

Advanced Software Protection:
Integration, Research and Exploitation

D4.01
Preliminary ASPIRE Security Model

Project no.: 609734
Funding scheme: Collaborative project
Start date of the project: 1st November 2013
Duration: 36 months
Work programme topic: FP7-ICT-2013-10

Deliverable type: Report
Deliverable reference number: ICT-609734 / D4.01 / 1.0
WP and tasks contributing: WP 4 / Task 4.1
Due date: April 2014 - M6
Actual submission date: 16 May 2014

Responsible Organization: UEL
Editor: Paolo Falcarin
Dissemination Level: Public
Revision: 1.0

Abstract:
This deliverable presents the initial design and the main concepts of the ASPIRE Security
Model. It will serve as the core of the ASPIRE Decision Support System, and its two principal
concepts are a knowledge base and simulation models that are respectively used to formally
represent and evaluate the different MATE attacks that ASPIRE aims to mitigate. The
security evaluation with Petri nets as simulation models is described by means of an
example taken from the concrete attacks described in D1.02 ASPIRE Attack Model. A
snapshot of the design of the knowledge base is presented, i.e., of its preliminary design in
this stage of the project, and background information is provided on security modelling in
general, and on the use of ontologies and OWL-DL to implement the knowledge base.

Keywords: Security Model, Petri Nets, Knowledge base, Ontology, OWL.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC I

Editor
Bjorn De Sutter (UGent)

Paolo Falcarin (UEL)

Contributors (ordered according to beneficiary numbers)
Cataldo Basile, Daniele Canavese (POLITO)

Mariano Ceccato (FBK)

Shareeful Islam (UEL)

The ASPIRE Consortium consists of:

Ghent University (UGent) Coordinator & Beneficiary Belgium

Politecnico Di Torino (POLITO) Beneficiary Italy

Nagravision SA (NAGRA) Beneficiary Switzerland

Fondazione Bruno Kessler (FBK) Beneficiary Italy

University of East London (UEL) Beneficiary UK

SFNT Germany GmbH (SFNT) Beneficiary Germany

Gemalto SA (GTO) Beneficiary France

Coordinating person: Prof. Bjorn De Sutter
E-mail: coordinator@aspire-fp7.eu
Tel: +32 9 264 3367
Fax: +32 9 264 3594
Project website: www.aspire-fp7.eu

Disclaimer
The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 609734.
The information in this document is provided as is and no guarantee or warranty is given that
the information is fit for any particular purpose. The user thereof uses the information at its
sole risk and liability.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC II

Executive Summary

This deliverable presents the initial design and concepts of the ASPIRE security model, i.e.,
the integrated set of modelling techniques that will be used to formally represent and
evaluate the different MATE attacks on software assets (within binary code executed on
mobile devices). The security model represents the core of the overall ASPIRE approach to
model and evaluate attacks, as well as the main technologies used in this approach and in
the ASPIRE Decision Support System (ADSS), which will store a priori knowledge as well as
application-specific information; the former will be added by ASPIRE security experts, while
the latter will be derived from the application code, by means of code metrics, source code
annotations, and empirical experiments aiming at getting actual data about attack times and
success rates on an application.

The security model defines the simulation models (Section 2) and the structure of the
knowledge base (Section 3), which are the basis of the ASPIRE protection evaluation
methodology that will be further developed and extended in WP4, and of the ADSS that will
be developed in WP5.

We have chosen Petri net models to represent attacks as simulatable models. They can be
used to populate the knowledge base and to compute the expected attack times and attack
success probability. We will compare different protections by comparing their effects on the
times and success rates computed on Petri nets automatically generated for the protected
applications. The Security evaluation with Petri nets is described through the One-Time-
Password generator example that was described informally in D1.02 ASPIRE Attack Model.

We have started designing the knowledge base, using a set of UML class diagrams to
represent the main concepts and their relationships, and we have chosen ontologies to
formalize all the concepts in such diagrams into description logic, in order to provide a
precise relation between assets, attacks, and protection techniques. The presented diagrams
of the main model at the core of the knowledge base and of the sub-models that refine the
main model, are just a snapshot of the current design. Refining the knowledge base to
include as much as possible the relevant and useful information will be an iterative process
that will span most of the project.

Finally, this deliverable includes some background on ontologies and a comparison with
related works is presented.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC III

Contents

Section 1 Introduction .. 1

1.1 Role of this deliverable .. 1

1.2 Overview of the ASPIRE Security Modelling Approach 3

1.3 Challenges to Address .. 5

1.4 Structure of the Deliverable ... 5

Section 2 Security Evaluation: Petri Nets ... 6

2.1 Introduction .. 6

2.2 Overview of Petri Nets ... 8

2.3 Example Model of Attack on Vanilla OTP .. 11

2.3.1 OTP Definition (from D1.02 Section 5.3.1) ... 11

2.3.2 Informal Vanilla OTP Attack Paths Description (from D1.02 Section 5.3.2) 11

2.3.3 Petri Net Model of Vanilla OTP Attack Paths ... 12

2.4 Security Evaluation of the Vanilla OTP Generator .. 13

2.5 Security Evaluation of Protected Applications ... 15

2.6 Tools for Using Petri Nets .. 16

2.7 Challenges and Open Research Problems ... 17

Section 3 The ASPIRE Knowledge Base ... 19

3.1 Knowledge to be Modelled .. 19

3.2 Roadmap for the Knowledge Base Definition .. 21

3.3 The Main Model ... 23

3.4 Model Extensions: the Sub-Models ... 26

3.4.1 Application sub-model .. 27

3.4.2 Assets sub-model ... 33

3.4.3 SW Protection sub-model ... 34

3.4.4 Attacks sub-model .. 35

3.4.5 Metrics sub-model .. 37

3.4.6 Protection requirements sub-model ... 38

3.5 Mapping a Petri Net in the Knowledge Base ... 39

Section 4 Ontologies and Related Work ... 42

4.1 Background on Ontologies .. 42

4.1.1 OWL ... 43

4.1.2 SPARQL and SPARQL-DL .. 44

4.1.3 SWRL ... 46

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC IV

4.2 Ontology Engineering .. 47

4.3 Use of Ontologies in ASPIRE .. 48

4.4 Use of Ontologies in other EU Projects ... 50

4.5 Security Modelling: Attack Trees and Petri Nets ... 53

4.6 Security Modelling ... 55

Section 5 Conclusions and Next Steps ... 56

Section 6 List of Abbreviations ... 58

Bibliography ... 59

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC V

List of Figures

Figure 1: MATE attack economics ... 1

Figure 2: The ASPIRE security modelling approach .. 2

Figure 3: An example attack tree in the form of an AND-OR graph ... 6

Figure 4: A simple Petri net in its initial state (a) and after the transition fired (b) 8

Figure 5: Synchronization (a) and Concurrency (b) ... 9

Figure 6: Place P3 is reached by firing either transition T1 or transition T2 9

Figure 7: Choice in a Petri net .. 10

Figure 8: Petri net of the OTP attack .. 12

Figure 9: Protected version of the OTP Petri net ... 16

Figure 10: Main model ... 24

Figure 11: The Application sub-model. .. 29

Figure 12: The ApplicationParts package. .. 29

Figure 13: The Representations package. .. 30

Figure 14: The Compilers&Linkers package. .. 31

Figure 15: The Communications package. .. 32

Figure 16: The ExecutionEnvironments package ... 33

Figure 17: Assets sub-model. .. 34

Figure 18: SW Protection sub-model. .. 35

Figure 19: Attacks sub-model .. 36

Figure 20: Attacks, goals and Petri Nets .. 36

Figure 21: Metrics sub-model ... 38

Figure 22: Protection requirements sub-model. ... 39

Figure 23: Petri net of the OTP attack (copied from Figure 7). .. 40

Figure 24: Graphical representation of some ontological primitives 43

Figure 25: OWL 2 profiles expressivity relationships ... 45

Figure 26: Representation of the hasUncle property chaining ... 46

Figure 27 : Examples of ontology inclusion (left) and ontology merging (right). 50

Figure 28: Posecco SDSS workflow .. 51

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 1 of 65

Section 1 Introduction
Chapter Authors:

Bjorn De Sutter (UGent)

1.1 Role of this deliverable
One of the ASPIRE goals is to provide measurable protection against MATE attacks. The
scope of the attacks to be considered was already presented in D1.02. That report also
provided an informal overview of the attack techniques and attack tools to be considered, of
their robustness against existing protections, of their identification and exploitation metrics,
and several examples of how different attack (steps) are combined in the real-world to attack
actual applications and their assets.

In the context of the economic model of MATE attacks that was also discussed in D1.02,
measurable means that the impact of applied protections on an attacker's effort for
engineering an attack and on his exploitation potential can be quantified. In terms of Figure
1, which is repeated here from the ASPIRE DoW and from D1.02 for the sake of self-
containment, we want to quantify the changes in the blue surface area and in the red surface
area that result from applying a set of protections.

Furthermore, we want to be able to quantify these effects by means of fully automated tools.
Of course the developer has to provide some of the necessary information, such as the
application and a description of the assets to be protected, the envisioned threat (at a very
high level of abstraction), and perhaps information on the targeted platform. But apart from
that, ideally the developer should not have to perform manual computations or analyses.
Instead, with a fully automated toolbox, the developer can ask the tools to compute the
optimal combination of protections for his software.

