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Executive Summary

This deliverable fits in the overall ASPIRE project plan in two ways that correspond to the two parts of this
deliverable.
In Part I, the initial results of the project research into software complexity metrics in Task T4.2 of the DoW
are presented for the first time.
For this research, the goal-question-metrics approach is used. Two times two goals are identified. For com-
binations of protections, we need to measure and estimate the performance overhead and the increased
effort needed in specific attack steps. To pose the relevant questions, the aspects of attack goals, attack sub-
ject, attack means, attack object, and attack actions are considered, all of which determine which software
features should be measured or estimated, and how they should be measured to get an indication of the
effort required per attack step.
In order to cover both static and dynamic attacks, and a wide range of protections, features related to
potency, resilience and stealth aspects need to be measured or estimated in a unified framework. To allow
this, we propose to approach all protections and attacks from a syntax-semantics perspective: protections
try to increase the (apparent) complexity of the program semantics or add semantics, while attacks typically
aim for the opposite, i.e., simplifying the representation of the program semantics to facilitate attacks steps.
Based on this reasoning, we identify three questions: What code/data fragments are relevant for an attack
step? How complex is the syntax, semantics, and mapping between syntax and semantics of the protected,
relevant code/data fragments compared to the complexity of the corresponding unprotected code/data
fragments? And how easy is it to simplify the syntax, semantics and mapping of the protected code, without
oversimplifying it?
To answers the first question, we will rely on code annotations that mark the relevant code. To answer
the second: we propose to use a wide range of dynamic and static complexity metrics: static and dynamic
code size, static and dynamic control flow complexity, ill-structuredness, code layout variability, static and
dynamic data flow complexity, semantic dependencies, and static and dynamic data presence. To answer
the third question, we propose not to compute the complexity metrics directly on the relevant syntactic
representations of the program semantics, but on simplified versions thereof. The simplification weights
are derived from resilience-related and stealth-related features that are based on fundamental aspects of
semantic relevance and static and dynamic code variability.
For each of the proposed features, one or more concrete metrics are proposed, totaling 32 different metrics.
Finally, an approach is presented to aggregate the many metrics to fewer values that the ASPIRE Decision
Support System will be able to use for its selection of the golden protection combination.
In Part II, this deliverable documents the security modeling progress that has been made in Task T4.1 of the
project since the first presentation of the ASPIRE Security Model in deliverable D4.01 at M6 of the project,
and since the first implementation description of that model in D5.01 at M9 of the project.
First, we have modelled two attacks to defeat relevant protections for the project use-cases: White-Box-
Crypto and the SoftVM. This analysis effort has highlighted the need to use high-level Petri Nets for mod-
elling, and we decided to use Petri Nets with Discrete Values (PNDV). These high-level Petri Nets allow
adding discrete variables representing the attacker’s intermediate knowledge while performing an attack,
as well as adding conditions to the transitions. We evaluated different extensible Petri Net editors like
CPNtools, PIPE and ePNK, and we chose the last one. ePNK is designed for PNDVs, it supports PNML
standard for exporting Petri Net models, and it is Eclipse-based, thus easier to extend for our purposes.
Secondly, the UML Metrics sub-model of the ASPIRE Security Model is instantiated for the metrics pre-
sented in Part I.
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1 Introduction

Section authors:
Bjorn De Sutter (UGent)

This deliverable fits in the overall ASPIRE project plan in two ways.
First, this is the first occassion at which the initial results of the project research into software complexity
metrics in Task T4.2 of the DoW are presented. This presentation constitutes Part I of this deliverable.
Secondly, this deliverable documents the security modeling progress that has been made in Task T4.1 of the
project. It hence updates and extends parts of the ASPIRE Security Model as documented in deliverable
D4.01 from M6, as well as the first implementation description of that model in D5.01 from M9. These
updates and extensions are documented in Part II of this deliverable.
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Part I

ASPIRE Complexity Metrics

2 Goal - Question - Metrics Approach

Section authors:
Bjorn De Sutter (UGent), Paolo Tonella (FBK)

In this document, we define a framework for the quantification of software protection, which extends the
Goal-Question-Metric approach [11]. Furthermore, we start the instantiation of the framework in the AS-
PIRE context. The goals and the questions that we consider depend on the protections that the project is
elaborating as described in the GA Annex II DoW, in deliverable D1.4, and the protection-specific deliver-
ables of the project. Furthermore, the goals and the questions that we consider depend on the attacks that
are relevant for such protections. These are all the attacks in the scope of the ASPIRE project, as presented
in deliverable D1.02. Starting from attacks and protections, we identify the relevant features that metrics
should capture quantitatively.
The instantiation of our framework consists of the following steps:

Step 1 (goal) Succinct definition of the goals the approach is supposed to achieve, in this case with regards
to the quantification of software protections. The used metrics can be used to evaluate to what extent
a goal is reached in some instance (which is akin to a decision problem), as well as to actually achieve
that goal itself (i.e., as part of the solution to an optimization problem).

Step 2 (questions) Expansion of the goal into a set of questions of which the answers contribute to answer-
ing the decision problem and to solving the optimization problem.

Step 3 (measurable features) Identification of a set of measurable features, based on protections and at-
tacks, relevant for answering the questions.

Step 4 (metrics) Derivation of metrics from the measurable features. Metrics are more concretely defined
instantiations of the features. Their derivation includes an unambiguous specification of how to
actually compute them given the definition of an attack, of applied protections, if any, and of the
(un)protected code.

In this context, it is important to note that questions can be relevant to multiple goals, and metrics can be
relevant to multiple questions and multiple goals, but they don’t need to be.
In practice, steps 3 and 4 will have to be applied iteratively. One reason to revise or extend the metrics over
time is when attacks are added to the attack model, or when additional protections are to be evaluated.
Another reason is that quite likely, the first instantiation of the framework for use in the ASPIRE Decision
Support System (ADSS) will need considerable, iterative tuning before it becomes really useful.
This document therefore focuses on the presentation of the framework and on the initial instantiation re-
sults. At this time in the project, however, it is too early to present a complete instantiation or to evaluate
the instantiation.

ASPIRE D4.02 PUBLIC 2
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3 Goals and Questions

Section authors:
Bjorn De Sutter (UGent), Mariano Ceccato (FBK), Paolo Tonella (FBK)

3.1 Goals

The technology developed in ASPIRE aims at increasing the cost incurred to engineer a successful MATE
attack on software and to lower the potential profit of exploiting such an attack, to take away economic
motives from attackers. Protections are designed to maximize such cost increase and profit decrease. In-
creasing the cost is typically achieved by making the attack steps more complex, hence augmenting the
time required to complete each attack step. This attack cost increase is one aspect we want to measure. At
the same time, ASPIRE aims at minimal execution overhead associated with its protections. So protection
overhead is the other aspect we want to measure. The decrease in attack profit is not something we want to
measure automatically by means of metrics. This profit depends too much on non-technical aspects, such
as business models, software distribution models, underground value of assets, etc. to be quantified in
an automated manner. Similarly, we will not try to measure renewability. We envision that renewability
requirements, which clearly depend on the business model in which protections are being deployed, will
be passed to the ADSS by its users. We also envision the renewability capabilities of all protections in the
ACTC will be documented in the ASPIRE Knowledge Base, such that the ADSS can take them into account
without having to really measure those features.
So the general goal of the ASPIRE metrics is to quantify the benefits (increase in attacker effort) and costs
(decrease in performance) associated with the adoption of ASPIRE protections. In ASPIRE, this quantifica-
tion needs to be performed in two different scenarios.
The first scenario is when an application has been protected with a combination of protections, and the
benefits and costs of that combination of protections have to be quantified. This occurs in the context of
the decision problem mentioned in step 1 in the previous section. The decision problem then is to decide
whether one set of protections is better than another, and if so, to quantify the difference.
In that scenario, the code of both the unprotected and the protected software versions are available to
compute metrics relevant for the attacks under consideration. The benefits and costs of the protections can
hence be quantified by computing a vector of metrics on both versions, and by subtracting the two metric
vectors.
The second scenario is when only an unprotected application is available, and we need to predict the ben-
efits and costs of a potential set of protections to be applied. This scenario will occur in the ADSS. As
described in deliverables D4.01 and D5.01, this ADSS has to select the golden combination of protections,
for which it will rely on the ability to quantify the effects of applying potential protections on the Petri Net
models of attacks, if possible without actually applying those protections.
In that case, the benefits and costs will be quantified by computing metrics on the unprotected application,
and by estimating the impact of the protections on those metrics. In other words, if P is the program to be
protected, and P

i

with 0  i  n is a protected version of P that can be generated by applying combination
c
i

of protections to P , we hope to estimate a metric M(P, P
i

, c
i

) without actually having to produce the
code of P

i

itself. Whether or not that is feasible is, at this point in time, an open question. We assume the
answer is positive, but more research is needed to validate that this goal is achievable. In particular when
the metric M not only depends on a static representation of P , but also on traces T collected by executing
P on some representative inputs, estimating the impact of the protections seems challenging. In that case,
we want to estimate M(P, P

i

, c
i

, T, T
i

) with T
i

the traces that would be obtained by executing P
i

on the
representative inputs, without generating P

i

and hence without collecting the traces T
i

. While we foresee
that this can work for individual protections, we foresee it will be a major challenge when c

i

consists of
a combinations of multiple, possibly dependent protections. In the remainder of the project, we hope to
overcome this challenge.
The concrete goals we foresee for the ASPIRE metrics, given an attack and a set of protections to be evalu-
ated, are therefore the four goals of Figure 1.
With respect to goals 1 and 2, we can be very brief: for measuring the performance overhead, we can simply
measure execution times, memory footprints, and file sizes. If necessary, these forms of run-time overhead
can be measured for multiple use cases, execution contexts, and execution scenarios. For estimating the
overhead of potential protections, we can use profile information in the form of so-called basic block and
edge execution counts obtained on instrumented versions of the unprotected software. Again, those can be
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GOAL%1:%measure%%
performance%overhead%

GOAL%2:%es7mate%
performance%overhead%

GOAL%3:%measure%
increased%a;ack%effort%

GOAL%4:%es7mate%
increases%a;ack%effort%

Figure 1: Goals of the ASPIRE metrics

obtained for multiple use cases and execution contexts and scenarios.
By contrast, obtaining precise indications on the exact effort increase for the attackers is very difficult and
would involve the collection of an amount of empirical data that is beyond feasibility for the ASPIRE
project. In fact, predicting the probability distribution of the attack time when a given protection is ap-
plied would require the availability of data sufficient to train a prediction model (e.g., a linear predictor).
In practice, however, the number of empirical data points that can be collected for each ASPIRE protection
is necessarily limited and insufficient for the training of a predictor.
However, it is definitely within the possibility and the objectives of ASPIRE to define a set of metrics that
provide approximate indications about the effort increase that can be expected. Even if such measurements
cannot be easily turned into attack time, they provide useful indications about the amount of code elements
that are made more complex to analyze for an attacker. Such measurable features impacted by the ASPIRE
protections give a clear picture of the amount of protection introduced into the code, relatively to the entire
code base and with respect to alternative configurations of the same protections. Users of the ASPIRE
protections will obtain precise, quantitative indications about the impact of each protection in the code.

3.2 Questions

In order to measure or estimate the attack effort, we first need to consider all the relevant aspects of attacks
that influence the attack effort. Because there are so many, we will try to structure, classify and unify them
to a certain extent. Next, we will study reduce them to their essence and fundamentals, being syntax and
semantics of programs and program fragments. Eventually, we will then be able to formulate the right
questions in term of the fundamental aspects of syntax and semantics.
In this section, it is important to realize that with attack effort, we denote the effort needed by the attacker
to execute one attack step, which roughly corresponds to one specific transition in a Petri Net model (see
deliverable D4.01 and Part II of this deliverable) of all possible attack paths on some asset in some software.
How to combine the efforts of multiple such steps in a whole attack, is the subject of the security modeling
in Task T4.1 of the project, and is out of scope for this part of this deliverable.

3.2.1 Attack properties that influence attack effort

We identified five major aspects that contribute to the effort needed to mount an attack: the goal1, the
subject, the means, the object, and the actions of the attack.

Attack Goal First of all, the effort needed to mount an attack depends heavily on the goal of the attack:
the type of asset under attack and the threat executed on the asset by the attacker. A categorization of
assets and threats was provided in deliverable D1.02 Section 3. The subgoal that the attacker wants
to achieve with a concrete attack step clearly influences the means that he will use and the actions
that he performs. In this regard, it is important to understand that the possible goals and subgoals
span a very wide range. This includes, but is by no means limited to, building all kinds of static and
dynamic program representations, simplifying all kinds of program representations and performing
analyses on them, reducing the search space of attacks, tampering with software either as ultimate
goal or as preparation for achieving any of the already mentioned subgoals, etc. In general, the goals
hence also determine the object(s) on which the attacker will perform the actions, such as different
program representations. Moreover, the goal of the attack or the attack step being performed also
influences how the attacker can use his different means, etc., with respect to whether or not sound
methods need to be used.

