the source code in this phase!)

STEP4: Please, read the following description of the task you will execute at STEP6
Determine the JACKPOT sequence, consisting of 7 winning numbers, which is embedded in the C
source code (specifically, inside some variables) of the Lotto program. While executing the task,
you are allowed to read, modify, compile, debug and execute the source code. Modify the program
so that it prints the winning sequence to the standard output as soon as the program is launched.

STEP5: Write down the start time
Start time: ____________

STEP6: Execute the task described at STEP4, mark the stop time and send the modified
source code to ceccato@fbk.eu
Stop time: ____________

ASPIRE D4.03 PUBLIC 80

D4.03 — Security Model, Knowledge Base, Human Experiments

STEP 7: Please, answer the following questions:
1. The task was clear to me.
 Strongly agree Agree Not certain Disagree Strongly disagree
 ¢ ¢ ¢ ¢ ¢

2. There was enough time to perform the task.
 Strongly agree Agree Not certain Disagree Strongly disagree
 ¢ ¢ ¢ ¢ ¢

3. The task was easy to perform.
 Strongly agree Agree Not certain Disagree Strongly disagree
 ¢ ¢ ¢ ¢ ¢

4. I have used the following tools to perform the task (multiple answers allowed):
 Editor IDE Compiler Debugger Internet search
 ❏ ❏ ❏ ❏ ❏

5. I have spent most of the time:
 Reading and understanding Changing (e.g., adding printf) and Executing the code
 the code executing the code with the debugger
 ¢ ¢ ¢

ASPIRE D4.03 PUBLIC 81

D4.03 — Security Model, Knowledge Base, Human Experiments

Group: C/T
Surname: Name:
Date: Email:

Lottery

STEP 1: Please, answer the following questions:
1. Have you ever worked as a professional programmer (in industry or in a computer house)?

¢ No ¢ Yes, part-time ¢ Yes, full-time

2. What is your cumulative programming experience in C?
 < 3 Months 6 Months 1 Year 2 Years > 3 Years
 ¢ ¢ ¢ ¢ ¢

3. How long have you been using an IDE for C programming?
 Never 6 Months 1 Year 2 Years > 3 Years
 ¢ ¢ ¢ ¢ ¢

4. Can you do the following actions on a C debugger (multiple answers allowed)?
 ❏ Add breakpoints
 ❏ Execute the program stepwise
 ❏ Inspect the call stack
 ❏ Inspect the program variables

STEP2: Please, read the following brief introduction
Lottery is a client-server C program for machines that let users play lottery. Lottery uses a random
sequence of bytes (called a challenge) generated by a lottery server to extract 7 numbers (without
repetitions) between 1 and 39. The challenge is stored on the server, where it is used for anti-
tampering check. A legal extraction consists of 7 numbers that match one of the challenges stored
on the server. 10 extractions are performed by Lottery. The extracted numbers are printed by the
lottery server into its log file (log.txt).

STEP3: Compile, execute and practice

• Download the code from:
o http://selab.fbk.eu/asp/Lottery-C5567/T8943.zip

• Compile Lottery, e.g., by entering directory src and running the command make and by
entering directory src/lottery-server and running the command make

• Execute Lottery, e.g., by running the commands:
o ./ lottery-server/lottery-server > log.txt &
o ./lottery

• Look at the output produced by Lottery (file log.txt), to get a sense of the reported
statistics (do NOT look at the source code in this phase!)

STEP4: Please, read the following description of the task you will execute at STEP6
Modify the program Lottery so that it extracts only numbers between 1 and 20 in a legal extraction
(i.e., one matching the logged challenge). When any of the 7 extracted numbers is greater than 20,
the extraction is redone, by requesting a new challenge to the lottery server. In fact, the extracted
numbers are checked for validity against the challenge stored on the server. After successfully
completing the task, the logged numbers shall be all less than or equal to 20. Source code files

ASPIRE D4.03 PUBLIC 82

D4.03 — Security Model, Knowledge Base, Human Experiments

under src/lottery-server must not be read or modified during the execution of the task. In any case,
you are allowed to read and modify only file lottery.c.

STEP5: Write down the start time
Start time: ____________

STEP6: Execute the task described at STEP4, mark the stop time and send the modified
source code (lottery.c) to ceccato@fbk.eu
Stop time: ____________

STEP 7: Please, answer the following questions:
1. The task was clear to me.
 Strongly agree Agree Not certain Disagree Strongly disagree
 ¢ ¢ ¢ ¢ ¢

2. There was enough time to perform the task.
 Strongly agree Agree Not certain Disagree Strongly disagree
 ¢ ¢ ¢ ¢ ¢

3. The task was easy to perform.
 Strongly agree Agree Not certain Disagree Strongly disagree
 ¢ ¢ ¢ ¢ ¢

4. I have used the following tools to perform the task (multiple answers allowed):
 Editor IDE Compiler Debugger Internet search
 ❏ ❏ ❏ ❏ ❏

5. I have spent most of the time:
 Reading and understanding Changing (e.g., adding printf) and Executing the code
 the code executing the code with the debugger
 ¢ ¢ ¢

ASPIRE D4.03 PUBLIC 83

	Introduction
	I The ASPIRE Knowledge Base
	The ASPIRE knowledge base
	The ASPIRE security model
	The ASPIRE security model v1.1: main model
	Model Extensions: the Sub-Models
	Application sub-model
	Assets sub-model
	SW Protection sub-model
	Attacks sub-model
	Metrics sub-model
	Protection requirements sub-model

	II Security Evaluation
	Tool Support for Computing Software Complexity Metrics
	Automated support for tool-based metrics
	Diffing tools
	Disassemblers and control flow reconstruction

	Automated Tool Support for Complexity Metrics
	Static metrics
	Dynamic metrics

	Automated Tool Support for Resilience Metrics
	Evolution of the Metrics

	Security Evaluation
	Extended Petri Net based Editor for Protection Assessment
	Petri Net Model Editing
	Transition Information Editor for Protection Assessment
	Property View in the Graphical Editing Model

	Protection Fitness Function
	Transition Information for Protection Assessment
	Protection Fitness Function Method

	PN Simulator
	Single Attack Process Simulation
	Monte Carlo Simulation

	Obtaining Metrics with ACTC

	III Experiments
	Data obfuscation experiment
	Research questions
	Objects
	Metrics
	Design
	Statistical analysis
	Experimental results
	UGent results
	FBK results
	Overall results

	Comparison Results Source Code Attacks vs. Binary Code Attacks
	Threats to validity
	Lessons Learned
	Dates

	Code splitting experiment
	Research questions
	Object
	Metrics
	Design
	Statistical analysis
	Threats to validity
	Dates

	Industrial case studies
	Research questions
	Objects
	Data
	Design
	Qualitative analysis
	Threats to validity
	Dates

	Introduction slides for the data obfuscation experiment on binary code
	Introduction slides for the data obfuscation experiment on C source code
	Instructions for the data obfuscation experiment on binary code
	Instructions for the data obfuscation experiment on C source code