Figure 1: MATE attack economics

Developing a toolbox that requires only the minimal input from a developer to protect his
application and its assets obviously requires that the tool box comprises a large, generic
knowledge base, in which all relevant information from D1.02 and other sources is present.
Furthermore, the toolbox will need to be able to instantiate its general knowledge for the
developer's case at hand. In other words, from the general knowledge contained in the
knowledge base, and from the developer's input, the toolbox will need to synthesize a model

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 2 of 65

of the developer's application in relation to the threat he described at a high level of
abstraction. Then on the basis of that synthesized model, the toolbox has to be able to
reason about the impact that the supported protections can have on the threat to be
mitigated. Ultimately, the toolbox can select the most appropriate protections based on the
models. The toolbox can report the selected protections and visualize their impact on
envisioned attacks for validation by the developer, and the toolbox can generate a
configuration for the protection tool chain to actually apply the protections.

In the remainder of this document, we will use the term ASPIRE Decision Support System
(ADSS) to denote this toolbox. Its development is a major goal of the ASPIRE project.

Figure 2: The ASPIRE security modelling approach

The role of this deliverable then is to present the overall ASPIRE approach to model and
evaluate attacks, as well as the main technologies used in this approach and in the ADSS.
Two central pieces of the envisioned approach are concrete simulation models of
attack/protection combinations, and a knowledge base. The simulation models will allow us
to quantify the impact achieved by some protections. The knowledge base will store all
information necessary to generate the concrete simulation models given the input from a
programmer. In essence, the knowledge base provides a precise relation between assets,
attacks, and protection techniques. To assemble this knowledge, we will rely on the findings
described in D1.02 Attack Model (e.g., the attack overview and attack paths).

 ASPIRE Knowledge Base (AKB)

ASPIRE Decision
Support System

ASPIRE
Program

Analyses

Annotated
Program

Source Code

Tool chain configuration Security report

Attack Simulation Models (ASMs)

Vanilla application Protected application versions

Generic knowledge

Protection
Subontology

Attack
Subontology

Threat Model
Subontology

Tool chain

Tool chain
Subontology

Application

Scenario

Application &
Assets Facts

Developer
Requirements

Enrichment - Dynamic generation of attack simulation models (ASMs)

Selection
&

Optimization

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 3 of 65

This deliverable defines the simulation models and the structure of the knowledge base. As
such, it defines the basis of the ASPIRE protection evaluation methodology that will be
further developed and extended in WP4, and of the ADSS that will be developed in WP5.

1.2 Overview of the ASPIRE Security Modelling Approach
Figure 2 presents a conceptual overview of approach that will be developed in ASPIRE. As
shown on the top left of the figure, the ADSS will take as first input the application to be
protected. The developer is expected to have annotated the source code to mark its assets
to be protected: code fragments, variables, keys, etc.

Secondly, the developer (shown as the white hat) will also provide additional information to
the ADSS, such as acceptable overhead, the needed level of protections, the type of
attackers/attacks that need to be considered, and possibly other relevant information about
the platform, business model, assumed online connectivity, server requirements, etc.

The ADSS will then first analyse the application (using the source code analysis and
compiler tools from the ASPIRE tool chain) to identify the assets as indicated by the
programmer's annotations, and to extract all relevant information about the application.
Besides information describing the assets to be protected, this information includes, but is
not limited to, profile information, code size, slices, points-to information, etc. All the thus
collected formal application and asset facts will be represented in data structures that
facilitate reasoning about the application, and be stored persistently such that they can be
reused later on, if necessary, without wasting resources on re-computing already computed
information.

The AKB will also model all additional information provided by the developer to the ADSS. In
general, this information defines the requirements that need to be met by the protections in
the developer's scenario. Combined, the requirements and the application and asset facts
form all the application/execution specific knowledge.

Besides that specific information provided by the developer, the AKB also features a priori
knowledge that is valid for all applications of the ADSS. That a priori knowledge comprises
generic knowledge on the one hand and tool chain knowledge on the other hand.

The generic knowledge captures all information that is generally applicable and relevant in
the context of software protection against MATE attacks. Fundamentally, it formalizes the
relationships between assets, threats, attacks, protections, and attack attributes as we
described informally in D1.02. Some examples of knowledge that needs to be modelled
formally, and for which other components in the ADSS will need to be able to query the AKB,
are the following:

• Given some type of asset and a threat (see D1.02 Section 3), what are the attacks
paths that an attacker can use?

• Which attack steps require an internet connection?
• Which protection techniques are incompatible/compatible with a particular

compiler/OS/CPU?
• For each attack step, what are the relevant metrics (e.g., control flow complexity or

size) that determine the effort required by an attacker of a given level of expertise?
• What is the best-estimated relation between that effort and the metric (linear,

quadratic,...) ?
• For each attack step, which level of expertise is needed to deploy it?
• For each attack step, metric and type of asset, what is the relevant part of the

application (e.g., a function, a module, ...) on which the metric has to be computed?
• For each protection, how does it influence the relevant metrics?
• Which protections can be combined in a given code fragment, and which not?

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 4 of 65

In principle, this generic knowledge is independent of the tool chain that will deploy the
protections. For that reason, it is also necessary to model the capabilities of the tool chain,
i.e., the available protections, the combinations of protections supported by the tool chain,
the granularity at which protections can be deployed (e.g., at the function level, or on sets of
basic blocks within functions, or on sets of basic blocks spanning multiple functions, etc.),
and the options and parameters that need to be specified for each protection to be invoked.

When all of the discussed information is merged in the AKB, it will model all necessary
information to reason about the protection of the application at hand, given the requirements
of the developer, the capabilities of the tool chain, and all available knowledge about the links
between protections, attacks, assets and threats. Simply merging all information into one
database will not suffice to reason efficiently and effectively, however.

We will therefore externalize some of the reasoning to external modules that interact with
each other to enrich the AKB, i.e., to derive new relationships to be added to the AKB on the
basis of the already existing ones. For example, when it is known that a certain code
fragment needs to be protected through obfuscation, when the execution frequency of the
code fragment is known, as well as the per execution overhead of some obfuscating
transformations then the ontology can be enriched with the overhead that each obfuscation
will introduce if applied on this code fragment.

Once the enriched AKB incorporates all relevant static knowledge, the selection &
optimization module will start querying it for possible interesting protections. On the basis of
the retrieved information, the ADSS will generate multiple dynamic attack simulation models
(ASMs). Each ASM will concretely model the possible attack paths on a protected version of
the application, i.e., on a version to which a specific combination and configuration of
protections has been applied.

For the ASMs, we have chosen to use Petri nets, in which the transitions correspond to
attack steps. Each transition will be annotated with probabilistic models of the expected time
needed to perform the attack step, as well as with probabilistic models of the expected
success rate of the attack step.

Using existing simulation tools, the ADSS will then simulate each instantiated Petri nets. With
this simulation, these tools compute the distribution of the time needed to perform the whole
attack and the overall likelihood that the whole attack succeeds on the modelled application
version. After each simulation, the ADSS will be able to enrich the AKB with the computed
results. So at that point, the AKB is enriched with information on the strength of different
protections for the concrete application, scenario, and requirements at hand.

During the selection and optimization process, many different ASMs will be generated and
simulated. When the AKB is enriched sufficiently with results of Petri Net simulations, the
ADSS can compare the resistance of the different simulated combinations of protections
against the envisioned attacks, and select the best combination and their configuration.

This will ultimately allow the ADSS to generate a configuration for the ASPIRE tool chain,
which will then apply the selected protections on the application at hand.

Furthermore, a security report will be produced on the findings of the ADSS that allows the
developer to validate that appropriate protections have been selected. Ideally, that report
would not be a static enumeration of human readable facts, but a computer-readable,
structured representation of all relevant data that can be browsed and examined though a
specialized GUI.

In practice, however, we will probably lack the resources to engineer such a GUI, so we will
likely have to do with a research version, and plan the development of such a GUI for the
exploitation of the ASPIRE results. The reason is simply that enough major research
challenges remain to be tackled within the ASPIRE project to make this proposed security
modelling approach work, i.e., to have it make good selections of protections to be applied.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 5 of 65

1.3 Challenges to Address
Some of those research challenges are the following:

1. How to avoid combinatorial explosion in the generation of ASMs? In general, the
question to be answered is which and how many ASMs we need to generate and
simulate to let the ADSS make good decisions. Given the large number of protections
and parameters we envision for them and the large set of possible code fragments to
apply them to, it will definitely be needed to prune the search space at some point.
This will mainly be studied in the remainder of Task 4.1 of WP4.

2. How to quantify the required effort/time and success probabilities of the
individual attack steps? Useful metrics that relate effort/time and success
probability to code properties will be researched in Task 4.2 of WP4, and human
experiments for obtaining concrete relations will be set up and executed in Task 4.3
of WP4.

3. How to model the mutual protection that different protection techniques
provide? In some cases, the increase in attacker effort resulting from two protections
combined will be greater than the sum of the increases in effort of the individual
protections. How to incorporate that knowledge is an open question, which the project
will try to answer when deploying the developed infrastructure on the use cases.