Attack Subject The subject of the attack is the attacker. Clearly, his/her/their experience, capabilities and
available resources influence the effort and time that will need to be invested into an attack. Their

1In the remainder of this deliverable, the term “goal” will most often denote the objective of an attack step, in line with the use of
this term in other deliverables. When the term refers to the goal of the evaluation approach, this will be made clear in the text.
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experience and capabilities determine which means they can deploy, and how fluently they will do
so. A coarse-grained identification of capabilities and types of attacks and attack tools was presented
in deliverable D1.02 Section 4. Moreover, it is important to note that advanced attackers can not only
use existing means, but can also extend and customize existing means to develop new ones, e.g.,
based on plug-ins.
Finally, for many protections learning effects play an important role. Such effects can occur from one
software attack to another, but also within one attack, e.g., when an identical fragment of code is
injected multiple times into an application, of which only one instance needs to be analyzed.

Attack Means The means are the tools, techniques, methods, heuristics, and all kinds of resources that
attackers might use. An overview was provided in deliverable D1.02. It is important to consider the
abstraction level at which some mean is considered in an attack step. For example, on the one hand
one might consider the tool IDA Pro v6.3 as a very concrete means to perform disassembling. On
the other hand, one might consider “recursive descent assembling” as an abstract class of assembler
techniques. Considering very concrete means introduces the risk of using metrics that are not relevant
for other concrete means (such as IDA Pro v6.4), while the use of very abstract means introduces the
risk of using inaccurate metrics.
To some extent, the means used by an attacker depend on the protections that have been applied. This
is particularly the case for attack steps that aim for undoing or circumventing specific protections. In
addition, it can also be the case for typical code analysis steps, in which the attacker can choose and
tune heuristics and used abstractions to trade off precision, soundness, completeness, and complexity
(i.e., execution time). If the attacker knows the protections that have been applied, he will use that
knowledge for tuning his approach and means.

Attack Object The protected or unprotected software that embeds the asset under attack is the object to
which the attacker applies his means. Clearly many properties of this object influence the attack
effort. One very important aspect is the representation of the software under attack. An attack step,
each tool, and each technique are not applied on an abstract notion of the software, but on a concrete
representation or model thereof that the attacker has constructed during preceding attack steps. These
representations can be traces, control flow graphs, data flow graphs, program dependency graphs,
assembler listings, etc.
It is important to consider the relevant representation when computing metrics and to distinguish
between the representation or model (its precision, its completeness, its soundness, ...) that attackers
can reconstruct and the ones that defenders can reconstruct. An attacker is able to reconstruct a
model or representation based only on his (limited) a-priori knowledge and on information collected
during preceding attack steps. The defender, however, can build a representation using information
collected from the unprotected (source) code and use knowledge of the configuration with which the
protections have been applied. On the one hand, determining the exact representation available to an
attacker for a specific attack step is complicated by the fact that one can only estimate the outcome
of previously executed attack steps, and that one can only estimate the precise forms (and hence
precision) of the underlying code analyses used by the attacker. On the other hand, we can to a
certain degree rely on worst-case assumptions: after all, we are interested in blocking attackers that
use the best available means of some kind.
As such, we also have to assume that attackers know which tool has been used to produce the pro-
tected version, and what protections that tool can deploy. This in turn implies that when computing
metrics, we can and in some cases have to take the applied protections and their properties into ac-
count. This will particularly be the case when we will try to estimate the impact of certain protections
on metrics without actually generating the protected code.
Furthermore, it can be important to differentiate between code of the original application, and code
added during the application of some code transformation that implements a protection. In particular
when the impact of protections on total effort needs to be estimated (i.e., predicated as in scenario
2 above), a priori knowledge of the features of added code is needed. Another scenario in which
to differentiate between the two classes of code, is when attackers may be able to identify the two
parts and exploit that information, e.g., to fine-tune or refocus their attacks, or to speed-up attacks by
learning and reusing already obtained results.
As such, it will be important to measure features of code that attackers can use to identify code corre-
sponding to certain protections.
A final aspect of the object to consider, is which parts of the whole object are actually relevant to an
attack on a specific asset that is embedded in a limited part of the object. Often, when the attacker can
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correctly identify which part of the software to attack, or has already correctly identified that part, the
other parts of the software will no longer contribute to the effort needed for the attack.

Attack Actions The final aspect to consider, is how the attack step is composed of individual steps. Does
the software representation need to be treated as a whole, with some global approach, or does the
attack consist of the same local step applied repeatedly for all code fragments at some level of granu-
larity? This is particularly relevant with regards to the learning effect in the subjects conducting the
attack.
Like the means, also the actions depend to some extent on the applied protections. Also in this case,
the reason is that attackers will tune their actions if they have a priori knowledge about the protec-
tions.

From the brief discussion of these five aspects, it is clear that a huge number of factors influence the total
effort that an attacker needs to invest in a complete attack. So we seem to be facing a daunting task in
identifying the relevant questions and metrics.

3.2.2 Classifying and unifying the relevant properties

However, as stated before, we assume we can target one attack step at a time, and one attack scenario at
a time. So whenever we will measure or estimate the increase in effort needed, we will do so for a given
attacker, given his goals, his means, his object, and his actions to perform. We hence have to achieve goals
3 and 4 of Section 3.1 for the individual, meaningful elements of attack goals ⇥ subjects ⇥ means ⇥ object
⇥ actions. In essence, we have not two goals 3 and 4 for which we have to identify the relevant questions,
but we have a whole goal set G = {3, 4}⇥ attack goals ⇥ subjects ⇥ means ⇥ object ⇥ actions.
Clearly, the set G is too large to even attempt to cover it by identifying questions (step 2 of our instantiation
process), measurable features (step 3) and metrics (step 4) for each of its elements individually.
Instead, we will identify a set of template questions that (hopefully) cover all meaningful combinations in G,
and that can be instantiated for each individual combination. Others have attempted to do this before, and it
is generally accepted that the questions need to consider three aspects: potency, resilience, and stealth [17,
18]. Not all three are relevant for all attack steps and all types of protections, but together, these three
conceptual aspects cover all relevant features.

Potency Informally, the potency of a protection refers to the amount of obscurity, complexity, and un-
readability the protection adds to a program. Numerous metrics have been proposed in the past
to measure software complexity: based on analysis of the code, a number of features are measured
which represent aspect related to complexity in general, and to more concrete software engineering
objectives, such as reliability, testability, maintainability, etc. All of the proposed metrics have short-
comings and limited applicability, however. So instead of using a single software complexity metric,
we will have to use multiple, complementary ones, that we will combine into (possibly multidimen-
sional) complexity vectors. This has already been observed in the past [8], but, to the best of our
knowledge, has not been concretized for a broad range of protections and attacks.

Resilience The resilience of a protection is the difficulty and effort needed to break the protection with an
automated tool, such as a deobfuscator. Two aspects are important here: the programmer effort, i.e.,
the effort needed to build the tool, and the tool effort, i.e., the execution time and space needed by the
tool when applied onto a specific piece of software. With regard to the programmer effort, there is a
huge learning effect. Once an attacker has access to a tool that meets all his needs, the programmer
effort is reduced to zero, whether he developed the tool himself or not. In case a tool is available,
but it needs some tuning, e.g., for the specific forms of protections applied to some application, the
programmer effort is reduced significantly, in particular in the case of expert attackers.

Stealth When a protection involves injecting code into the software to be protected, the protection is
stealthy if the injected code resembles the original code to the point that an attacker cannot differ-
entiate the two. When a protection transforms code, it is stealthy when the transformed code does
not allow the attacker to deduce which protection has been applied. For many protections, a lack of
stealth is deadly, because it allows human attackers, and in some cases even tools, to attack the pro-
tections, i.e., to undo or bypass them. For other protections, stealth is less important, or not relevant
at all.
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To the best of our knowledge, no systematic approach has been proposed in the existing literature to instan-
tiate the relevant questions regarding potency, resilience and stealth. Instead only ad hoc approaches have
been proposed, some of which are concrete and hence useful for actual quantification, but some of which
are also pretty abstract, and hence potentially useful for classification, but not for quantification. Moreover,
we know of no approach at all that tries to unify dynamic and static attacks. Typically, literature considers
only static attacks. Given the MATE attacks that we want to protect against, and the dynamic tools and
techniques that attackers have available as described in deliverable D1.02 Section 4.4, we cannot simply
neglect dynamic attacks.
In this project, we therefor propose a more systematic and generic approach, for which we will build on
fundamental concepts that

1. link the protections and attacks we want to cover;
2. can be translated into fundamental measurable features that can be computed in a structured, sys-

tematic manner;
3. that cover potency, resilience and stealth.

These concepts are syntax, semantics and the mapping between syntax and semantics.

3.2.3 Attack fundamentals: syntax and semantics

In this document, we use the term syntax to denote the representation of the operations to be executed (in
a static or dynamic program representation), as well as the representation of the operands on which the
operations operate. We use the term semantics to denote the input-output relationship of a program or of
fragments in a program.
The mapping between syntax and semantics is the relation between the syntax and the semantics. For
example, the instruction set architecture manual describes the mapping between, e.g., 32-bit ARMv7 in-
struction encodings and the semantics of the instructions in terms of the processor state. Similarly, different
IEEE standards specify the meaning of bits in floating-point and two-complement integer number repre-
sentations used in computers. And programming language specifications describe the mapping between
syntactical constructs in a program and their meaning in terms of program state.
There is a clear link between syntax and semantics of a program, because the semantics corresponds to the
computer’s interpretation of the syntax.
While attacks can operate at the syntactic level whenever the mapping between syntax and semantics is
clear, the fundamental goal of attacks in one way or another always relates to the intended semantics of the
(original) program:

• In the case of reverse-engineering, the goal is to understand the semantics of a program or a part
thereof. This often comes down to finding an appropriate, as simple as possible abstraction for the
semantics, i.e., an abstraction that attackers can easily handle, but that does not need to be directly
executable by a processor anymore. When there is a known mapping between syntax and semantics,
the reverse engineering can, and most often will, be based on syntactic representations of the program.

• For locating and stealing some program’s sensitive data, attackers try to identify and extract the out-
puts or inputs of certain parts of the program. It is only when the mapping between syntax and
semantics is very clear, that attackers can focus their attack on the syntax instead of on the seman-
tics. For example, when the string “Wrong password” is shown on screen during the execution of the
program, the attackers might look for an ASCII encoding of that string in the program binary.

• In the case of tampering, the attackers will try to alter the semantics of a program in specific ways.
For example, they will try to make it independent of a registration key value or of a PIN code. Or
they will make the program produce extra output to leak sensitive data.

• In the case of code lifting, attackers try to extract part of the representation of a program, and try to
reuse that representation outside of its original program, while keeping the part’s original semantics.

Fundamentally, software protections try to prevent attacks by intervening in the syntax and semantics of
software, as well as in the mapping between the two:

• Cryptography and data hiding protections aim at hiding the relation between syntax and semantics. The
mapping between a plain text, 32-bit two-complement number 0xfffffffe and its integer value of -2 is
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clear. The mapping between a ciphertext 32-bit number 0xfffffffe and its real meaning is not known
unless one knows the keys to decrypt the ciphertext.

• Instruction set diversification also tries to hide the mapping between syntax and semantics. In a na-
tive ARMv7 program, the 32-bit instruction encoding 0xe2411002 represents that the value two is
subtracted from the value in register R1, as documented openly for everyone in ARM’s manuals.
However, in a custom (i.e., randomized) bytecode instruction set interpreter, the semantics of a byte-
code 0xe2411002 is not documented at all.

• To some extent, the above two protections can be seen as ways to reduce the a priori knowledge that
attackers have about the mapping between syntax and semantics. Other compiler techniques can also
be used to reduce this a priori knowledge, such as by bypassing the calling conventions to hide the
role of a specific register in passing data between different procedures.

• Some compiler transformations, such as inlining and outlining, have been proposed for use as ob-
fuscation techniques. They repartition the program’s syntax in units (i.e., procedures) of which the
semantics cannot easily be abstracted to higher levels by the attackers (unlike the original units, which
were, by virtue of the software engineering paradigms used by the programmers, easily abstracted).

• Many obfuscation techniques, such as opaque predicates, branch functions, control flow flattening,
etc. aim at introducing additional complexity into the syntax of programs, and hence also in the
apparent semantics of the program, such that attackers cannot easily obtain the simplest abstraction
or representation anymore.
Assuming that

1. programmers try to make their program as simple2 as possible;
2. optimizing compilers simplify programs rather than making them more complex;
3. the processor specification is public;

we can consider a compiled program or program fragment the simplest executable representation of
its intended semantics. As such, obfuscation techniques try to prevent attackers from reconstructing
the original (or equivalent) program or its representations.

• Anti-debugging techniques essentially intervene in the semantics of a program. If the original pro-
gram’s semantics can be described as some function JP K(i), with i the program input, then the pro-
tected program is JP 0K(i, s), with s the system state affected by the presence of a debugger, and
JP K(i) = JP 0K(i, s) iff s does not indicate the presence of debugger.

• Anti-tampering techniques like code guards similarly intervene in the semantics of a program. In-
stead of letting the semantics depend on external state revealing the presence of a debugger, the
semantics in this case become dependent on the representation of the program itself. If the original
program syntax representation can be described as P , and its original semantics can be described as
some function JP K(i), then the protected program with representation P 0 has semantics JP 0K(i, P ),
with JP K(i) = JP 0K(i, P 0) iff the checked part of P 0 is what it should be. In other words, the protected
program only provides the original input-output behavior when (part of) its representation being
executed is not altered.

• Protections where part of an application is split off and executed on a trusted server instead of on
an untrusted client device, make certain parts of the representation and semantics inaccessible for
the attacker. Furthermore, additional semantics are added to the client part that is accessible to the
attacker, because that part has to produce data for the server-side and takes as input the data that
returns from the server.

• Advanced forms of remote attestation in essence add additional inputs to an application, such as
nonces sent to the client by the remote attestation server. These inputs are not under control of the
attacker. Similarly, additional outputs are added, in the form of the attestations that the client needs
to deliver to the server.

When attackers attack a protected program, their tasks related to program comprehension (i.e., reverse
engineering) will require more effort as the apparent complexities of the program syntax, of the program
semantics, and of the mapping between syntax and semantics increase. With “apparent complexity”, we

2Here we do not yet consider more concrete meanings of simple, such as maintainable, reliable, testable, etc.
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mean the complexity as observed by the attackers. They will in particular have to invest more effort in the
attacks when they fail to undo the increases in complexity introduced by the protections. In some cases,
they will even need to undo some of the semantic changes introduced by the protections, such as when they
want to use a debugger to trace a program protected by strong anti-debugging mechanisms. In short, in
order to make the program observable and to make the observed program as simple as possible, attackers
will try to undo syntactic and semantic changes.
When attackers attack a protected program, their tasks related to program tampering typically include
removing the additional semantics that were added to make the program tamper-resistant. This is, in other
words, not fundamentally different from attack tasks related to program comprehension.
One important aspect is, however, that in the case of online applications, undoing the semantic changes by
the online protections might not be possible for even the most advanced adversaries. This is particularly the
case with remote attestation, where the attestation server can cause the original application server to abort
its services when the client application fails to deliver valid attestations. This does not mean, however, that
the attacker cannot try to simplify the added semantics. For example, when no nonce is used in remote
attestation to avoid replay attacks, the attacker is given plenty of room to simplify the code that computes
the attestations, and to hence remove the added semantics of the attestation computations.
Following this discussion, we are ready to formulate the relevant questions in our goals-questions-metrics
approach:

Q0: What code/data fragments are relevant for an attack step?

Q1: How complex is the syntax, semantics, and mapping between syntax and semantics of the protected,
relevant code/data fragments compared to the complexity of the corresponding unprotected code/-
data fragments?

Q2: How easy is it to simplify the syntax, semantics and mapping of the protected code, without oversim-
plifying it?
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4 Measurable Features

Section authors:
Bjorn De Sutter (UGent)

To answer question Q0, we will assume that code annotations and program analysis allow us to identify
the relevant code parts.
For answering question Q1, we will mainly rely on a range of existing code complexity metrics that cover all
the relevant complexity-related features of static and dynamic code representations. They can be computed
on the unprotected and the protected code, or estimated for specific protections to be applied to given
code. There is not much new there. The way we will use these metrics is novel, however: rather than
simply computing the metrics on standard graphs and traces, we will compute them on weighted graphs
and traces.
For example, all elements in graphs and traces will get a relevance weight in the interval [0,1]. This relevance
weight will be based on the annotations that answer Q0. When complexity metrics are computed on the
graphs and traces, these weights will be taken into account, such that irrelevant parts do not contribute to
the security evaluation.
Furthermore, we will adapt the aggregation of metrics computed on components to the properties of the
applied protections and of the considered attack.
When evaluating the protection strength against a specific attack step, the attack object (i.e., the representa-
tion of syntax and semantics and the mapping between the two as reconstructed by the attacker) essentially
determines what to compute the metrics on. The specific attack goals and means mainly determine which
measurable features are more or less important. Finally, the attack subject and the attack actions, as well as
the nature of a protection (and its implementation) influence how the features measured or computed on
individual elements need to be aggregated. For example, when a global approach is needed that attacks
multiple instantiations of some protection, on code fragments spread throughout the program, a super-
linear aggregation function can be used. On the contrary, when some protection is always applied with
the exact same code sequence, a learning effect plays, and only one instance of that sequence should be
counted, not all of them. Only when multiple independent elements are added by means of a protection,
that all need to be attacked individually, and on which there is no learning effect, will we simply add up
the complexities as measured for the individual elements.
To answer question Q2, we will again use weights. Based on combined analyses of many different available
program representations (graphs, traces, ...) and also on the features of an attack step and the applied
protections, we will assign simplification weights in the interval [0,1] to all elements in the graphs and traces.
The weights will model how easily the elements can be simplified by an attacker. To compute these weights,
we will identify and quantify the presence of features that existing simplification approaches rely on, such
as the powerful hybrid static-dynamic approach recently proposed by Debray et al. [22]. For example, when
an attacker has traces of a program in which a specific conditional branch is always taken, he can simplify
the trace by replacing the conditional branch by an unconditional branch without affecting the apparent
semantics of the program. Hence when we can identify this feature in a trace, the weight of the conditional
branch in the measured complexity metrics should be lowered. Likewise, if an instruction in a graph or
trace produces values that do not contribute to the output of the program, the instruction can be removed.
So it should get a simplification weight of zero. The simplification weights will be based on features of
the protection as well. For example, for protections that involve the injection of fixed, non-stealthy code
patterns into the software to be protected, the non-stealthy character will be modeled by assigning a low
simplification weight.
Of course, the simplification weights will depend on the attack step being evaluated, as well as on its
location in the overall attack path being evaluated. Concretely, for each attack step, we will consider the
simplification that an attacker can be assumed to perform based on the information he has available in that
step. For example, if for some attack step the attacker is assumed not to have collected a trace yet, we will
also assume that he cannot simplify his program representation in the basis of trace information.

4.1 Measurable Complexity Features

The measurable complexity-related features we propose are the following:

• Static Code Size (SCZ) This is the size of the disassembled code, possibly structured into graphs like
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program dependence graphs or control flow graphs. The rationale for including this feature is that
larger programs are potentially more difficult to attack.

• Dynamic Code Size (DCZ) This is the length of one or more program traces. The rationale for includ-
ing this feature is that longer running programs are potentially more difficult to attack.

• Static Control Flow Complexity (SCFC) This feature measures the complexity of static code repre-
sentations, i.e., graphs. Reverse engineering of the program structure is more difficult if the control
flow of the program is more complicated.

• Dynamic Control Flow Complexity (DCFC) This feature measures the variation in control flow as
observed during the execution of a program, i.e., the variation in executed paths observed in one or
more program traces. The idea is that comprehension of algorithms and code is more complex when
more different paths through the static graph representations are realized at run time.

• Ill-Structuredness (IS) When a program is structured well into procedures with clear functionality,
program comprehension is much faster. With this feature, we measure the negative change in struc-
ture quality resulting from protections.

• Code Layout Variability (CLV) This features measures whether there is a one-to-one mapping be-
tween code addresses and instructions, or whether that mapping changes within and in between pro-
gram executions. If instructions do not have unique addresses, or multiple different instructions can
occur at the same address throughout the program’s execution, it will be much harder to reconstruct
a static program representation, and to relate analysis results obtained on that representation.

• Static Data Flow Complexity (SDFC) This feature measures the complexity of the data flow through-
out static program representations, such as data dependency graphs. The passing of data in programs
is more difficult to identify and comprehend when the data dependencies are more complicated, when
they rely less on conventions, and when data accesses are less manifest.

• Dynamic Data Flow Complexity (DDFC) This feature measures the complexity of the data flow
as observed in execution traces. The tracking of computed data values (i.e., instruction operands)
throughout the program execution is more difficult when there is a more complex mapping between
the operations operating on the data, and when there is more interaction between those operations.

• Semantic Dependencies (SD) In a protected program, it can be more difficult to reach a certain pro-
gram state during dynamic attacks if reaching that program state depends on the cooperation of a
secure server. In that case, the server has to be faked or the attacker needs to make sure that he pro-
vides valid inputs to the server and that, depending on the server side control processes, the provided
inputs do not reveal that an attack is ongoing. In other words, the ability to collect trace information is
influenced by the need to communicate correctly with a secure server. Similarly, it can be more diffi-
cult to reach a an observable state when anti-debugging techniques or anti-tampering protections are
in place. For that reason, we propose to measure the constraints that are imposed by inserted semantic
dependencies, and that make it more difficult for an attacker to reach certain program states.

• Static Data Presence (SDP) This feature indicates whether or not sensitive data (such as data that
should be protected from leaking, but also data that identifies interesting code fragments that can
serve as hooks for attacks) are visible, and more or less easily identified, in the static program repre-
sentation.

• Dynamic Data Presence (DDP) This feature indicates whether or not sensitive data (such as data that
should be protected from leaking, but also data that identifies interesting code fragments that can
serve as hooks for attacks) are present in memory, in a more or less easily identifiable form, at any
point in time.

While the above list of features should not be considered to be carved in stone, we foresee that they capture
the most important complexity aspects that have an impact on attacker effort.
One such aspect is still missing, however, because we have not yet been able to completely assess its impact
on attack effort and the best way to model or measure it. This is the aspect of missing code, i.e., code of
which the attacker has no representation or knowledge. When code is split off from a client-side application
and moved onto a secure server, the attacker has no access to that code. To attack the application, he might
try to replace the server-side code by his own copy, which he might try to implement after learning the
server-side functionality from observer the client-server communication. To cover that aspect and attack
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scenario, concepts of learnability as used in the domain of cryptography might prove to be useful, but we
need to investigate this further. Another option might be to consider as an additional metric the fraction of
relevant code that models how much of the code the attacker has available.
Splitting off a code fragment does not only hide that code fragment itself, however. It will often also ham-
per the attacker in comprehending and attacking the other software fragments that do remain accessible to
him. This is the case because, e.g., data dependencies of those fragments’ live-in data are obscured. How
to model or measure that effect needs further investigation as well. The challenge is that all of the afore-
mentioned features will typically be measured by metrics that increase when a program grows larger, i.e.,
when functionality is added to the program. When functionality is split off a program as a protection, at
least some of the metrics computed on the remaining part of the program should not decrease. To achieve
that, we need additional features and metrics. At this point in time, we are still investigating which ones to
use.
Finally, we want to point out that the need to correctly model the impact of missing code is not limited to
protections such as client-server code splitting. It also arises whenever we need to model the fact that an
attacker in some attack step might not have been able yet to collect a complete trace, or to disassemble the
whole program. Whether and how we can unify the cases in which an attacker is truly missing code and
when he is temporarily missing code, requires further investigation as well.

4.2 Measurable Resilience and Stealth Features

As measurable resilience-related features, i.e., for computing the simplification weights, we propose the
following:

• Static Variability (SV) If a protection applied multiple times to different parts of (an) application(s)
always results in the same code being inserted or created, or in the same, recognizable patterns, the
attacker’s learning effort will have much higher impact, and attacks become easier.

• Intra-Execution Variability (IEV) If during a program execution, parts of an application or protection
always produce the same result they are executed, i.e., they impact the program state independently
of their input, the attacker can more easily abstract away their control and data dependencies. In
other words, he can then simplify the semantics of individual code fragments without affecting the
overall semantics of the program under attack, i.e., the semantics as observed on selected inputs.

• Semantic Relevance (SR) If certain operations do not contribute to relevant computations in a pro-
gram (i.e., to output) or do not in fact depend on the program’s input, an attacker can more easily
abstract away from their control and data dependencies.

• Stealth (S) If injected protection code is easily recognized as non-original application code, this may
facilitate targeted attacks.

We should note that some of these features, IEV and SR in particular, are related and can hence not be
computed independently. For example, if a trace shows that some conditional branch always goes in the
same direction, the attacker might replace it by an unconditional branch without changing the (observed)
semantics of the program. This will be accounted by giving the branch a low intra-execution variability. As
a result of the replacement, however, (part of) the code computing the predicate of the conditional branch
will have become irrelevant, as it no longer contributes to the semantics of the program. Likewise, the code
on the never-taken path of the conditional branch might become unreachable and hence also irrelevant. For
this reason, advanced analyses are required to model the correct interaction between semantic relevance
and intra-execution variability.
The strength of such interactions in automated attacks has been demonstrated in 2014 by Debray et al. [22].
We included these resilience-related features based on their work, in which they automatically undo a range
of very strong protections by relying on fundamental properties related to general program semantics,
rather than on ad hoc semantic approaches as proposed by some others [35, 20].
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5 Metrics

Section authors:
Bjorn De Sutter (UGent)

In this section, we discuss the concrete metrics that we will use to measure the aforementioned features.
It is important to note that while these features can be measured on unprotected and protected programs,
we will in practice most often not measure them on protected code. Instead we will estimate them for the
specific set of protections supported by the ASPIRE compiler tool chain, when the ASPIRE Decision Support
System is exploring the space of all possible protection combinations, of which it needs select the best, so-
called golden combination. This was already discussed and formulated more formally in Section 3.1.
With regard to dynamic metrics, we want to clarify that they of course depend on the program inputs that
are selected to execute and trace the programs. The relevance of those metrics hence depends on the chosen
inputs. It is the user’s job to select sufficiently representative inputs and to profile the application.