4. How much source code annotation and user guidance (i.e., input) will the ADSS
need? Using heuristics and compiler analyses, the ADSS needs to be able to
determine exactly which protections are relevant, and to which code fragments they
might need to be applied. However, data flow and control flow analyses in compilers
have limited precision because of decidability issues. To what extent the limited
precision needs to be overcome by additional annotations and user guidance is an
open question at this point. The project will also try to provide an answer by
experimenting with the developed infrastructure on the use cases.

These are just a few of the many research challenges ahead of us. So at this stage of the
project, we can definitely not answer all questions that the proposed security modelling
approach might raise.

We are confident, however, that this proposed approach is the best available approach for
security modelling in the domain of MATE attacks in general, and for the ASPIRE project in
particular. While this overall approach is, to the best of our knowledge, new in the domain of
software protection, it has been researched and deployed in different security contexts, such
as the MOSES [Mos13, Mos14] and PoSecCO [Pos31, Pos32] FP7 projects. Furthermore,
we can rely on existing technologies and tools that fit our purpose, as will be explained in this
deliverable and in some of the follow-up deliverables, and the ASPIRE consortium partners
have extensive experience with the underlying techniques and tools.

1.4 Structure of the Deliverable
Section 2 describes the methodology for security evaluation through Petri nets, which are
used to model and evaluate attacks against the software assets the ASPIRE technology is
supposed to protect.

Section 3 presents the ASPIRE knowledge base which contains the high-level definition of
the ontology and its data structures to represent the concepts need to model assets, attacks
and protections, from which to generate appropriate Petri nets.

Section 4 introduces the background on ontology engineering and discusses the related
works is security modelling.

Section 5 concludes the document by describing the plan for the security model and his
enhancements, and the connections with the other tasks.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 6 of 65

Section 2 Security Evaluation: Petri Nets
Chapter Authors:

Paolo Falcarin (UEL), Bjorn De Sutter (UGent)

2.1 Introduction
As described in the introduction, the ASPIRE security modelling approach relies on the
simulation of formal models that mimic the activities of actual attackers in terms of the
economic model of MATE attacks. Concretely, we will use models that allow us to draw
conclusions on the time/effort required by the attacker and on his chance of success, given
all the attack steps he needs to perform.

In Section 5 of D1.02, several attack paths were discussed on different types of applications
and different types of assets. In essence, each attack path is a sequence of attack steps or
attack tasks with which consecutive sub-goals of the attacker are reached until his ultimate
goal is reached.

Modelling attacks as pure sequences of attack steps would not be realistic, however,
because in practice diverse attack paths might lead to the same goal for the attacker. For
example, on unprotected applications, an attacker might use static structural matching
techniques, or dynamic matching techniques, or sniffing to find the location where a secret
key is computed or used within a program.

So instead of using sequences or even sets of sequences to model all possible attacks
corresponding to a threat on an asset, researchers have proposed to model attacks by attack
trees that combine all the attack paths leading to a specific attack goal [Sch99]. Each single
attack tree has a root node corresponding to the ultimate goal of the attacker. In the tree,
each parent node's child nodes model the sub-goals (and corresponding attack steps)
necessary to meet the parent node's goal. Nodes can be AND nodes or OR nodes. AND
nodes denote that all sub-goals need to be reached in order to meet parent's goal. OR nodes
denote any of the child's sub-goals suffice to reach the parent's goal. In the example of
Figure 3, the root of the tree is the main attack goal, and it is an AND node as its child-nodes
are sub-goals SubGoal1 and Subgoal2 which both have to be achieved. Attack1 or Attack2
can be used to achieve SubGoal1, while Attack3 has to be used to achieve SubGoal2. This
way, attack-tree models are not exactly trees as defined in graph theory, but they are actually
AND-OR graphs.

Figure 3: An example attack tree in the form of an AND-OR graph

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 7 of 65

Such graphs still suffer from the problem that they cannot model the fact that in practice, one
attack step, such as undoing all obfuscations of a certain type in an application, can let the
attacker meet several sub-goals at once. In other words, the tree structure of the AND-OR
graphs does not suffice to model realistic attacks.

Attack graphs have therefore also been proposed to overcome the limitations of attack trees
[Gup07,She03,Ou06,San13]. The different proposals of attack graphs share the
representation of attack goal as nodes and attack tasks as transitions and their behaviour is
similar to state-transition diagrams, even if each proposed approach uses a slightly different
semantics in their attack graph representation. State-transition diagrams cannot model
concurrency, however, as needed to model two or more attackers working as a team.

In this project, we will therefore instead rely on Petri nets [Pet66], which are a super-set of
state-transition diagrams, allow to model concurrency, and have more consolidated
mathematical foundations. In fact a state-transition diagram can be seen as a Petri net where
every transition has only one incoming arc and only one outgoing arc. And like state-
transition diagrams, Petri nets can also have non-determinism when more than one transition
can be enabled from one place.

Petri nets are bipartite graphs, i.e., every node of one type is adjacent only to nodes of the
other type. In Petri nets, these two types of nodes are called places and transitions. In the
context of the ASPIRE security model, the nodes have the following function:

1. Transition nodes model attack steps (i.e., attack tasks). These nodes model
activities performed by the attacker (e.g., disassembling, static analysis, debugging,
etc.) and have several attributes, such as distributions of the required effort/time and
probability of success as a function of the considered features of the code under
attack, as well as some function that describes the relevant features of input for the
next attack step in terms of this attack step's input.

2. Place nodes model attack states (or attack goals), which are reached following
one or more attack steps (e.g., identification of a secret, disabling a protection).

An attack model based on Petri Nets was first proposed by McDermott [10] and later Wang
et al [Wan12]. The innovation of our security evaluation approach is that we are not only
focused on modelling the attacker's viewpoint with a Petri net, but that we also aim for
simulating the attacker's behaviour before and after protections have been applied in order to
evaluate protections efficacy in terms of introduced delay and reduced attack success
probability.

In our case, the simulation will involve relevant data related to attacker effort and success
probability. This information will be retrieved from the AKB, which will store all information
collected from code metrics (Task 4.2) and by doing manual attack experiments (Task 4.3
and Task 4.4 in WP4). The simulation of the Petri Nets as a model of the attacker will be
performed using free external tools like CPN-Tools or PIPE [CPN, PIP].

By relying on code metrics related to practically relevant code features and by obtaining data
from manual attack experiments (as some others have also done in the past
[Sut06,Lin03,Udu05,Ham11,Zha12]), we want to overcome the limitations of theoretical
analyses of protection strength [Col97,Myl05,Dal05,Wan00]. The latter are useful in theory,
but except for very limited attack scenarios, they have not been validated in practice.

In the remainder of this section, we present a brief overview on the fundamentals of Petri
Nets, followed by an example of modelling the One-Time-Password attack path (as
discussed in D1.02 Section 5.3) with a Petri net, and a discussion on how to evaluate the
attack cost of such an attack in terms of time and success probability.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 8 of 65

2.2 Overview of Petri Nets
Petri Nets were first introduced by Carl Adam Petri to model sequences of chemical
reactions [Pet66]. Later they have been utilized in many different computer science fields, for
example to model concurrency and synchronization in distributed systems [Pet77].

Petri nets are similar to State Transition Diagrams as they use a visual representation to
model the system behaviour, and they are based on strong mathematical foundations. A
Petri net consists of three types of components: places (circles), transitions (rectangles) and
arcs (arrows):

• Places represent possible states of the system;

• Transitions are events or actions which cause the change of state;

• Every arc connects a place with a transition or a transition with a place.

From a graph theory viewpoint, a Petri net is equivalent to a bipartite directed graph where
places and transitions represent two types of nodes. A bipartite graph is a graph where every
node is only adjacent to nodes of the other type. In a Petri Net an arc can only connect a
place with one or more transitions and a transition with one or more place). The places with
outgoing arcs leading to a transition are called the input places of the transition; the places
with incoming arcs (outgoing from a transition) are called the output places of the transition.

A change of state is denoted by the transfer of a token (represented with a black dot) from
place to place and is caused by the firing of a transition. The firing represents an occurrence
of an event or an action taken; the firing is subject to token availability: in the initial state of
the Petri net (Fig.1a) there is a token in place P0 and when the transition T0 fires the token is
moved from its input place P0 to its output place P1 (Fig. 1b). Chaining different places and
transitions will produce a net representing a sequential execution of transitions firing one
after the other.

Figure 4: A simple Petri net in its initial state (a) and after the transition fired (b)

In the context of ASPIRE, we will use Petri nets as a form of attack graphs. Places will
represent attack sub-goals, such as the fact that some information was acquired (e.g., a key
was stolen or a relevant piece of code was identified) or that some task can be accomplished
(e.g., a key check was removed from an application, a debugger attached, or a trace
collected, etc.). Transitions then correspond to the attack tasks necessary for the attacker to
proceed from one sub-goal to the other. The start place denotes the start of the attack, and
the set of sink place denotes the ultimate goals of the attack that have been reached..