5.1 Complexity Metrics

5.1.1 Static Code Size

Based on Halstead’s metric for program length [27], we will compute the static program size (SPS) as the
sum of the total number of operators and the total number of operands in a program. In this case, these
are the operators and operands appearing in a static program representation, such as a disassembled list of
instructions, or the control flow graphs or program dependence graphs constructed from such a list.

5.1.2 Dynamic Code Size

Similarly, we will compute the dynamic program length (DPL) as the sum of the total number of operators
and the total number of operands executed in a program. In this case, these are the number of occurrences
of operators and operands appearing in program traces collected on one or more program inputs.
A natural extension would be to also include coverage based metrics. For example, we could also compute a
dynamic program size by counting the number of operators and operands that are executed at least once in
a set of program traces. Such an additional metric is not necessary, however, because it is already captured
by computing the SPS on a program representation in which instructions that have no SR have been given
a simplification weight of zero.

5.1.3 Static Control Flow Complexity

To compute the complexity of the static, graph representations of procedure bodies, we propose to use Mc-
Cabe’s cyclomatic complexity (CC) [39]. Rather than using them directly, we will adapt them to incorporate
features of Harrison’s nesting depth [28], and the cognitive functional weights [51, 10, 21] We will also investi-
gate the use of the program dependency graph instead of the program control flow graph to compute the
metrics, as proposed by Stetters [44]. These adaptations will result in the metric incorporating more notions
of comprehensibility than the original cyclomatic number, which focused more on testability of code.
We also plan to evaluate whether or not the definition and counting of nodes and edges in graph repre-
sentations of programs needs to take into account the predicated execution of instructions on architectures
such as ARMv7. While in some cases predication is simply used to control conditional branches, in which
case no special bookkeeping is necessary. In other cases, however, predication is used to control the exe-
cution of computations on data. In those cases, a predicated instruction should be considered as an if-then
else construct that introduces additional nodes and edges.
As the aforementioned metrics only measure regular program features, i.e., features as found in regular
programs, we also have to measure some of the features that are only found in obfuscated programs. In
particular, we have to measure the extent to which the control flow is obfuscated by means of indirect, com-
puted control flow transfers (such as complex branch functions [37]) that do not occur in regular programs,
or that occur only extremely rarely. This excludes switch statements and other indirect jumps or calls based
on fixed, compiler generated instruction patterns, but it includes call-return pairs where the return point is
not the instruction following the call instruction.
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To do so, we propose to count the number of edges in the whole-program control flow graph that were
direct edges or straightforward return edges, but that have become indirect edges or computed return
edges in the protected program. We will call this count the control flow indirection metric (CFIM).
Additionally, we are considering using the confusion factor (CF) metric proposed by Linn et al. [37]. That
metric models the fraction of the static code that can be disassembled correctly using state-of-the-art static,
recursive-descent disassemblers (like the one from IDA Pro). On the ARM architecture, however, with its
fixed word width, it is not yet clear to what extent obfuscation can be used to thwart disassemblers. So the
value of this metric is not clear either.

5.1.4 Ill-Structuredness

To measure how well the program structure as observed by an attacker matches the composition of the
program semantics into smaller components (i.e, procedures), we propose a novel metric called procedural
ill-structuredness (PIL).
A basic block “belongs” to a procedure in a control flow graph representation of a whole program iff the
block is reachable from the procedure entry point through balanced, resolved control flow paths. Balanced
means that for every call on the path, there is a corresponding return on the path as well. Resolved means
that paths can only include indirect jumps of which the targets are known.
We assume the original program is well-structured by design. In other words, the original program has an
ill-structuredness of zero. The ill-structuredness of a protected program then consists of several contribu-
tions, which are simply added up.
The first contribution comes from basic blocks “belonging”’ to more than one procedure (as a result of
interprocedural gotos that were added to a program). If we let n

i

be the numbers of procedures to which a
block i “belongs”, then

P
i

(n
i

� 1) is the first contribution to the ill-structuredness metric.
The second contribution comes from inlining, outlining, and the insertion of indirect branches that cannot
be resolved statically, with the result that the blocks in a protected program are not partitioned into their
original procedures. For this metric, we simply count the number of basic blocks (and their duplicates
and replacements) that were an entry point in the original program but are no longer an entry point in
the protected version, or that were no procedure entry point in the original program, but are one in the
protected version.
Assuming that the code of all procedure bodies in a program will be mixed in the code section, i.e., that the
code is no longer grouped per procedure, procedural ill-structuredness will not only be a theoretical metric.
It will also measure a very practical problem for reverse-engineers, because reverse-engineering tools such
as IDA Pro have been shown to fail to reconstruct a program’s original procedure when deployed on ill-
structured code.

5.1.5 Dynamic Control Flow Complexity

Static control flow complexity measures, computed on static program representations like control flow
graphs or program dependency graphs, provide a first order approximation of the control flow complexity.
For example, in the case of two if-then-else statements following each other, the control flow graph indicates
that there are four possible paths: then-then, then-else, else-then, and else-else. However, those graphs do
not provide any information regarding how many of those paths will actually be executed at run time.
And hence the static control flow complexity metrics do not provide any measurement of the number
of different paths that are executed. Such a measurement would be useful, however, as code with few
triggered execution paths is much more easily understood than code with many triggered execution paths.
To complement the static control flow complexity metrics, we therefore propose to use the path coverage
(PC) metric, which will be computed per procedure. If NP

p

is the number of possible execution paths
throughout a procedure according to its static control flow graph representation, and NP

x

is the number of
actual paths executed at least once according to the traces, NP

x

/NP
p

is the dynamic path coverage.
In addition, we add the metric of path coverage variability (PCV). As already mentioned, attackers do not
always control the whole input to an application. For example, in an online application, or an applica-
tion protected via online techniques, all inputs coming from a secured server cannot be controlled by an
attacker, and might show variation over time, e.g., because the server randomizes its behavior (nonces, de-
lays, remote attestation request diversification, ...). Moreover, many applications feature non-deterministic
internal execution, i.e., the observable IO-behavior is deterministic, but internal behavior might be non-
deterministic. So when attackers re-execute a program multiple times on (from their perspective) suppos-
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edly unchanged inputs, the internal execution of the program might vary considerably. When this is the
case, this obviously makes it harder to comprehend the program. For example, it will become much harder
to combine information obtained from execution traces collected on different inputs if even the traces on
supposedly identical inputs vary.
The path coverage variability metric is computed per procedure. We define NP

px

as the number of paths
through a procedure that, for any user-provided input, might be executed, but does not necessarily have
to be executed, i.e., of which the execution depends on the part of the program inputs (or internal non-
determinism) not controlled by a user or attacker. Then for each procedure NP

px

/NP
p

is the path coverage
variability.
A simplified form of this metric is the basic block coverage variability (BBCV). Rather than counting numbers
of paths per procedure, this counts, for the whole program the number of basic blocks NBB

px

of which the
fact whether the block is executed or not depends on non-controllable inputs or internal non-determinism.
With NBB the total number of basic blocks in a program, basic block coverage variability is defined as
NBB

px

/NBB.
For the above three metrics based on coverage, we will again consider the potential impact on the metrics
of predicated execution, as was discussed in Section 5.1.3.
In this current proposal, no multi-threading is considered, and hence non-determinism due to non-deterministic
thread scheduling is not yet considered. Since we don’t plan to integrate protections that transform the way
in which threads of the original program are scheduled, we consider metrics that measure complexities re-
lated to multi-threading out of scope of this project.3

5.1.6 Code Layout Variability

In the already discussed metrics, we assumed an abstract program representation where code fragments are
linked by edges in graphs or by the order in which they occur in traces. In those representations, concrete
addresses are of little to no importance.
In practice, however, code fragments are identified by addresses. In “regular” binary code, the mapping be-
tween addresses and instructions is more or less fixed. Within each execution, there is one-to-one mapping
between addresses and instructions. In between executions, the only changes in the mapping originate from
whole code sections being relocated when address space layout randomization is enabled, each instruction
has a fixed address. So even then, most relative code addresses in the program do not vary.
That property simplifies the reverse-engineering of regular binary code a lot, both for humans, and for tools.
For example, IDA Pro’s internal operation is completely built on the assumption that each instruction in
the program has a unique address and also that instructions never overlap. In other words, each byte in
executable code (sections) corresponds to exactly one instruction.
If the property does not hold, this complicates reverse-engineering as well as tampering. To take this
complication into account, we propose the code layout variability (CLV) metric. This metric is defined as
the weighted sum of three terms.
The first term counts the number of instructions in the program that have no a-priori determined location
in the program’s address space in memory. This can happen, e.g., because they are loaded as mobile code
from a server once an application has started and are assigned a randomized addresses after the download.
The second term counts the number of instructions in the program that have no fixed location during the
program’s execution, e.g., because already downloaded mobile code is flushed from the program, and
reloaded onto new addresses.
The third term counts the number of instructions in the program that may occur on addresses at which
other instructions can also occur during the same program execution. This accounts for mobile code being
flushed and overwritten by new mobile code, as well as for self-modifying code.

5.1.7 Static Data Flow Complexity

For measuring the static data flow complexity, we propose to use five concrete metrics.
First, we will count the number of def-use relationships (NDUR) in the static program representations. In
source code, this can be done for definitions and uses of variables. In binary code, we will do it for register

3As for the multi-threaded cryptography protection that we will develop, this protection will inject code with a known number of
threads into an application. It will not alter the existing threads in the software to be protected, however. So we don’t need to measure
the change in threading complexity.

ASPIRE D4.02 PUBLIC 15



D4.02 — Preliminary Complexity Metrics

operands and locations on the stack (which correspond roughly to the identifiable variables in binary code).
This metric gives an overall impression of the static data flow complexity.
Secondly, in the binary code, we can count the number of variable-address memory operations (VAMO). Thus
is the number of operations to memory addresses that are not hard-coded in the memory instruction or in
the immediately preceding instructions, and that do not address the stack at fixed offsets from the stack
pointer. This metric specifically focuses on the number instructions that are harder to analyze statically,
because it its unclear from the code alone which state of the program they update.
Thirdly, to compute the calling convention disruption (CCD) metric, we will count all instances in the binary
code where calling conventions are not respected. In particular, at all procedure entry and exit points, we
will count the registers that are used to pass data from caller to callee and back even though those registers
are not designated to do so according to the calling conventions. This metric provides an indication about
the a priori knowledge that attackers can use when trying to comprehend interprocedural data flow.
When evaluating or estimating the effectiveness of protections applied to source code, we can add two
more metrics.
First, we can measure the data structure complexity (DDC), as proposed by Munson and Khoshgoftaar [40].
For example, Munson and Khoshgoftaar attribute a constant complexity to scalar variables, while the com-
plexity of an array increases with the number of its dimensions and with the complexity of the element type,
and the complexity of a record increases with the number and complexity of its fields. At first sight, such
metrics may seem useless in the context where only the binary programs will be attacked, because binary
programs only operate on data in type-less memory locations. Deobfuscating transformations exist, how-
ever, that decompile programs to the extent that stack- allocated, statically allocated, or even dynamically
allocated heap data are given meaningful semantics. Reps and Balakrishnan, e.g., are able to differentiate
between spilled data and procedure parameters in stack-allocated data [43].
Finally, we can measure the static procedural fan-in/fan-out (SPFIFO) of individual procedures [30, 42]. This
is the total number of variables (parameters as well as global variables) that are read resp. written by each
procedure. The higher the fan-in and fan-out of a procedure, the more difficult it becomes to abstract the
behavior of the procedure. The reason we only propose to compute this on source code, is that they these
metrics are very hard, if not impossible, to compute exactly on binary code, given the lack of precise points-
to information when analyzing binaries.

5.1.8 Dynamic Data Flow Complexity

Whereas some of the static data flow complexity metrics proposed in the previous section give an indication
of the potential complexity of the data flow and of the difficulty to analyze data flow statically, they do
not provide a good sufficiently precise indication of the actual data flow complexity. For that reason, we
propose to complement them with the following dynamic data flow complexity measures, that are to be
computed on traces and that consider the complexity of the behavior of instructions that could not be fully
analyzed statically.
First, for a metric called multi-location memory instructions (MLMI) we propose to count the number of
instructions that access more than one memory location during the execution of a program. This can be
more than one statically allocated data element, more than one address on the heap, or more than one
offset compared to the stack pointer. The count will be weighted with the number of different locations
addressed.
Secondly, for a metric called writable location memory instructions (WLMI) we will count the number of in-
structions that read at least once from a non-read only memory location.
Thirdly, we can measure the memory locations fan-in/fan-out (MLFIFO) by summing, for each memory lo-
cation accessed in a program trace, how many different instructions have written to resp. read from the
location.
Fourthly, we can compute the dynamic procedural fan-in/fan-out (DPFIFO) of procedures by counting, in the
traces, how many different memory locations were read/written by each procedure.
Fifthly, we can measure the reuse distances between accesses to memory locations (incl. registers in this
case) in the traces [23, 12]. The link between reuse distance and program comprehension was already
investigated in literature [41, 46]. The central idea is that human software comprehension is best measured
measuring difficulty of “mental execution” of a program, i.e., the execution of a program by a human that
interprets the operations in the code and that keeps track of the program state. The difficulty then mostly
comes from the limited short-term memory, which means that humans have a hard time remember a lot of
program state. For accessing state they cannot store in their shared memory (because a value is not reused
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fast enough, but other values have been used in between), humans will have to invest more effort (e.g., by
looking it up on paper or by entering a print statement in a command-line debugger).
For the reuse distance (RD) metric, we accumulate a cost for each instruction in a trace, with the cost depend-
ing on the reuse distance of the accessed memory locations. For example, the cost might be zero for reuse
distances less than 4, and some non-zero constant for larger reuse distances.
This metric can be refined, like Nakamura et al. did, by adjusting the costs when the read memory location
is a read-only location, or a location to which only one preceding write operation was performed.
Sixthly, we can measure the instruction operand variation (IPV). For this metric, we accumulate, for all static
instructions, the number of different operand values observed in all occurrences of the instruction in the
trace. The rationale is that an instruction’s role in a program’s semantics is harder to understand if it
operates on many different values.
Seventhly, we can measure the instruction operand type variation (IOTV). For this metric, we accumulate,
for all static instructions, the number of different operand value types observed in all occurrences of the
instruction in the trace. The different types are booleans (i.e., one and zero), small integers, addresses in
statically allocated sections of the program, addresses on the stack of the program, and addresses in the
heap of the program, and large integers that are not a valid address. The reason is again that the role of an
instruction in a program is harder to understand if it operates on multiple, seemingly unrelated types of
data.
Finally, we propose heap dynamics (HD) and heap complexity (HC) as a metric. In these metrics, we capture
the dynamic nature of the heap, i.e., how much its pointer structures vary over time, and the complexity of
the pointer structures on the heap over time.
To measure the dynamic nature of the heap memory, we will simply count the number of relevant changes
to the heap memory. So in the metric heap dynamics, we simply accumulate, over a program trace

• how many times blocks are allocated, reallocated, and freed from the heap;
• how many times a pointer to the heap is stored on the heap by an executed instruction;
• how many times a pointer value on the heap is overwritten by a non-pointer value;
• and how many times memory blocks containing pointers are freed.

To measure the complexity of the pointer structures of the heap memory, one option would be to consider
the heap as a directed graph: Heap blocks are nodes, and pointers from one block to the other are edges.
The complexity of this graph can then be computed, e.g., whenever blocks are allocated or freed on the
heap. However, recomputing that complexity many times from scratch (as would be needed for lengthy
traces) would be very time consuming, and hence not realistic. Another alternative would be to rely on
shape analysis, but that will also be too slow.
Instead, we propose to simply count the maximal fan-in and fan-out of individual blocks on the heap, i.e.,
the maximal number of pointers pointing into or out of each block during the blocks lifetime. These can
easily be computed by keeping track of a shadow heap while iterating over a trace. So for the heap complexity
metric, we accumulate, for all blocks ever allocated to the heap, the maximum fan-in and fan-out during
their lifetime.

5.1.9 Semantic Dependencies

Consider a trace of a protected client application that connects to a secure server, and in which the correct
execution (or even the continuation of the execution) after receiving input from that server depends on the
output previously passed to the server. In essence, this amounts to a remote attestation technique. When
the exact dependency is known (i.e., the control logic on the server side is known), the points in the trace can
be identified where some valid output needs to be produced. We can call these the attestation points. We
can also identify the points where execution will halt or divert from the correct execution if those outputs
have not been not produced, which we will call reaction points. We can the also determine which reaction
points related to which attestation points.
On that basis, we propose the trace reproducibility (TR) metric, which accumulates, for each instruction in
the trace, the number of preceding reaction points weighed by the number of attestation points on which
the reaction points depend.
Similar to the remote attestation case, we can define program points at which code guards or anti-debugging
checks are executed, and count, for each instruction in the trace, the preceding number of those points in
the trace.
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5.1.10 Static Data Presence

This feature indicates whether or not sensitive data are visible, and more or less easily identified, in the
static program representation. Metrics for this feature hence need to depend on the specific data values
that need to be hidden.
The first metric we propose is quite trivial: static plain data presence (SPDP) for some values to be hidden
is one when the data is present in the binary, and zero when it is not present. For checking its presence,
the binary will be scanned for several representations of the data: string representations (in ASCII and
unicode), signed and unsigned, little-endian and big-endian integer representations of numbers, etc.
A simple extension of this metric is that the presence of “significant” components of the data, such as
substrings, would be checked instead of the whole data. In that case it is up to the user of the metrics to
define what “significant” means, and to provide some kind of metric function. This is not a major burden,
since he already has to identify the data to check anyway. In practice, this will be done through code source
annotations. Alternatively, some default metric functions can be defined,
The second metric we propose is static ciphered data presence (SCDP). This is a customizable metric, for which
the user has to provide a number of encryption or encoding routines. Rather than measuring the presence
of the original data, this metric will then report the presence of an encrypted or encoded version of the data.
This metric will also contain a set of standard encoding algorithms, such as the 256 XOR-variants that XOR
each byte of the data with the same constant.

5.1.11 Dynamic Data Presence

In line with the static data presence metrics defined in the previous section, we propose two dynamic
variants: dynamic plain data presence (DPDP) and dynamic ciphered data presence (DCDP). Rather than checking
for the sensitive data or parts thereof in the binary of the program, we will check them in the memory space
of the running program. This can be achieved by means of instrumentation or by emulating a recorded
trace. Possible extensions we will investigate are:

• In some cases, it might be OK that some values still occur in memory during the execution of a
program, as long as attackers are not capable of identifying that the occurring value is the one they are
interested in. But how should we measure this? Data dependency chains to data/instructions/events
that can serve as hooks to attackers?

• If encoded values occur in the program, how “learnable” is the relation between encoded and decoded
values?

5.2 Resilience Metrics

5.2.1 Static Variability

Static variability is a feature that cannot be measured on individual programs. By definition this feature
also has to capture the variation in the way a protection is applied to multiple programs to quantify po-
tential learning effects and the potential for attackers to develop targeted tools. We will hence not measure
variability.
We will quantify it, however, for each protection, and include this metric in the overall evaluation the
strength of (combinations of) protections. At this point in time, it is not yet clear whether one or more
metrics are needed for this feature.

5.2.2 Intra-Execution Variability

As already discussed, Debray et al. have recently shown that very powerful, automated attacks can be en-
gineered that rely on, in Debray’s terms, quasi-constant behavior [22]. The central idea is that an instruction
in a program that can alter the program state in many different ways according to the processor architecture
specification, but that according to a trace always alters the program state in the same way, can be replaced
by a simpler instruction without affecting the semantics of the program.
Consider as an example the already mentioned conditional branch instruction. If a specific conditional
branch in a program branches in the same direction every time it is executed, the attacker can simplify
his program representation and the apparent program semantics, by replacing the instruction with a non-
conditional branch. As discussed in Section 3.2, this type of simplification is typically what an attacker
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will try to undo or to work around protections. And as Debray has shown, this type of simplification,
if done right and extensively, can fully automatically break protections that were until now considered
pretty strong, including obfuscation by means of custom instruction set interpreters and return-oriented
programming. Other forms of quasi-constant behavior are source operands or destination operands that
are constant. When a source operand of some instruction proves to have the same value throughout a
trace, the instruction can be considered as having an immediate operand instead of a register or memory
operand. If an instruction always produces the same value for its destination operands, the instruction can
be replaced by a simpler one that does not even have any source operands.4

The instruction features of intra-execution variability (of source operands, of destination operands, and
with respect to control flow) are the inverse of quasi-constantness features. We prefer the former because
more variability relates to stronger protection, as is the case for all already proposed metrics.
These features will initially not be measured on a scale. Instead, the intra-execution variability (IEV) metric
are simply boolean values that will be determined by analyzing traces, and that label instructions to indicate
whether their features are constant or not throughout a trace.
The labels, in conjunction with features of the attack step against which some protection combination is
evaluated, will then be used to compute the simplification weights introduced in Section 4.
In the future, we will consider measurements on a scale to quantify the extent to which the variable behavior
is context-sensitive, i.e., the extent to which code duplication can be used by an attacker to replace variable
behavior by constant behavior. For example, if the behavior of some procedure F is variable overall, but it
is constant when F is called by caller A, and constant when F is called by caller B, then this might also be
exploited by an attacker to simplify the program representation and semantics.

5.2.3 Semantic Relevance

Instructions in a program trace that do not (directly or indirectly) contribute to the program output, can
be removed without affecting the program semantics. Conceptually, they can be replaced by no-ops that
have no source operands. These instructions can be determined through data dependency analyses on
(simplified) traces (e.g., by means of dynamic slicing techniques).
In this regard, it has to be pointed out that only relevant program outputs should be considered, which
may differ from one attack step to another. For example, if some code of a client program is split off from
that program and executed on a secure server instead of on the client device, the communication between
the client and the server can be considered input/output of the client: If the client at some point sends data
to the server, this data is output. If the client then receives an answer, this is input. But if this input is not
relevant to the attacker in some attack step, then neither is the data send to the server.
Like computations that do not contribute to relevant output, computations (in a trace) that do not depend
on program inputs can be replaced by instructions that do not have any source operands. These instructions
can be determined through (precise) taint analyses on traces.
Moreover, instructions that are never executed in any trace can be considered irrelevant.
As we did for intra-execution variability, we will label instructions that are irrelevant for the program
semantics, and those labels will again be used for determining the simplification weights introduced in
Section 4.
In doing so, we will not model specific capabilities of attackers to undo protections, i.e., lacks of resilience
against specific forms of attacks. Instead, we will quantify the potential of attackers to undo protections.

5.2.4 Stealth

Apart from invariable code, invariable behavior, and semantic irrelevance, there might be other features
that allow attackers to identify code that is not part of the original program, but that instead implements
a certain protection, and that can hence potentially be simplified or removed from the program without
affecting the program’s overall semantics.
For example, in the malware detection world, supervised machine learning techniques have been devel-
oped for training malware detectors to recognize features specific to obfuscated code (look for citation). So

4Note that it does not matter whether the simplified instruction actually exists in the used processor architecture. The relevant
effects of the simplification initially only have to be modeled in the more abstract program representations that attackers used. If
actual simplified code needs to be generated to be executed (in preparation of another attack step), it suffices, and is always possible
to implement the simplified operation as an instruction sequence (that has less or no live-in operands).
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far, we have not investigated the potential to use similar features in software protection metrics in ASPIRE.
We will study them in more detail in the future.
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6 Use of the Metrics

Section authors:
Bjorn De Sutter (UGent), Paolo Tonella (FBK)

In the ASPIRE protection evaluation methodology, the proposed metrics will be used as follows:

• For each Petri Net transition that needs to be evaluated for a certain unprotected program P or pro-
tected program version P

i

that deploys a certain combination c
i

of protections:

1. Compute the stealth and resilience metrics and derive the simplification weights based on the
attack step features, on the a priori known features of the applied protections, and on the traces
T (and possibly T

i

) that are supposed to be available to the attacker in the considered Petri Net
transition, if any.

2. Compute the complexity metrics on the relevant part of the program, of which the components
(instructions, blocks, procedures, ...) are weighted with the simplification weights, i.e., as if the
complexity metrics would be computed on a simplified program. Furthermore, the properties
of the attack step and of the applied protections determine in which way the weighted met-
rics computed for the components (graph nodes, sets of nodes representing procedures, ...) of
the program are accumulated. This accumulation will typically take the form of simple sum-
ming, but we will also study other forms to model learning effects, and non-linear scaling effects
of global attack steps. For each of the metrics M

i,j

, with 0  j < m and m the number of
complexity metrics, this means we compute (or measure) M

i,j

(P, P
i

, c
i

, T, T
i

). The result is an
m-dimensional complexity metric vector ~M

i

.