In general, a Petri net transition is fireable or enabled when there is at least one token in
each input place (Figure 4a); after firing, tokens will be transferred from the input places (old
state) to all the output places, denoting the new state (see Figure 4b). When a transition T
fires, one token per input place is consumed and one token is created in each output place.
So in Figure 5a, transition T can fire if and only if both P0 and P1 have at least one token
each; in this case transition T acts as a synchronization point waiting for both token to be
present at the input places (P0 and P1) in order to proceed with the concurrent execution
(Figure 5b) of three paths starting from the output places P2, P3, and P4.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 9 of 65

Figure 5: Synchronization (a) and Concurrency (b)

In the context of ASPIRE, Figure 5a can represent the behaviour of an AND node in an
AND/OR graph. It models the case of an attack step T requiring to wait for two types of
information (from P0 and P1) to perform T and then proceed from there with three possible
independent paths of attack execution. For example, P0 could be the result of a previous
attack step consisting of static analysis of binary code to detect key-processing code, while
P1 could be the result of another previous attack step consisting of static analysis to detect
code portions writing into the memory: both information are needed to proceed with the next
attack step of dynamic analysis to detect the value of the decrypted key in memory.

The OR behaviour, which is needed in ASPIRE to model alternative attack paths leading to
the same (sub-)goal, can be presented as in the example in Figure 6a: in this case either T1
or T2 can fire and move their token to P3; in case T1 fires, the net will move to the
configuration of Figure 6b. P1 can be the state in which a static control flow graph of the
program code have been reconstructed, and P2 the state in which a program trace has been
collected on some inputs. Then in order to identify the location of some code, static structural
matching techniques can be used on the control flow graphs (T1), and dynamic matching
techniques can be used on the trace (T2). Either of T1 and T2 can lead to sub-goal P3,
which is the identification of, e.g., the AES code in the application under attack.

Figure 6: Place P3 is reached by firing either transition T1 or transition T2

Figure 7 shows another pattern recurring in Petri nets: choice. The choice pattern is
somewhat equivalent to an if-then-else construct in a programming language where only one
of the two branches can be executed: in other words, if T0 fires first then the token is moved
to P1 through T0, while if T1 fires first the token will move to P1 through T1. In the ASPIRE
attack modelling context, choice indicates that an attacker can choose which attack
technique to deploy to reach a certain (sub)goal, and that in the worst case from the
defender's perspective, he will choose the fastest one. Alternatively, it also models that when
multiple attackers cooperate and try alternative techniques concurrently, they will be able to
proceed as soon as one of them is successful. In other words, this model of choice assumes
the best-case scenario for attackers, which corresponds to the worst-case scenario for
defenders. As such, the use of this model will not lead to underestimations of the effort an
attacker might need.

Graphically, places in a Petri net may contain a discrete number of marks called tokens. In
general tokens can represent pieces of information flowing through the net. Any distribution
of tokens over the places will representing a configuration of the net is called a "marking",
which is the global state of the Petri net. Each transition can update the information flowing
through the net with the token.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 10 of 65

Figure 7: Choice in a Petri net

In general, the execution of Petri nets is nondeterministic: when multiple transitions are
enabled at the same time, any one of them may fire. Since firing is nondeterministic, and
multiple tokens may be present anywhere in the net (even in the same place), Petri nets are
usually well suited for modelling concurrent systems. In the context of ASPIRE, we will reuse
that to model attacks with sequential as well as (potentially) concurrent attack steps.

When we will simulate a Petri net in ASPIRE (using existing tools), we will compute all the
different ways in which a token can flow through the net, and we will aggregate all relevant
information regarding effort, probability, and (sub)attack target properties as the tokens flow
through the net. That way, we will be able to compute the relevant features of complete
attacks, i.e., of complete realizations by an attacker of threats on an asset starting from
scratch.

In general, there is no need to let a Petri net start with a single source node. Moreover, the
AKB will likely contain information on multiple possible attack paths, with different starting
points. This will particularly be the case for applications protected with multiple lines of
defence that strengthen each other, as such applications will by definition not provide a clear
attack entrance point for the attacker. The dynamic generation of ASMs will therefore be able
to extract multiple attack paths from the AKB and combine them into a single Petri net with
different starting points leading to the same attacker goal. During the simulation of such a
Petri net, we can then simulate multiple attackers working in parallel by associating one
token per attacker at different starting places (i.e., a marking composed of more than one
token).

In literature, the high-level term Petri net is used for many Petri net formalisms that extend
the basic Petri net formalism. This includes:

• Coloured Petri nets, where tokens are of different "colours", i.e., objects of different
type [Jen09].

• Hierarchical Petri nets [Hub90], where each transition might be another embedded
Petri net: in our case an attack step can be a general attack actually composed of a
sub-net of other low-level attack steps.

• Timed Petri nets [Wan98], where each transition has a delay, representing the time
needed to execute a transition.

In the ASPIRE Security Model, we will build on the timed Petri net extension to compute
overall attack effort/time. Section 2.4 gives an example of how we plan to do so.

Hierarchical Petri nets will also be used to facilitate the merging of different models where
one more abstract attack step can be further detailed by a sub-net containing more concrete
attack steps and paths.

In the planned research in WP4, we will also study which other extensions might be applied
to our ASPIRE Security model. For example, coloured Petri nets might be useful to
represent, with tokens of different colours, the different types of data flowing through a net
that are relevant to compute the time needed to perform each attack step (like code size,
execution traces, etc.). The planned research will determine whether this is useful and
needed or whether better alternatives are available.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 11 of 65

2.3 Example Model of Attack on Vanilla OTP
In this section, we explain how to use Petri Nets to model MATE attacks. We do so by means
of a real-world example taken from D1.02 ASPIRE Attack Model, Section 5.3: Attacks on
one-time password (OTP) generators. For the sake of self-containment, we repeat the
definition of the OTP generator and of the possible attacks in this section.

2.3.1 OTP Definition (from D1.02 Section 5.3.1)
A One-Time Password (OTP) is generated by an OTP application on the basis of a seed and
a counter, i.e., two secret values shared by a client device and a server. As part of the OTP
application provisioning, the seed is sent to the client in an encrypted form by the server
when the application is initialized on a device for the first time. The counter is then initialized
to a contractual value. At each later invocation of the OTP application, the counter value is
incremented and a new OTP value is generated and returned to the user, which can then
use that OTP, for example to login to his online banking website. The algorithm used to
generate the OTPs is designed in such way that it is not possible to guess the next OTP
value from the current one. The OTP generation processing is furthermore protected by a
Personal Identification Number (PIN) control to prevent that unauthorized people with access
to the device can generate an OTP when only the authorized user should be able to do so.

2.3.2 Informal Vanilla OTP Attack Paths Description (from D1.02 Section 5.3.2)
First an attacker can try to bypass the PIN protection control to allow anyone, incl. himself, to
generate an OTP. To identify the check, almost all static and dynamic reverse-engineering
methods discussed in D1.02 Section 4 can be used. To bypass the check once it is
identified, static or dynamic anti-tampering techniques can be deployed, as discussed in
D1.02 Sections 4.3.3 and 4.4.5. Similar techniques could be used not to bypass the check,
but to inject code into the application to steal the PIN, i.e., to send it to a remote server
controlled by the attacker.

A generated OTP is an asset by itself, but is not interesting for an attacker that wants to
generalize an attack.

Other interesting assets for an attacker are the seed and the counter, which the attacker
would like to send to a remote server. The attacker can track the seed either during the
provisioning of the OTP application when it is received from the server, or later when the
seed is used during the actual generation of OTPs.

To retrieve the seed from the server response during the provisioning, the transport key is
calculated on the fly and the deciphering starts, for example by means of AES. This code can
be identified using the techniques discussed in D1.02 Section 5.2. A debugger or other
dynamic analysis techniques (see D1.02 Section 4.4.4) can be used after the last decryption
round to get the value of the seed as clear text.

In order to engineer such an attack from scratch, the attacker will either have to go through
numerous uninstall/install rounds of the application to trigger the server to respond to enough
provisioning requests that he can study using the dynamic attack techniques of D1.02
Section 4.4, or he will have to set up his own server to provide enough fake responses. With
the former approach, the attack will be very time-consuming and uncertain, in particular when
the server keeps track of successive interrupted provisioning attempts and blocks the
involved devices. With the latter approach, that cause of delay can be avoided. However, the
attacker still will have to work around the checks that the OTP application typically performs
to ensure that it only runs the provisioning functionality once.

It is therefore much more efficient for the attacker to pinpoint the binary code location of the
OTP generation in an already provisioned application and attack that code, which will also
give him both the seed and the counter values at the same time. To do so, the attacker can
often take advantage of a typical OTP computation patterns involving consecutive xor

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 12 of 65

operations. Again a static analysis is required to locate the relevant code fragments, but this
analysis can be focused using a small number of dynamic debugging sessions to locate the
part of the code activated right before returning the OTP to the user.

2.3.3 Petri Net Model of Vanilla OTP Attack Paths
For the sake of demonstration, Figure 8 represents a simplified Petri net to model an attacker
going after the seed used in a vanilla OTP generator that has not yet been protected with
ASPIRE protections.

While this was not explicitly stated in the above informal description of the attack paths, this
Petri net relies on the insight that the PIN is needed to start the provisioning of the OTP
generator and also every time an OTP is to be generated.1

Phase 1: stealing or bypassing the PIN check

P0 is the starting state: the attacker has white-box access to the application under attack, but
has not performed any activity.