3. Aggregate the m different metrics in the m-dimensional vector ~M
i

into a much lower number
of metrics (possibly only one) that capture the overall complexity of the attack step, that the
ADSS can use in its objective function5 to optimize, and that the Petri Net simulation tools can
accumulate while simulating the nets. For the time being, we foresee the use of aggregation
functions of the form X

j

w
j

M
i,j

M
i,j

+ �
i

.

In these functions, the weights w
j

depend on the considered attack step: clearly, the attacker
effort needed for a tampering reverse-engineering attack step depends on other features than the
effort needed to identify a sensitive value in a trace. The fraction Mi,j

Mi,j+�i
is used to normalize

the individual metric values [9]. This requires us to estimate �
i

, for which we can take, e.g., the
mean value of m

i

over all i.

5That objective function will also include performance overhead or other forms of potential overhead, which we neglect here.
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7 Related Work

Section authors:
Paolo Tonella (FBK)

With sufficient effort and resources, most software protection techniques can be defeated under the man-
in-the-end (MATE) attack model. In fact, all the information needed to break a software system is available
to the attacker in the executable or bytecode – only the method by which the information is protected in
the executable prevents direct analysis. Assessing software protections means to estimate the extra delay
an attacker would incur due to a particular protection technique used on a given application.
Most of the existing assessments of software protection techniques (and in particular for code obfuscation)
are based on metrics, estimating the increased code complexity, or the increased difficulty of static code
analysis. Only a few works are based on attacks performed by human subjects, but very few of them
applied rigorous approaches, such as those available from the area of empirical software engineering.

7.1 Metrics

For an introductory overview of complexity metrics potentially useful in the domain of native code soft-
ware protection, we refer the reader to the ISSISP 2014 lecture by the ASPIRE coordinator titled “Evaluating
the strength of software protections”. This presentation can be downloaded from the ASPIRE project web-
site at http://www.aspire-fp7.eu. In addition, we discuss some groundbreaking work here.
The evaluation of the increased strength introduced by obfuscation techniques has been mainly addressed
by using code metrics. Even if metrics are based on reasonable assumptions about the expected problems
that an attacker would face to defeat the code protections, they just estimate and approximate a specific
level of security that the underlying application is supposed to receive.
Collberg et al. proposed the use of complexity measures in code obfuscation tools to help developers choose
among different obfuscation transformations [17]. A high-level approach has been proposed by Collberg
et al. when they defined the concept of potency of an obfuscation as the ratio between the complexity (mea-
sured with any metric) of the obfuscated code and the complexity of the original source code, and the
concept of resilience, i.e., how difficult it is to automatically de-obfuscate the protected code [19].
Karnick et al. defined more precise metrics for potency (combining nesting, control-flow and variable com-
plexities), resilience (as the number of errors generated when decompiling the obfuscated code) and cost
(as an increment of memory usage) [34]. Heffner and Collberg used metrics for obfuscation potency and
performance degradation as they aimed at finding the optimal sequence of obfuscations to be applied to
different parts of the code in order to maximize complexity and reduce performance overhead [29]. With
a similar goal, Jakubowski et al. presented a framework for iteratively combining and applying protection
primitives to code; they also used code size, cyclomatic number and knot count metrics to evaluate the code
complexity [31].
Many authors have chosen just a few specific metrics, under the assumption that these are good indicators
of the software complexity and of the task difficulty for attackers trying to break the code. Anckaert et al.
attempted to quantify and compare the level of protection of different obfuscation techniques [8]. In par-
ticular, they proposed a series of metrics based on code, control flow, data and data flow: they computed such
metrics on some case study applications (both on clear and obfuscated code), without however performing
any validation on the proposed metrics. Linn et al. define the confusion factor as the percentage of assem-
bly instructions in the binary code that cannot be correctly disassembled by the disassembler, assuming
that the difficulty of static code analysis will increase with this metrics, even if it strongly depends on the
disassembly tools and algorithms used [37].
Tamada et al. have proposed a mental simulation model to evaluate program obfuscation [46]. The mental
model simulates the short term memory of humans as a FIFO queue of limited, fixed size. Then, the authors
compute six metrics that account for the difficulty possibly encountered by humans understanding the pro-
gram, in accordance with the simulation model. They show that the values of such metrics increase – hence
making program understanding more difficult – when a number of well-known obfuscation techniques are
applied to the program to be protected.
Wang et al. model attacks as Petri nets and compute the cost for a specific attack path from the following
parameters associated with the transitions (i.e., the individual attack steps) in the considered path: (1) Key
attribution: a complexity metrics of the software subjected to the attack step (usually a size metrics); (2)
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Importance of the attack step in the attack process: between 1 (low importance; e.g., initialisation step) to
4 (high importance; e.g., core attack step) – the value of this parameter is assigned manually; (3) Cost of
the attack: either 1, 5, 10, 15, 20 or 25 – the value of this parameter is assigned manually [49]. The cost
predictions produced by this approach have not been evaluated empirically and several specific choices
(e.g., form of the mathematical function used as predictor and parameter ranges) are not properly justified.
Probably the most comprehensive analysis is represented by the comparison conducted by Ceccato et
al. [13]. This study considered many different applications from different domains, consisting of more
than 4 millions lines of code. Forty four different obfuscations have been applied to the code. The effects
of each obfuscation have been quantified separately as the changes occurred to the code according to 10
metrics, including Chidamber and Kemerer’s modularity, (cyclomatic) complexity and size (lines of code).
In order to provide reliable results, a statistically sound evaluation has been conducted.
Visaggio et al. used the code entropy and size to detect obfuscated malware code in Javascript [48]. Although
their goal and metrics are different from those listed so far, they also analyze the difference between metrics
values obtained from obfuscated code and non-obfuscated code. Zeng et al. analyzed different obfuscations
to discover which ones can break different types of watermarks hidden in the code [52].
Alternatively, tools have been used to assess the resilience of code obfuscations. For instance, Sutherland
at al. relied on a program binary instrumentation tool to measure the fraction of the obfuscating trans-
formations that the attackers can undo automatically [45]. Goto et al. proposed the depth of parse trees as a
measure of source code complexity [26]. Udupa et al. measured the resilience of an obfuscation by using the
amount of time required to perform the automatic de-obfuscation to evaluate the effectiveness of control
flow flattening obfuscation, relying on a combination of static and dynamic analysis [47].

7.2 Human Studies

Empirical software engineering is devoted to the design and execution of controlled experiments to study
how developers change their productivity while working with alternative tools/approaches. Empirical
software engineering requires several steps for carefully defining the experimental environment, such as
stating the experimental hypotheses, defining relevant variables to measure, preparing attack tasks to be
executed by the subjects, profiling the subjects, analyzing the data with proper statistics and elaborating
the threats to the observation validity.
Despite the benefits of experimental investigation, in the security literature only a few works are based on
attacks performed by human subjects on binary code [45] and even fewer works [15, 16] are based on sound
empirical approaches, because the latter are expensive to conduct and time consuming. As an example, the
comparison of just two obfuscation techniques with the involvement of humans playing the role of attackers
took a quite long time to be concluded [14].
Sutherland et al. conducted an experimental study on the complexity of binary reverse engineering [45].
The authors of this study asked a group of 10 students (of heterogeneous level of experience) to perform
static analysis, dynamic analysis and change tasks on several C (compiled) programs. They found that the
subjects’ ability was significantly correlated with the success of the reverse engineering tasks they were
asked to perform.
A former collaboration amongst participants of the ASPIRE project resulted in some works devoted to
present the design, planning and results of a series of experiments devoted to compare the level of pro-
tection offered by two of the most common code obfuscation techniques, identifier renaming and opaque
predicates [15, 16, 14]. This study compared, by means of statistical tests and effect size measures, the capa-
bility and efficiency of subjects in performing attack tasks on clear and obfuscated code. The study was able
to quantify the increased effort necessary to understand and attack an obfuscated program, with respect to
the effort necessary for the non-obfuscated one.
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8 Conclusions and Future Work

Section authors:
Bjorn De Sutter (UGent)

We have presented the framework in which we will instantiate the concrete complexity metrics that will
be used in the ASPIRE protection evaluation methodology. This unifying framework is, to the best of
our knowledge, a novel approach, that will require a lot of additional work to be fully instantiated and
evaluated. We expect that many iterations and adaptations will still be needed.
First, we will build the tools to compute the metrics, and make sure they cover all revelant combinations of
protections and attack steps.
Next, we will instantiate the many parts of the framework in the form of weights and aggregation functions.
Once these tasks are done for a significant set of protections and attack steps, we will start evaluating the
framework, which we will do on the ASPIRE project use cases.
In the mean time, we will also consult with the ASPIRE Scientific Advisory Board and with software pro-
tection research we meet in our research networks to get their feedback on the novel approach presented
here.
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Part II

Update to the ASPIRE Security Model
The first version of the ASPIRE Security Model was presented in the deliverable D4.01, and we report in
this deliverable about updates in the ASPIRE Security Model.
Section 9 describes the advancements in the use of Petri Nets as Attack Simulation Models. We report
about the evaluation and selection of a proper Petri Net editor and the planning for extending it in order
to meet the ASPIRE security model requirements. To verify the correctness of our choices and to test the
applicability of the selected Petri Net model to real case studies, we have modelled two attacks related to
different industrial use cases. We first present attacks against WBC, used in the NAGRA use case, and
attacks against a SoftVM, used in the SafeNet use case. We recall here that D4.01 already showed that Petri
Nets can be used to model attacks against OTP generators, used in the GEMALTO use case.
Section 10 shows the updates to the Metrics sub-model of the ASPIRE Security Model derived from the
metrics framework reported in this deliverable.

9 Updates to the Petri Net Models

9.1 Extended Models

Section authors:
Paolo Falcarin, Christophe Tartary, Shareeful Islam, Gaofeng Zhang (UEL)

Petri Nets (PNs) are often utilized to model the flow of information in concurrent and distributed systems.
Specifically, high-level PNs have been developed to achieve more descriptive power; in literature, high-
level PNs represent different approaches to extend the basic PN formalism, such as Timed PNs (TPNs) and
Colored PNs (CPNs).
While modeling attacks related to the ASPIRE use-cases, we realized the need to extend the PN model to
meet the following requirements:

1. Each token represents a different attacker in a team of attackers in collusion to achieve the same goal:
this way attacks performed in parallel by two colluding attackers can be simulated.

2. The use of variables can represent the attacker’s knowledge, as a set of different types of intermediate
information gained by the attackers while performing an attack.

3. The possibility of defining pre-conditions to enable transitions.

4. The possibility of adding a value or a mathematical expression to a transition to represent the effort
to perform a particular attack step (transition). Such effort could be estimated using one or more data
sources:

• with a formula where the effort is estimated using code metrics and attacker expertise;
• elaborating data gathered through empirical experiments;
• using data provided by security-domain experts.

We will focus on how to estimate the increase of effort due to the application of a particular configu-
ration of protections, based on the metrics identified in Section 5. We will provide a first estimate by
aggregating the different metrics for the different attack paths. Then we will be able to run simulations
to refine the estimate of the increased effort.

5. The execution of actions in the transitions that can modify such variables. Such actions could include
the estimation of the effort to perform the attack step.

The set of values of such variables represent the current knowledge known to the attacker. The results of
the attacker’s actions performed in an attack step can possibly update such values until the final goal is
achieved.
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CPNs use tokens of different colors, thus they can be used to represent different types of data (like code
size) flowing through a net that are relevant to compute the efforts needed to perform each attack step. In
CPNs a token is like an object that can contain a defined type of data. According to CPN definition, all
data are encapsulated in the token, a place can host only one particular type of token and a transition can
consume only one type of token. In case of complex sets of data, the PN can soon become complex.
A possible usage of CPN in our case would require to define all the intermediate data as attributes of a
unique type of token flowing through the network. In this case the example will work in case of a single
attacker and a single model. In case of multiple tokens (i.e., multiple attackers), different transitions can
apply different modifications to different instances of the token, representing the fact that different attackers
gain different knowledge depending on the path they have followed in the PN. However in our case this is
not realistic because, in case of colluding attackers, it is more realistic to represent such acquired knowledge
as shared data among the different attackers, i.e., as shared variables accessible from all transitions (attack
steps). Moreover, in case of multiple PN models merged after being extracted from the ASPIRE Knowledge
Base, the overall token in CPN would be the merge of different data types.
PNs with Discrete Variables (PNDVs) are a more recent PN extension that adds modeling convenience and
compactness to PNs, while at the same time ensuring that most of the mathematical properties of PNs
are still valid [32]. This model is a PN extended with a set of finite global integer variables, used in pre-
conditions, that are guards on transitions. This type of extension better matches the requirements of ASPIRE
security modeling. In fact, all the information used by the attackers can be decomposed and mapped to
a set of global integer variables. For example, when looking for a cryptographic key into a binary file,
the attacker usually needs to identify some areas of code worth further investigation. Such intermediate
knowledge could be represented with an array of code areas, where each code area is represented by a
couple of integer numbers. These numbers represent the initial offset and final offset with respect to the
base address of the binary code.
Moreover, the ASPIRE Security Model is used to estimate the effort needed to perform an attack by com-
bining the effort for the different attack steps. As discussed in Section 6, the effort for each individual attack
step will be estimated by aggregating a number of metrics that, after aggregation, give an indication of the
number of work units required to complete the necessary activities in that step.
In TPNs [50], each transition has a delay, representing the time needed to execute a transition. However
we need to decide the type of delay as in TPNs literature, the delay is represented as fixed, stochastic or
interval-based. PNs with fixed delays allow for simple analysis methods but it is not a realistic model as
in attack modeling the duration of each attack step depends on different parameters (attack goals, means,
subject, object, and actions, some of which are captured in the metrics proposed in Part I). Stochastic PNs
[38] [25] use a probability distribution for each delay in the PN, but the choice of such a distribution is
particularly difficult in security domain where most of the data are often unknown or unreliable. We decide
to use interval-based delays. The range of such delays will depend on the aforementioned parameters and
will be investigated in the remainder of the project. Therefore minEffort and maxEffort can be two shared
variables continuously updated when running PN model simulations in different scenarios.

9.2 Tool Support

We have defined the list of the ASPIRE security model requirements for selecting a suitable PN tool. The
first requirements with ’must’ or ’can’ are mandatory, while the remaining ones with ’should’ and ’might’
are desirable features:

1. The tool must be stable, reliable and still part of an active project supported by its developers.

2. It can design a basic PN model with places and transitions.

3. It can design high-level PNs with discrete values, by defining global variables.

4. It must be extensible to perform the evaluations of the ASPIRE security model.

5. It might be possible to add text annotations to places and transitions.

6. It might be possible to define conditions on transitions.

7. It should save models in standard PNML format [6].

8. It should rely on PNML meta-model specification to allow the definition of a formal mapping towards
the OWL-based ASPIRE meta-model.
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9. It should perform the simulation based on formulas and conditions attached to transitions.

10. It might be Java-based to be easily integrated with the ASPIRE Knowledge Base.

11. It might be based on Eclipse in order to reuse Eclipse plug-in features.

We have evaluated some open-source tools for PN modeling and simulation, alternative to CPN-Tools.
For example, YAWL [7] is a powerful modeling tool for high-level business process modeling; initially
its semantics relied on Petri Nets, but after many extensions, the current semantics are defined as a la-
beled transition system that cannot be translated back to a Petri Net. Moreover, the editor cannot be easily
extended for our purposes so these issues make YAWL unfit for the scope of our project.
We have used PIPE, a simple Java-based PN editor, to draw simple models of the attacks on the use-cases.
They were easily understood by the industrial partners when providing feedback on this modeling activ-
ities. PIPE is an open-source project allowing editing of simple low-level PNs [24, 5]. It is therefore not
designed to store variables and conditions, which are typical features of high-level PNs. However, as this
is an open-source project, the tool might be extended in the future.
We have evaluated CPN Tools [1] trying to use high-level PNs, such as CPNs [33] for adding variables and
conditions but the tool’s user interface is not very user-friendly as it required more time to learn how to
use it (compared to other tools). Moreover the tool sometimes crashed and it is not easily extensible to
meet the requirements of the ASPIRE security model: extending this tool with its scripting language could
be time-consuming and it would have not been easy to integrate with the future Java APIs of the ASPIRE
Knowledge Base. However the need to draw high-level PNs with discrete values led us to consider the
Eclipse-based tool ePNK [3, 36], which provides a Java-based extensible open source platform for PN mod-
eling, based on Eclipse Modeling Framework (EMF) [2] and the Graphical Modeling Framework (GMF) [4].
Current ePNK features are:

1. It can design a PN model with discrete values and save it as standardized PNML file.

2. The EMF modeling framework is used to represent the PNML meta-model: the GMF-based editor
relies on such a meta-model to easily check that the modeled diagram is compliant to the PNML
specification.

3. The PNML meta-model in ePNK is compliant to the PNML standard so that PNML files automatically
generated through the EMF framework are consistent with the standard.

4. It can do the simulation based on formulas and conditions attached to transitions. We can use it to
perform basic security model evaluations.

5. It is easy to plug-in into Eclipse. We can do further development based on existing programs and
packages.

6. Global variables can be defined and used by various transitions in a PN.

In Table 1 the three tools are evaluated with respect to our requirements.

Requirement Type Description ePNK PIPE CPN Tools
R1 M Stable tool yes yes yes
R2 M PN editor yes yes yes
R3 M High-Level PN editor yes no yes
R4 M Extensible editor yes yes yes
R5 M Text annotations yes yes yes
R6 M Conditions on transi-

tions
yes no yes

R7 D PNML yes no yes
R8 D PNML meta-model yes no no
R9 D Simulation yes yes yes

R10 D Java yes yes no
R11 D Eclipse yes no no

Table 1: Comparison among Petri Net tools with respect to mandatory (M) and desirable (D) requirements.
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The Eclipse-based tool ePNK (see Figure 2) seems the best candidate as it relies on EMF and GMF, the well-
known modeling plug-ins, but there are still some features ePNK cannot provide, so we will have to extend
it by developing another Eclipse plug-in to provide support for:

• the connection of metrics formulas to the transitions to be used to estimate the overall effort increment;

• the pre and post conditions in transitions, which are not supported yet, and there is only one type of
condition for managing transitions now. We need to extend the related classes to realize this;

• the creation of our simulator to evaluate the attacker effort;

• the connection to the ASPIRE Knowledge Base.

Moreover we can think of adding other information to transitions that might be processed like the proba-
bility distribution of a transition’s effort. Once this information is added into the model editor, our Eclipse
plug-in can be used to simulate and estimate the total extra effort of different attack paths depending on
the data also extracted from the ASPIRE Knowledge Base.

Figure 2: Screenshot of ePNK Eclipse-based tool

9.3 Exercises on use cases

In this section we are reporting the modeling on two other use-cases, which has triggered the need for
extending the security model based on PNs towards high-level PNs with variables and conditions (PNDVs).
To build these two attacks with our industrial partners from the perspective of use cases, we have had
four rounds of interactions with the experts in the companies in ASPIRE: initial discussion (Apr. 2014),
initial modeling (May 2014), model revision (June 2014), modeling completion (Sept. 2014). There were
three audio-conferences per use-case discussions to align with our partners, solve unforeseen problems,
and reach the final objective.

9.3.1 Attacks on WBC

The attack on White Box Cryptography (WBC) described in the Attack Model (deliverable D1.02 Section
5.2) has been modeled with a high-level PN using variables and conditions, as shown in Figure 3. In this
PN model for WBC we have identified three categories of attacks: static analysis, dynamic analysis, and
WBC-attacks. For each of these categories we have named the attack steps with labels starting with Ts
for static analysis attack steps, Td for dynamic analysis attack steps, and Tw for white-box cryptography
attacks.
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Figure 3: Petri Net for White-Box Cryptography attack

Starting from the initial state P0, Ts0 represents the task of using static analysis tools to identify the cryp-
tographic primitive used in the binary code. We hence need a variable to store the name of the primitive
used.
The variable crypto can be defined to store one value from the enumeration {AES, RSA, unknown} and it is
initialized with the value unknown.
In case the attacker has detected AES-related binary code (i.e., crypto = ’AES’), he will run a more precise
static analysis with AESKeyFinder (represented by Ts1), or in case RSA-related code is found (i.e, crypto =
’RSA’), he will run a RSAKeyFinder (represented by Ts2); otherwise the IdaPro findCrypt2 plug-in can be
used (Ts3). The attack step Ts1 is then represented by a guarded transition (if crypto = ’AES’) and so is Ts2
(if crypto = ’RSA’). The attack step Ts4 represents the usage of other static analysis tools on binary code.
In place P2 the attacker has run one of the former attacks and the possible outputs can be different as the
success of such attacks might depend on code complexity, attacker expertise and other factors. The possible
outputs available at P2 are the secret key hidden in the code, or a set of the code locations where to further
search the binary code with other tools, or none of the above. We can then define the Boolean variable
keyFound that will be set to true as soon as the key is found. We can define the type CodeArea as a pair
of integer numbers, to represent with two integer indexes the beginning and the end of an area of binary
code (interpreted as an array of bytes starting from index 0). Therefore we can now define the variable
codeLocation as an array of CodeArea types, to represent different (and in general non-adjacent) areas in the
binary code. Such codeLocation arrays can be used to store the different areas of the binary code identified,
e.g., by the static analysis tools as primary suspects of hiding or processing the key.
In case the attacker immediately finds the key, he can skip to the final place P6 by firing the transition Tf1
(guarded by the condition if keyFound = TRUE). If only code locations are found, at this point the attacker
has a choice of trying static attacks again (firing the dummy transition Tsloop) or of changing his strategy by
trying to use dynamic attacks. Such a choice can be taken randomly during the model simulation or it might
be customized (for example depending on the attacker’s expertise) to give higher priority to one transition
than to another. In case the crypto primitive has been identified and its code location has been found, the
attacker can also decide to skip the dynamic analysis and instead immediately try the cryptographic attacks
by firing the guarded transitions Tc1 and Tc2 and moving the token to place P3.
In case the attacker wants to try dynamic analysis techniques, he has several options. If the code can be
instrumented, the attacker can try to extract the execution traces (Td1). If the code can be executed, he can
analyze the memory pages (Td2). If the code can be instrumented/rebuilt, he can try to tamper with the
binary code and change its execution (Td3), otherwise he can intercept the system calls made by the binary
to discover the code locations of such system calls (Td4). After running one dynamic analysis the token
representing the attacker will be in place P3. In case the attacker has then found the key, he can skip to the
final place P6 by firing the transition Tf2 (guarded by the condition if keyFound = TRUE). Otherwise, these
attacks can be iterated (by firing the loop transition Tdloop) until the key is found or the attacker decides
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Figure 4: Petri Net VM attack

to change strategy and try the crypto attacks.
Table 2 depicts more details on each attack step for the aforementioned static and dynamic attacks. Table 3
does the same for the remaining attack steps.
Once the attacker reaches the state P3, he starts to analyze the mathematical properties of the cryptographic
implementation: attacks Tw1 (differential cryptanalysis) or Tw2 (linear cryptanalysis) or Tw3 (algebraic
attacks) are available depending on different pre-conditions. These attacks can be iterated (by firing the
loop transition Twloop) until the number of key fragments identified in this process can be considered small
enough to proceed with Te to apply heuristics or a brute-force attack to attack the missing key fragments.
If this attack is successful and the key is found, the final goal P6 is reached.

9.3.2 Attacks on a SoftVM

The SoftVM is an interpreter that fetches bytecode from memory. For each bytecode, the SoftVM executes
the corresponding native code stored in the respective Instruction Handler (IH), and then loads the next
bytecode. The bytecode is not stored in a single file or data structure but it is split in different code chunks
spread throughout the native code. The VM implementation is split in a set of IHs which might be obfus-
cated and then encrypted and then spread through the native binary code using a binary rewriting tool
(e.g., Diablo). Each code chunk can contain one or more bytecode instructions. The VM contains different
code portions that are interesting to the attacker:

• the VM function called by the native code to transfer control to the VM;

• a decoder, which translates the bytecode into native code;

• a dispatch routine that given a particular bytecode invokes the IH.

• the different Instruction Handlers (IH).