T0 is the first attack step for the attacker: to identify the code section dealing with PIN
checking: to achieve this, the attacker can use almost all static and dynamic reverse-
engineering methods. So in a more complete model, T0 could be replaced by a more
complex Petri subnet that models all those different methods. However, in the ASPIRE
approach, this more detailed modelling will not necessarily be needed to obtain meaningful
results. Because of the enrichment strategies that will be used, the AKB can be enriched with
aggregate results for the commonly occurring subnets, thus avoiding that Petri nets that
model concrete attacks grow too big.

Figure 8: Petri net of the OTP attack

After reaching state P1 through T0, T1 and T2 are alternative steps to bypass the check
once it is identified: static or dynamic tampering techniques can be deployed to actually
bypass the check in the code (T1) or to inject code into the application to steal the PIN (T2),
i.e., to send it to a remote server controlled by the attacker.

At state P2, the attacker can execute the provisioning of the application as well as the OTP
generation itself. As this is not really the asset he is after, he will continue along one of two
paths: either retrieving the seed during the provisioning, or retrieving it during the OTP
generation. The former is modelled in the subnet from P2 to T8 (going through T7 or through
the other path starting with T3), the latter in the subnet from T9 to T11.

1 This assumption is used for the sake of demonstration. In practice, a registration code instead of a
PIN might be needed to start the provisioning.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 13 of 65

2a: stealing the seed during provisioning

T4 models the attacker's tampering activities required to work around the built-in restriction in
the application that its provisioning phase can only be executed once. That way, he does not
need to reinstall the application every time he will want to observe the provisioning phase in
action.

In parallel with the tampering of T4, in T5, the attacker or his accomplices can set up a fake
server to provide provisioning answers during each run of that phase. If the attackers choose
to steal the seed during provisioning, T4 and T5 attack steps can be executed in parallel (by
two attackers) or they can be both executed in any order (if they are performed by one
attacker only).

To represent the concurrent execution of this two attack steps, a dummy transition T3 has
been added before T4 and T5. This dummy T3 fires immediately after consuming the token
from place P2, creating one token in P3 and another one in P4: at this point T4 and T5 are
both enabled and they can fire independently; the following attack step T6 will be enabled
when there will be a token in P5 and P6, meaning that both T4 and T5 have been performed:
T6 will then consume both tokens from P5 and P6 and create a token in P7. This models that
once the application has been tampered with (T4 performed, one token in P6) and the fake
server is ready (T5 performed, another token in P5), the attacker can observe the execution
of the provisioning phase dynamically in T6 to locate the AES code that deciphers the seed
received from the server. State P7 models the state in which this code has been located.

Alternatively, and also to identify the AES code in the provisioning phase, in T7 the attacker
can try to perform dynamic analysis on an un-tampered provisioning phase that is
uninstalled/installed between every two runs, and that actually connects to the real server in
every run. This requires less preparation of the attacker but the constant re-installing will
require more time.

When the AES code has then been identified in P7 through either of the attack paths, the
attacker can use another dynamic analysis step T8, such as running the application with a
debugger, to observe a seed as soon as it is received and decrypted during a new
provisioning phase involving the real server.

Phase 2b: stealing the seed during OTP generation

For stealing the seed during the OTP generation, in step T9, the attacker will first observe
several runs dynamically to isolate the code fragments executed right before the OTP is
shown to the user on the display. That will prune his search space for the next step, T10, in
which he uses static techniques to identify the chain of XOR operations involved in the OTP
generation.

Once the xor operations have been identified, he can use another dynamic analysis in step
T11 (which is similar to T8), to observe the value of the seed as it is being consumed by the
chain of xor operations.

2.4 Security Evaluation of the Vanilla OTP Generator
Once the Petri net structure that models the possible attack paths has been identified, we
need to evaluate the cost of those paths in terms of attacker effort, and the probability that
the attacks actually succeed.

Each individual attack step (transition in the Petri net) is an object with its own properties as
defined in the AKB. Each attack step will be applied on specific code fragments as described
in the AKB, and as computed by the preceding attack steps in the Petri net.

In the next version of this deliverable (D4.03 in M24) once Task 4.2 and 4.3 will be already
started, we will be able to estimate the time and probability of most of the attack steps, based
on the following factors:

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 14 of 65

• Type of attack step (disassembling, static analysis, debugging,…)

• Code complexity and code metrics

• Attacker expertise (Amateur, Geek, Expert, Guru)

The AKB will then also be able to tell us for each attack step how much time will be needed
by an attacker with a certain level of expertise to execute the individual attack steps, what
their chances of success are, and what the outcome of their attack step is. For example,
when an attacker prunes his search space as in step T9 in the above example, the AKB
(which can use the information collected on the application's control flow graphs, slices,
traces, etc) will allow us to estimate which code fragments the attacker will still be
considering for his next attack steps.

On the basis of the individual times, probabilities, and outcomes obtained for the individual
attack steps, we can then aggregate values of expected time and probability for the whole
attacks by simulating the Petri net and performing the appropriate aggregation of values and
properties.

In the Petri net of the OTP example, T4 and T5 are concurrent steps that will both need to be
executed before T6 can be passed. So in the OTP example there are six paths leading to the
final goal P10:

• Path 1: {T0, T1, T7, T8}

• Path 2: {T0, T2, T7, T8}

• Path 3: {T0, T1, T3, T4, T5, T6, T8}

• Path 4: {T0, T2, T3, T4, T5, T6, T8}

• Path 5: {T0, T1, T9, T10, T11}

• Path 6: {T0, T2, T9, T10, T11}

The aggregate time of a path will be the sum of the time to perform each attack step
(transition) in that path on the code at hand.

𝐓𝐢𝐦𝐞 𝒆𝒙𝒑𝒆𝒓𝒕𝒊𝒔𝒆,𝒑𝒂𝒕𝒉𝒊 = 𝒕𝒊𝒎𝒆 𝒆𝒙𝒑𝒆𝒓𝒕𝒊𝒔𝒆,𝒂𝒕𝒕𝒂𝒄𝒌 𝒔𝒕𝒆𝒑𝒋, 𝒄𝒐𝒅𝒆𝒋
𝒂𝒍𝒍 𝒔𝒕𝒆𝒑𝒔 𝒋 𝒐𝒏 𝒊

The minimal attack time of the program is then obtained by computing the aggregate times
over all parts, and taking the minimum of them.

The path with maximum probability instead can be calculated by iterating over all the
possible attack paths in the Petri net, calculating the aggregate probability of each path:
assuming that the attack steps are mutually independent (and therefore there is no
correlation among them), the aggregate probability of a path will be the product of the
probability of the attack steps (transitions) in the path: the path with the higher probability will
represent the most likely path to succeed.

𝐏𝐫𝐨𝐛(𝐞𝐱𝐩𝐞𝐫𝐭𝐢𝐬𝐞,𝒑𝒂𝒕𝒉𝒊) = 𝒑𝒓𝒐𝒃 𝒆𝒙𝒑𝒆𝒓𝒕𝒊𝒔𝒆,𝒂𝒕𝒕𝒂𝒄𝒌 𝒔𝒕𝒆𝒑𝒋, 𝒄𝒐𝒅𝒆𝒋
𝒂𝒍𝒍 𝒔𝒕𝒆𝒑𝒔 𝒋 𝒐𝒏 𝒊

In the more general case, in which some of the attack steps are not independent, the joint
probability will depend on the conditional probabilities between attack steps: thus joint
probabilities can be computed after transforming the model into Bayesian networks [Jen96]
or Markov chains [Dal06].

It is important to underline that in this general case, the probability of an attack step might
depend on different attack steps previously performed but the temporal dependency
expressed in the Petri-net does not necessarily imply a conditional probability between one

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 15 of 65

attack step and its predecessor. Which forms of dependencies and probability models we
need to support will become clear during the remainder of T4.1.

According to the security experts who wrote Section 5.3 in D1.02 on the ASPIRE Attack
Model, Path 6 is the fastest for expert attackers as it is the less time-consuming for the
attacker. Other types of attackers might lose time trying other paths or because they do not
have the necessary expertise to implement the best attack path.

The time of each attack step will depend on different factors like attacker's expertise and
code complexity. In the attack model, four levels of attacker's expertise have been identified
(amateur, geek, expert, guru) and we can make the reasonable assumption that a higher-
level attacker will take less time to perform one attack step than a lower-level attacker.
Future work in tasks 4.3 and 4.4 of WP4 will be needed to better quantify this time with
respect to each attacker's level.

About code complexity we can make the reasonable assumption that the more complex the
code is, the more time an attacker will need to spend to perform an attack. Code size is the
simplest form of code complexity, but perhaps not the most relevant one. Therefore
alternative metrics for code complexity with regards to attack time will be evaluated in Task
4.2, where we will likely consider different types of metrics for different attack steps.

It is important to note that, as indicated in the above equations, not all attack steps take as
input the same code. For example, the goal of step T10 in the OTP example is to identify the
code executed before the OTP is shown, assuming that the search for consecutive XORs in
step T11 can be shortened by focusing only on that part of the code. So clearly the effort and
time needed for step T11 should be computed based on metrics applied to code selected in
T10. It is for that reason that we will also need to model "the outcome" of each attack step.

2.5 Security Evaluation of Protected Applications
Once the attack paths are identified, we need to consider the effects of protections and
measure their impact and effectiveness. We will do so by evaluating the additional time
required to pass through Petri net models of the protected applications, compared to the
times computed on the Petri nets modelling the vanilla application. We will, in other words,
compute the delay that attackers incur as a result of applied protections.

Applying a particular configuration of protections with the ASPIRE tool-chain will change the
Petri net model of an attack in several ways.

1. Protections will have (hopefully) increase the complexity of the code considered in
each attack step, thus increasing the time to performing the step.

2. Likewise, protections can reduce the probability of success of the attack steps.

3. Protections might also change the relation between input and outcome of an attack
step, for example by making it harder for an attacker to differentiate relevant code
from irrelevant code for his attack step.

4. Protections can possibly also change the structure of the Petri net. For example when
a protection is applied, an attack step might not be feasible anymore and the
corresponding transition is removed from that new Petri net modelling the protected
program version.

Using the modified nets, we can re-calculate the aggregate value of time and probability
when one or more protections have been applied, and the difference of time and probability
(before and after protections) will give an estimation of the effectiveness of a protection.

Considering the OTP attack example, we might want to add the following protections using
the ASPIRE tool chain: (i) obfuscation of the code, (ii) anti-debugging code, and (iii)
additional server-side checks to detect excessive numbers of provisioning requests.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 16 of 65

Figure 9: Protected version of the OTP Petri net

The new version of the Petri net in Figure 9 will automatically be extracted from the AKB
when such a particular protection configuration is chosen. The new Petri net model will
introduce a delay to attack steps T0 and T10, in which the attacker analyses the program to
detect seed-processing code; anti-debugging can prevent dynamic analysis tools from
working properly, thus introducing delays on attack steps T8, T9, and T11; server-side
checks on provisioning requests make attack step T7 useless and hence that transition was
deleted from the graph.

The effectiveness of a particular configuration of protections is then given by

Attack Delay =
MaxDelay (Protection configuration) – MaxDelay (Unprotected Application)

and by

Attack Success Ratio =
MaxProb(Protected configuration) / MaxProb(Unprotected Application)

In general, the higher the delay, the better is the chosen configuration of protections; and the
smaller the attacker success ratio, the better is the chosen configuration of protections. In
rare cases, higher delay might come witt higher success ratio. For that reason, the ADSS
user will have to specify how to prioritize between the two features.

By simulating multiple Petri nets modelling various protection configurations, the ADSS will
be able to select the most appropriate one. How the select the configurations will be
researched in the remainder of the project.

2.6 Tools for Using Petri Nets
Petri nets are an important tool for the design and implementation of the security modelling
and evaluation in ASPIRE. Petri nets have been extensively used in different domains and
there exist a plethora of different tools to visualize and simulate Petri nets models, as listed in
the on-line repository Petri Nets World [PNW].

In ASPIRE Petri nets will be mainly used tto insert attacks into the knowledge base and to
simulate attacks automatically extracted from the knowledge base. So when selecting a tool,
it is important to take into account the support for standard interchange format of the models,
along with considerations about usability stability and user-base. We decided to narrow our
search among the tools supporting the PNML (Petri Net Mark-up Language) standard format
for representing Petri Nets models in an XML format defined by a precise standard meta-
model [PNML] in the form of an EMF (Eclipse Modelling Framework) meta-model. In this way
the mapping between the PNML's meta-model and the meta-model of the language used to

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 17 of 65

represent the knowledge base, can be defined precisely and utilized to generate correct
translators between the two languages.

Among the tools supporting PNML, we have currently chosen CPN-tools [CPN] as the main
tool we will leverage to visually simulate Petri Nets models than can be imported/exported in
PNML format. We will develop the translators from PNML to the ontology language. By using
a standard format, we are not strongly bounded to a particular Petri Net tool.

Among other interesting PNML-based Petri-Net tools, we will consider ePNK [EPNK] and
Coloane [COL], which are both designed as Eclipse plugin to be easy to extend and to
integrate with other tools, and OWLS2PNML [OWL2PN], which provides a translator
between PNML and OWL-S, an extension of OWL for service descriptions [OWLS]. More
advanced time analysis and path analysis can be performed with TINA [TINA].

Regarding the evaluation of the probability in the simple case of mutually independent attack
steps, CPN-tools might be configured and used to evaluate the attack path probability, but in
case of conditional probabilities we might need to leverage on probability modelling tools,
such as Netica [Net], AgenaRisk [Age], or OpenMarkov [OM].

2.7 Challenges and Open Research Problems
Obviously many challenges and research problems remain to be tackled regarding the
foreseen use of Petri nets. These include:

• Developing the models in the AKB to allow the generation of Petri net models of all
relevant attack paths. In literature, we can find examples of documented attacks and
exploits, with (sometimes) detailed description and quantification of the amount of
time and effort required to complete the overall attack (i.e., the followed attack path).
Only rarely, however the detailed effort is reported for each attack task. Moreover, the
values reported in literature refer to a few specific attack scenarios, they describe the
effort required by a particular attacker, to port a specific attack on a given application.
Even if such pieces of information are of fundamental importance to populate the
AKB, because they come from real-world cases, they just represent data points that
need to be generalized. This will be tackled further in this project in Task 4.1 of WP4.

• Developing the appropriate metrics that allow the Petri net simulation to compute
relevant, representative attack times and success probabilities, both on protected and
on unprotected applications. Therefore not only the dependence of attack time on
code metrics needs to be modelled correctly, but also the influence that protections
have on the metrics, given the metrics computed before protection, and given the
limitations of the tool chain that will apply the protections. This will all be tackled
further in this project in Task 4.2.

• Making sure that the modelling of time in terms of metrics is realistic. Code metrics
are internal measurements, i.e. they just depend on qualities of the code such as
code size. However, the security model needs to reason on external measurements,
i.e., qualities of the code that involve humans, such as time-to-attack. Our
assumptions on the relation among internal code metrics, attack tasks, attacker
experience and protection configurations will be observed and verified in actual attack
scenarios in Task T4.3 “Experiments with academic participants”, in task T4.4
“Experiments with industrial tiger teams” and in task T4.5 “Public challenge”.

• Hierarchical Petri nets induce a hierarchical relation between attacks. Thus, we
should have a measurement of the attack’s “depth” or “abstraction level", which
requires us to answer many questions. Do we need an attack abstraction
classification, and if so, for which cases? What is our limit in attack depth (to which
point of detail do we describe the attacks) What is our limit in abstraction level? Can
we reach a depth where attacks can be re-used, as “lego blocks” to build more

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 18 of 65

complex attacks? What is the sweet spot between abstract classes of attacks, and
very concrete attacks, e.g., relying on specific tools or even tool versions.

• The previous item relates to metrics: On the one hand, more concrete attack step
modelling will allow more concrete metrics to be used and hence more accurate
estimations of the required attack effort to be produced. But on the other hand, when
the metrics become very specific for each concrete attack, splitting up a more
abstract type of attack step into several more concrete steps introduces the risk that
when an alternative concrete step is neglected (e.g., because some attack method is
not known to the public or security researcher), a relevant metric will be overlooked.
With more abstract attack step modelling, and consequently more abstract metrics,
that changes become lower of overlooking relevant ones. This issue definitely will
have to be taken into account when tuning our Petri net modelling.

• Linking attackers' level of expertise (i.e. amateur, geek, expert, guru as defined in
D1.02) to all functions that map code metrics to attack time and success probability. A
possible solution could be to simulate all nets for 4 separate scenarios (one per level
of expertise) and mapping the colours red, orange and green used to summarize
attack attributes in D1.02 to probabilities. For example, red could be associated to a
high success probability (prob = 1), orange with an average probability (prob => 0.5),
and green with a small probability (prob => 0.01).

• Ensuring that the necessary Petri nets are simulator to draw correct conclusions, yet
avoid having to simulate too many. Given the number of protections, their
configuration parameters, the possible selections of code fragments to apply them on,
etc., the number of possible Petri nets to be simulated can become intractable.
Solutions we will investigate include sampling, hierarchical modelling, and
parameterizable simulation. The latter might be useful because we foresee that many
protections will change the parameters and inputs of functions that map metrics to
time and probability, without changing the actual structure of the Petri nets
themselves. For example, when a protection makes an attack step useless or
impossible, rather than removing the paths involving that step from the Petri net, we
could also model its attack time as infinite, or its probability as zero. What the best
option and combination of options will be, will be researched mainly in Task 5.2 of
WP5, when an initial but functional ADSS becomes available for experimentation.