Figure 4 shows a PN representation of attacks on these assets. P0 is the starting state with two tokens
to represent the fact that the attacker has two parallel attack steps to perform, represented by the initial
transitions Tdis (finding the dispatch routine in the binary code) and Tvm (finding the VM function in the
binary code). Once the dispatch routine is located in the binary code, two other parallel paths start from
places P1 and P2: one to search for the IHs, the other starting by finding the decoder routine (Tdec). The
first path to search for IHs can use static analysis tools (T0) to analyze the binary to identify the interface
between native binary code and VM-related IHs spread around into the binary. Alternatively the attacker
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can use dynamic analysis tools (T1) for the same goal to identify the IHs in the binary. The attacker can
iterate again and again (through transition Tloop) using different static/dynamic analysis tools to better
identify these code and possibly data locations. In P4 the attacker has a set of code and/or data locations
in the binary that correspond to the IHs, or at least to the attacker’s best estimate using the available tools.
If the attacker has found the decryption function using dynamic analysis (T1), then he also observed the
arguments of the calls to the function and therefore also knows the addresses of the result buffers with the
plain IH-code and he moves to P4. On the other hand when the attacker uses static analysis he can find out
if IHs are encrypted: if the IHs are not encrypted the attacker can skip to P4 through the transition T3. If
IHs are encrypted, the attacker has identified the decryption function using static analysis (T0): as he does
not know the addresses of the plain text buffers (in fact the buffers might not even exist yet), the attacker
can try to decrypt the encrypted data using statically identified decryption keys (T2).
He can repeat the process for each IH (going through Tloop). When all the IHs are available then the
attacker can continue from place P4: now the IHs are possibly obfuscated so a tool can be used to optimize
the binary code of these IHs (T4): at P5 all the IHs are known to the attacker. The aforementioned steps are
detailed in Table 4. The following ones are described in Table 5.
The other path from P1b starts with Tdec to find the decoder routine that translates the bytecode (given
as input to the decoder) into native code. Once the decoder is found and its input bytecodes have been
observed, the attacker can build a custom disassembler (T5). When the attacker has found the VM function
(Tvm) called by the native code, he can use dynamic analysis (T6) to find the code chunks sent to the VM
to be interpreted. Once the attacker has built a custom disassembler (T5) and has found the code chunks,
he can manually understand (T7) the full semantics of the bytecode program. Then the attacker has to
combine (T8) the information about the bytecode behavior with the semantics of the IHs. Once the full
semantics is known the attacker can use a binary rewriting tool to optimize and rewrite the VM code (T9)
and transform it back to binary code equivalent to the original code transformed into VM code.
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Label Description Pre-condition Input Output Goal

Ts0
Determine the
crypto primitive
used

Binary code

AES or RSA or
unknown, The
knowledge of
which crypto
primitive is
implemented, and
how

P1

Ts1 Static analysis with
AESKeyFinder AES Binary code Key or key

location P2

Ts2 Static analysis with
RSAKeyFinder RSA Binary code Key or key

location P2

Ts3
Static analysis with
IdaPro findCrypt2
plug-in

Binary code Key or key
location P2

Ts4

Analyze the binary
code (static
structural code
and data recovery)

Code fragments
possibly
containing the Key
location

P2

Tsloop
Go back and try
different static
analysis

Key not found:
choice to loop back
or deploy dynamic
attacks

P0

Td1 Execution traces Binary code can be
instrumented Binary code Execution traces P3

Td2
Analyze the
memory pages
during execution

Binary code can be
run in debug mode Binary code Location of target

memory fragments P3

Td3
Tamper with
binary and its
execution

Binary code can be
instrumented and
rebuilt

Binary code
Tampered binary
code, Possible Key
location

P3

Td4 Intercept the
system calls Binary code

Code location of
System calls and
data passed to O.S.

P3

Tdloop
Go back and try
different dynamic
analysis

Key or its location
in code not found
or attacker choice

P2

Tc1 Fake transition

Code containing
the cryptographic
algorithm located
+ Cryptographic
primitive
identified

N/A Code lifting
possible P5

Tc2 Fake transition

Code containing
the cryptographic
algorithm located+
Cryptographic
primitive
identified + It is
known how to
efficiently
crypto-analyze the
primitive

N/A
Cryptanalysis of
the primitive
enabled

P3

Table 2: Legend 1 of the Petri Net for White-Box Cryptography attack
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Label Description Pre-condition Input Output Goal

Tw1 Differential
cryptanalysis

Code containing
the cryptographic
algorithm located
+ Cryptographic
primitive
identified

Code containing
the cryptographic
primitive + Pairs
of input/output
(empty for the
first attack) +
Candidate values
for the key

Updated set of
candidate values
for the key
(ideally, one) +
Pairs of
input/output
which could be
reused in another
attack if needed

P4

Tw2 Linear
crypto-analysis

Code containing
the stream or
block cipher
located +
Cryptographic
primitive
identified with
AESKeyFinder

Code containing
the stream or
block cipher +
Pairs of
input/output
(empty for the
first attack) +
Candidate values
for the key

Updated set of
candidate values
for the key
(ideally, one) +
Pairs of
input/output
which could be
reused in another
attack if needed

P2

Tw3 Algebraic attacks

Code containing
the cryptographic
algorithm located
+ Cryptographic
primitive
identified

Code containing
the cryptographic
primitive + Pairs
of input/output
(empty for the
first attack) +
Candidate values
for the key

Updated set of
candidate values
for the key
(ideally, one) +
Pairs of
input/output
which could be
reused in another
attack if needed

P2

Te
Heuristics of
Brute force on
remaining

Identified
information
about the key

Key fragments Attack successful P6

Tf1
Return the key
and terminate
attack

Key recovered at
P2 Key Attack successful P2

Tf2
Return the key
and terminate
attack

Key recovered at
P3 Key Attack successful P6

Table 3: Legend 2 of the Petri Net for White-Box Cryptography attack
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T Descrip-
tion Input Tool/Tech-

nique Action/Process Output Goal

Tdis
Find
dispatch
routine

Binary
code

Dynamic
analysis

Extract execution
traces to find
routine invoked
more frequently

Dispatch
routine
location

P1,P2

T0 Find IHs
statically

Binary
code

Static analysis
tools

Process of
identifying the
location of IHs
using static
analysis

IH
locations P3

T1
Find IHs
dynami-
cally

Binary
code

Dynamic
analysis tools

Process of
identifying the
location of IHs
using dynamic
analysis: traces the
actions performed
by the VM calls

IH
locations P4

T2 Decrypt
IHs

Binary
code and
encrypted
IHs

static analysis
tools
(findcrypt,...)

Perform
decryption routine
in the binary

IH code P4

T3 Dummy
transition

If IHs are not
encrypted then
skip to P4

Decrypted
IHs P4

T4 IH opti-
mization

IHs
obfuscated

Binary
rewriter

Compiler’s
optimization and
manual
optimization

Code
location,
Binary
code

P5

Table 4: Legend 1 of the PN for VM attack
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T Descrip-
tion Input Tool/Tech-

nique Action/Process Output Goal

Tdec
Find the
decoder
routine

Binary
code

Dynamic
analysis tools

Search for decoder
routine in binary

Decoder
function
location

P8

T5

Build
custom
disassem-
bler

Decoder
location

Build custom
disassembler

Custom
disassem-
bler
created

P9

Tvm
Find VM
function
location

Binary
code

Dynamic
analysis

Dynamic analysis
to find the VM
function

VM
function
location

P6

T6
Find
bytecode
chunks

Binary
code

Dynamic
analysis

Dynamic analysis
to find code
chunks

Bytecode
chunks
location
identified

P7

T7

Under-
stand
bytecode
semantics

Code
chunks,
disassem-
bler

manual

Build the bytecode
control flow by
running the code
chunks through
the disassembler

Under-
standing of
bytecode
semantics

P10

T8

Combine
bytecode
semantics
and IHs

Code
chunks,His
locations

manual

And full semantics
by combining
bytecode with
corresponding IHs

Under-
standing of
full
semantics

P11

T9 Rebuild
and link

Binary
code +
optimized
code
chunks

Binary
rewriter

Optimize binary
and link

Original
native
code
restored

P12

Table 5: Legend 2 of the PN for VM attack
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10 Updates to the UML models

Section authors:
Cataldo Basile (POLITO)

The metrics framework proposed in Part I of this deliverable is an advancement of the project knowledge
in the field of metrics. Metrics will be used for evaluating the potency, resilience, and stealth of applications
after the application of a combination of protections. That use would not require an update to the ASPIRE
Security Model as it is an operation performed after the deployment of protections. However, metrics will
be also used to estimate the impact of combinations of protections during the Evaluation phase of the ADSS.
Therefore, the ASPIRE Security Model needs to be updated to describe this new information. In particular,
changes are all focused in the Metrics sub-model. Note that this update to the ASPIRE Security Model
corresponds to step 5 of the “Roadmap for the Knowledge Base Definition”, presented in Section 3.2 of the
deliverable D4.1.
There are three major updates to the Metrics sub-model:

• We updated the Metrics sub-model to represent the metrics framework presented in Section 3.1;

• We modelled the measurable features listed and commented in Section 4;

• We modelled the metrics listed and commented in Section 5.

Figure 5: The Metric and its subclasses.

Figure 5 presents the Metrics and its subclasses. Metrics are described by means of Metric class in-
stances. The Metric class has been subclassed according to the two categories of metrics: metrics related
to complexity are described by the abstract ComplexityMetric class, and metrics related to resilience are
described by the abstract ResilienceMetric class. These two abstract classes have been further sub-
classed to represent all the ASPIRE metrics. Please refer to Section 5 and the Abbreviation List for the
meaning of all the acronyms used to name the subclasses.
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Figure 6: The MeasurableFeature and its subclasses.

Figure 6 presents the MeasurableFeatures and its subclasses. The measurable features are described
by means of MeasurableFeature class instances. The MeasurableFeatures class has been subclassed
according to the two categories of measurable features: measurable features related to complexity are de-
scribed by the abstract ComplexityMF class, and measurable features related to resilience are described by
the abstract ResilienceMF class. These two abstract classes have been further subclassed to represent all
the ASPIRE measurable features. Please refer to Section 4 and the Abbreviation List for the meaning of all
the measurable features acronyms.
Figure 7 shows the Metrics sub-model. The four ASPIRE goals shown in Figure 1 have been modelled by
means of the ASPIREMetricsGoal enumeration class. Also the three conceptual aspects, i.e., potency,
resilience, and stealth, have been modelled by means of the ConceptualAspect enumeration class.
The elements of the set G have been modelled as instances of the GoalSetItem class. Instances of this
class are linked to instances of:

• the ASPIREMetricsGoal class by means of the itemHasMetricGoal association (METRIC GOAL)
;

• the Goal class by means of the itemHasAttackGoal association (ATTACK GOAL);

• the Attacker class by means of the itemHasAttackGoal association (SUBJECT);

• the AttackTool class by means of the itemHasMeans (MEANS);

• the ApplicationPart class by means of the itemHasObject association (OBJECT);

• the AttackPath class by means of the itemHasActions association (ACTIONS).
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Figure 7: The Metrics sub-model of the ASPIRE Security Model.

All the itemHas* associations from the GoalSetItem have one-to-many cardinality.
Measurable features are associated with metrics that concretely serve to measure them by means of the
quantifies association between the Metric and MeasurableFeature class instances.
To record into the a priori knowledge of the AKB the relations between measurable features and other
elements of the Security Model that can affect them, we also introduced the following associations:

• affectsMF records that an instance of the GoalSetItem class can affect an instance of the MeasurableFeature
class;

• attackAffectsMF records that an instance of the Attack class can affect an instance of the MeasurableFeature
class;

• protectionTypeAffectsMF records that an instance of the ProtectionType class can affect an
instance of the MeasurableFeature class;

• swProtectionTypeAffectsMF records that an instance of the SWProtectionType class can af-
fect an instance of the MeasurableFeature class;

• protectionProfileAffectsMF records that an instance of the ProtectionProfile class can
affect an instance of the MeasurableFeature class.

Finally, to describe that a measurable feature is related to one of the conceptual aspects, we introduced the
relatesTo association between instances of the classes MeasurableFeature and ConceptualAspect.
The associations from and to the MeasurableFeature class have many-to-many cardinality.
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List of abbreviations

ADSS ASPIRE Decision Support System

ACTC ASPIRE Compiler Tool Chain

AT Attack

BBCV Basic Block Coverage Variability

CCD Calling Convention Disruption

CC Cyclomatic Complexity

CD Control Dependency

CFIM Control Flow Indirection Metric

CF Confusion Factor

CG Call Graph

CLV Code Layout Variability

CPN Coloured Petri Net

DCDP Dynamic Ciphered Data Presence

DCD Delta Control Dependencies

DCFC Dynamic Control Flow Complexity

DCG Delta Call Graph

DCZ Dynamic Code Size

DDD Delta Data Dependencies

DDFC Dynamic Data Flow Complexity

DDP Static Data Presence

DD Data Dependency

DET Delta Execution Time

DMS Delta Memory Size

DPDP Dynamic Plain Data Presence

DPFIFO Dynamic Procedural Fan-In/Fan-Out

DPL Dynamic Program Length

DPT Delta Pointers

DSC Data Structure Complexity

DST Delta Statements

FIFO First In First Out

GQM Goal, Questions, Metrics

HC Heap Complexity

HD Heap Dynamics

IEV Intra-Execution Variability

IOTV Instruction Operand Type Variation
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IOV Instruction Operand Variation

IS Ill-structuredness

MATE Man in the End

MCFIFO Memory Locations Fan-In/Fan-Out

MF Measurable Feature

MLMI Multi-Location Memory Instructions

NDUR Number of Def-Use Relationships

PCV Path Coverage Variability

PC Path Coverage

PDG Program Dependency Graph

PF Performance Feature

PIL Procedural Ill-structuredness

PNDV Petri Net with Discrete Variables

PN Petri Net

PT Protection

RD Reuse Distance

SCDP Static Ciphered Data Presence

SCGC Staic Control Flow Complexity

SCZ Static Code Size

SDFC Static Data Flow Complexity

SDP Dynamic Data Presence

SD Semantic Dependencies

SPDP Static Plain Data Presence

SPFIFO Static Procedural Fan-In/Fan-Out

SPZ Static Program Size

SR Semantic Relevance

SV Static Variability

S Stealth

TR Trace Reproducibility

VAMO Variable-Address Memory Operations

VM Virtual Machine

WBC White Box Cryptography

WLMI Writable Location Memory Instructions
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