• Ensuring that the ADSS can still produce useful quantitative results, albeit perhaps
incomplete, in case the timing or probability function of some attack steps cannot be
estimated or modelled reliably. We foresee several ways in which this will be
possible. For example, by assigning a worst-case attack time of zero to such attack
steps, the Petri net simulation will already be able to decide whether the steps are on
the fastest attack path or not. If they are not, not knowing their exact behaviour is no
issue. If they are on the fastest path, the ADSS can then try to push them off the
fastest path by deploying protections that specifically impact the preceding or
following attack steps on that fastest path, again making the lack of an exact model a
non-issue. Finally, even in case the ADSS will not be able of estimating attack times
reliably, it may still be able to provide a rough estimation of the attack delay incurred
by some protections: if the MaxDelay computed on the vanilla application (which is
basically a sum of attack step times) includes some unknown or only roughly known
x, and the MaxDelay computed on the protected application includes x + 50 instead, it
is still possible to compute the attack delay of x + 50 - x = 50. Options like these will
be considered mainly in Task 5.2 of WP5, but they will of course also affect the focus
of experiments in T4.2.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 19 of 65

Section 3 The ASPIRE Knowledge Base
Chapter Authors:

Cataldo Basile (POLITO), Bjorn De Sutter (UGent), Paolo Falcarin (UEL)

3.1 Knowledge to be Modelled
From the introduction in Section 1, we briefly recall that the ADSS will rely on the knowledge
in the AKB to identify the attacks that attackers can mount against applications and their
assets, and to identify the protections that can be enforced to mitigate the threats of those
attacks. Using this knowledge, and taking as inputs an application and description of its
assets, the ADSS will select and generate the appropriate Petri nets to simulate in order to
evaluate and measure the level of protection that can be provided by the available
protections to mitigate the threats.

The ultimate goal is to enable the identification and selection of the best measurable
protections.

Information in the AKB can be classified in two categories: generic knowledge and execution-
specific knowledge.

A priori knowledge, indicated as Generic Knowledge in Figure 2, comprises information that
is independent from the program to protect. It includes (but it is not limited to):

• attacks, attack categories, expertise/skill/resources/ needed;

• software protections, their relations, the possibility to use them in combination to
strengthen the overall protection;

• assets, threats, types of security properties to protect in applications;

The ASPIRE knowledge base needs to describe the concepts (e.g., attacks, protections),
their relations (e.g., attacks can undo or work around protections, protections can mitigate
attacks), and a characterization of those concepts (as informally documented in literature
and in ASPIRE D1.02). Roughly speaking, the AKB will contain classes to precisely describe
the concepts listed before, a complete object instantiation of those classes (that will be
initially done based on D1.02 and then maintained by Consortium partners), and all the
associations needed to relate instances of the concepts.

Additionally, a priori knowledge has to contain enough information to provide a means to
instantiate the following data:

• metrics to evaluate the probability of successful attacks, delays etc.;

• several abstract representations of the target application on which the metrics can be
computed, including source code, object code, control flow graphs, program
dependency graphs, data dependency graphs, call graphs, etc.;

Additionally, a priori knowledge includes execution platform and other software-related data
that are independent of the fact that our aim is protecting software. Therefore, it will include
concepts like OSes, processors and their instructions sets, emulators, interpreters, which can
be used to decide on the feasibility of some attacks and applicability of some techniques.
Additionally, a priori knowledge includes compilers, linkers and their options, as they may
affect the performance and structure of the code and may also be incompatible with some
protection tools.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 20 of 65

It is worth mentioning that all concepts are independent of the ASPIRE project, and hence
generic, even if their modelling will be focused on the ASPIRE decision support.

Additionally, a priori knowledge includes many other concepts that only exist in the ASPIRE
scope, for instance:

• ADSS-related information, like ADSS-specific preferences, optimization strategies
(i.e., what objective to optimize to select the best protection), pruning strategies (i.e.,
how to reduce the size of the problem space to be computationally feasible), etc.;

• ASPIRE tool chain and tool chain components, that is, the abstract description of the
tools that will be actually used to implement the protection which must allow ADSS to
select the tools that will actually implement the protections, to decide which options of
the tools to enable, and to choose the proper value for the tool options.

• ASPIRE annotations, added by the software developer to mark assets and other
critical sections of the application, and other formats used by the ASPIRE tool chain
components to exchange data or to annotate code.

Execution-specific knowledge contains all the user2 and application centric information
needed to express the target application and assets the user wants to protect, and user
preferences on how to protect that target application. Execution-specific knowledge
complements the generic a priori knowledge to permit the ADSS to

• decide which is the best protection to apply on the target application,
• to precisely understand what to protect,
• as well as how to drive the tool chain components when actually implementing the

protections.

Roughly speaking, execution-specific knowledge is the instantiation of the abstract models
that are part of the a priori knowledge, and the user-provided information needed to generate
that instantiation. Therefore, execution-specific knowledge includes (but it is not limited to):

• the target application and its application “components”, (like functions, procedures,
stubs)

• the assets and the corresponding threats as provided by the user;

• abstract representations of the application and its components, such as control flow
graphs, data dependency graphs, etc. on which metrics can be computed; these
representations will cover the original application as well as the protected versions
being simulated, and the derivations thereof in different phases of simulated attacks
(such as when an attack step is considered to have been applied that undoes part of
the applied obfuscations);

• the execution environment where the application will run, the used compiler and
linker. This information is repeated for all the executing components (like client and
server stubs, or the nodes for a distributed computing);

• user ADSS characterization, that is the ASPIRE tool chain components available at
the user installation3;

2 In this section, as in the remainder of this document, the terms user and developer both refer to
people responsible for providing the software. The terms are used interchangeably, albeit that
"developer" typically refers to the author of the software (and of the annotations in it) to be protected,
whereas "user" refers to the user of the ADSS and the ASPIRE tool flow, i.e., the person responsible
for applying the protections onto the developer's software.
3 As we foresee different ADSS profiles for exploitation purposes, one user may have the open source
version, where all the tool chain components are open source, another one may have the premium
version, that also includes proprietary components, and others may have just bought individual tool

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 21 of 65

• the state of the current tool chain execution and all the output from already executed
components;

• attacks and protection relations with the program asset and user preferences.

The AKB will keep track of the state of the tool chain to let the ADSS check that all foreseen
protections have indeed been applied, and possibly also to tune the configuration of
protections applied later in the tool chain to take into account the results of previously applied
ones; the output will be used to generate a report for the user that links the ADSS decision
making with the logs produced by the compiler (as needed according to requirement REQ-
ASR-005 of ASPIRE deliverable D1.03).

The dynamic nature of this tool chain execution state and of the representations of program
versions being simulated already hints to the fact that the AKB will not be a static knowledge
base that simply combines the a priori knowledge and the execution-specific knowledge.
Instead, it will be a dynamic knowledge base that is continuously enriched as more
knowledge becomes available during the operation of the ADSS.

3.2 Roadmap for the Knowledge Base Definition
The design of the ASPIRE Security Model and the ASPIRE Knowledge Base is conducted in
phases:

1. Informal definition of the threat model (M3, already addressed in D1.02).

2. Initial definition of the conceptual model of the ASPIRE knowledge base (M6, one of
the main focuses of this document).

3. Definition of the attack simulation models and support from the ASPIRE Knowledge
base (M6, one the main focuses of this document).

4. Formal definition of knowledge base enrichment (M9, D5.01).

5. Intermediate update of conceptual model and the attack simulation models for a more
in-depth definition of metrics (M12, D4.02).

6. Final delivery of the security model (M24 with D4.03 for the conceptual definition,
D5.07 for the knowledge base enrichment).

The conceptual model of the ASPIRE knowledge base comprises all the formal models that
permit to statically describe the information required by the ADSS to work. Since we are at
the beginning of the project, the ADSS architecture is only sketched in internal documents
and likely subject to changes. Additionally, there are many other indispensable things for the
conceptual model that will only be produced during next months. For instance, we mention
here the ASPIRE tool chain, the characteristics of applications to protect that need to be
considered when evaluating the actual protection level and the overhead given by the
application, the impact of software protections on the asset in the target application, exact
relations and effects of the consecutive use of two or more protections on the same
application, and so on. Moreover, some of the most innovative parts of the project – that we
really want to be supported by the ADSS – will be delivered only later.

Therefore, the exact definition of “the information required by the ADSS to work” will be
known only later. However, starting from D1.02 and from our experience in software
protection, we can already sketch an initial conceptual model and identify the macro areas
that need to be covered in future months. The purpose of this section is to present the initial

chain components. Moreover, also during the project itself, the tool chain will evolve as foreseen in the
project DoW, with gradually more protections being supported. Rather than updating the decision logic
in the ADSS to reflect changes in the tool flow, we make the description of the available protections
part of the AKB.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 22 of 65

conceptual model of the ASPIRE knowledge base in a format that is independent of any
technology used to actually represent it (phase 2). Needless to say, the initial conceptual
model has been designed to be expansible, that is, there is no need to rework the entire
model to apply any change.

For this reason, the conceptual model has been structured to be composed of a main model
and a set of sub-models. The main model introduces the principal concepts from D1.02 and
formally relates them. For this reason, we consider the main model relatively stable. Sub-
models detail each of the concepts in the main model, thus presenting a clear snapshot of
the knowledge related to the concept they expand. The sub-models presented in the intial
conceptual model cannot yet be considered stable, for the reasons presented above. Section
3.3 will present the main model; Section 3.4 will present the preliminary description of the
principal sub-models. This means that a significant part of the a priori knowledge in the
ASPIRE knowledge base is described in the initial conceptual model. Actual knowledge
about concrete attack paths, protections, relations between them, etc. will be described
manually by ASPIRE partners and added to the knowledge base as it becomes available as
output of WP4 task and result of the ADSS design (phases 4-6).

Exactly how much and how concrete this manually added knowledge will need to be is an
open research question at this point in time. In practice, this information will be based on
existing attack examples, such as the attack paths described in Section 5 of D1.02,
successful attacks published in literature in the past or being known to the partners, e.g., with
regard to their own products. The sources of the information will hence be fragmented.
However, when all this fragmented information is combined, it needs (1) to be relevant and
applicable to a broader range of scenarios than the examples at the information's origin, and
it needs (2) to be free of inconsistencies and duplicated work.

For that reason, we aim at reducing the manual effort by (1) designing the model in such a
way that all information that will be modelled manually, will be modelled at the right level of
abstraction and granularity (which will be determined in the coming months), and (2) by using
reasoning engines to complete the thus modelled a priori knowledge with all information that
can be deducted from it. Therefore an enrichment process will be added on top of the
conceptual model. The result of the manual preparation and the enrichment on the manually
provided data will then form the a priori knowledge that will be shared among all the
protections.

As introduced in Section 1.2, execution-specific knowledge is initially instantiated from the
information obtained from analysing the target application. This information must be
automatically added to the knowledge base by importing it. For example, the control flow
graphs can be produced by static analysis tools and imported. This activity is depicted in
Figure 2 as the ASPIRE Program Analyses.

Also regarding execution-specific knowledge, enrichment will help in completing the
information. For execution-specific knowledge enrichments in fact plays a major role. Starting
from general information on attacks, protections, and relations to assets, it will infer
protections and combination of protections that will work on the target application, given the
assets and security properties requested by the user (the Scenario in Figure 2).

Also in this regard, the precise definition of which information will be needed by the ADSS is
not fully specified at the time of writing this report. We foresee to deliver the definition of the
enrichment framework both for the a priori knowledge and for the execution-specific
knowledge in phase 4. Hence, a main design requirement for the preliminary enrichment
framework as presented in this document is (again) expansibility.

The ASPIRE knowledge base contains static information. It is not practical, however, to to
use static information to evaluate the feasibility of some attacks against the target
applications. The reasons are the extreme variability of the applications to protect, the
impacts protections may have on applications, etc. This is why we introduced the attack

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 23 of 65

simulation models (phase 3). From the knowledge base point of view, the use of attack
simulation models creates two new requirements: first, the models to simulate must be
derived from the information stored in the ASPIRE knowledge base including the simulation
of vanilla and protected applications. Secondly, the output of the simulation must be stored in
the ASPIRE knowledge base to be used by the Selection & Optimization process, as already
described in Section 1.2.

We will therefore elaborate an important sub-model that describes metrics and how they can
be computed on vanilla and protected applications. In this document, a very preliminary
definition of metrics is being presented. Since tasks related to metrics (mainly T4.2, but also
T4.3, T4.4) did not start yet, results in that sub-model cannot be considered mature. For this
reason, metrics are not part of the initial version of the main model. Nevertheless, this
important concept is eligible to be part of the main model for future versions of the
conceptual model. Deliverable D4.02 (M12) will serve to fill this gap in the initial version of
the conceptual model: D4.02 will report an updated version of the conceptual model that
details on metrics (phase 5).

The final version of the ASPIRE knowledge base will be documented in two deliverables:
D4.03 (M18) will present the final conceptual model; D5.07 (M24) will present the final
enrichment framework. By taking advantage of the expansibility of both the conceptual model
and of the enrichment framework, possible changes that may be required during the last year
will be easily supported.

3.3 The Main Model
This section presents a class diagram that represents a formalization of the attack model
information represented in D1.02. That attack model included the following high-level
concepts and informal relations between them:

• Application;

• Asset;

• Attack;

• Attack path;

• Attacker;

• Software protection;

• Tools.

Figure 10 presents the UML class diagram that shows how these concepts have been
formally related. It is worth noting that associations are all many-to-many associations unless
differently noted in the text.

First of all, we present the Application class. Its instances will be objects abstracting the
applications to protect. Next, the class Asset describes the assets. A preliminary set of
assets has been listed in Section 3 of D1.02. The identified assets in our formal model will be
detailed in Section 3.4.2 Presently, the set of assets we identified suffices to describe the
types of assets listed in D1.02. Nevertheless, we do not exclude the possibility of updates.
Application instances are associated to at least one Asset instance by means of the
contains association.

In most cases, we must consider not the whole application but one of its parts. For this
purpose, we introduced the ApplicationPart class, whose instances may describe logically
self-contained components (like server and client stubs, algorithms) or simple pieces of code
or similar abstractions (like fragments and slices). ApplicationPart instances are
connected to the Application instances they are part of by means of the one-to-many

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 24 of 65

hasPart association. Additionally, ApplicationPart instances are associated to Asset
instances by means of the partContains association. More details on ApplicationPart
class, its subclasses and associations will be presented in Section 3.4.1 where the
Application sub-model is presented.

Assets are associated to several security properties a user may be interested in when
protecting the asset. This information is conveyed via the AssetProperty class instances
(named threats in D1.02) that are associated to Asset instances by means of the one-to-
many hasProperty association. Additionally, assets may depend on other assets. The (self)
association requires is used to represent this dependency. We anticipate that the
information needed to construct the associations between applications, their assets and the
threats to protect against, will be obtained from the developer's source code annotations and
through additional information passed to the ADSS.

Figure 10: Main model

Attacks are represented as instances of the Attack class. Several attacks may threaten an
asset, this scenario is represented by means of the threatens association. Additionally,
attacks may compromise asset security properties, this is represented by means of the
affects association.

Having modelled the attacks, we are able to model attack paths, and naturally, we use the
AttackPath class for this purpose. To represent that an attack can be mounted following an
attack path we use the hasAttackPath association that relates Attack instances to
AttackPath instances (one-to-many). Attack paths are decomposed in individual attack
steps that are represented as AttackStep instances. In theory, each attack step can be an
entire attack on its own. We depicted this scenario by means of the inheritance, that is,
Attack is a subclass of AttackStep (bounded via an ‘is a’ association). This also means

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 25 of 65

that we can describe steps that are not attacks per se (as do not affect any asset property)
as they are only needed within an attack path. Each AttackStep instance is associated to
the tools that can be used to actually mount it. Attack tools are modelled with the
AttackTool class and AttackTool instances are associated to AttackStep instances via
the mayBePerformedByMeansOf association.

Since attack steps can be shared among different attack paths, we used the
AttackStepInAttackPath (association) class, which links the AttackStep instance via the
refersToAttackPath association and the AttackPath via the refersToAttackStep
association. The last two associations bind an AttackStepInAttackPath instance to exactly
one AttackStep instance and one AttackPath instance. Then, to describe consecutive
attack steps we used the nextStepANDed and nextStepORed associations that serve to also
indicate if the consecutive steps must be all executed or at least one must be executed. The
first step of the attack path is indicated by setting up the startsWith association. It is worth
noting that nextStepANDed, nextStepORed, and startsWith are many-to-many
associations as many parallel steps can be performed at the same time (see Section 2), that
is, these associations allow us to model graphs of attack steps (and Petri nets), not only
sequences (see Section 3.4.4).

Attacks are categorized by the level of exploitation (see Section 4.2 of D1.02). As presented
in D1.02, attacks may require different expertise, skill and resources to be mounted, and
attacks may have different levels of exploitation. D1.02 introduced the “identification” concept
(and distinguished four categories of attackers: gurus, experts, geeks, and amateurs), and
the “exploitation” attribute (and distinguished three categories of exploitation: low, medium,
high). We model these formally with two enumerations: the AttackerIdentificationEnum
class with the four identified attacker categories, and the ExploitationEnum class with the
three identified exploitation levels. We don’t expect changes to these enumerations, however
it is worth noting how easy it is to extend or modify these classifications. AttackStep
instances (and Attack instances as well due inheritance) are associated to
AttackerIdentificationEnum values by means of the requiresSkill association and to
ExploitationEnum values by means of hasExploitation association. An attack step is
associated to exactly one AttackerIdentificationEnum value and exactly one
ExploitationEnum value. Also AttackPath instances and AttackTool instances are
associated with AttackerIdentificationEnum	 instances via the
attackPathRequiresSkill and requiresExpertise associations.

Software protections are described by means of instances of the SWProtection class. To
refer to the tools actually deploying protection (which we aim at configuring as output of
ASPIRE DSS), SWProtection instances are associated to ProtectionTool class instances
by means of the enforcedWith association. To indicate possible dependencies among
software protections, the dependsOn association is used, while forward incompatibility is
represented through the invalidatesForward association. That will allow us to model when
one protection cannot be enforced after another one because it renders the previous one
useless or wrong, like obfuscating code after having inserted guards, or when the first
protection invalidates the pre-conditions to apply the later one.

Software protections are categorized in types by associating them to SWProtectionType
instances via the ofType association. A software protection should be associated to exactly
one SWProtectionType instance. We will evaluate if some protection could need more than
one association in the next months (e.g., remote attestation implemented via renewability like
in [Fal06]). Together with the need of categorizing protections, this class serves to map the
‘lines of defence’ concept, as presented in the DoW (see also Section 3.4.3). Another
reason for having this class is that it will allow class-level reasoning about protections, i.e., to
answer questions like “which are the categories of protections that can be used in
combination with strengthen local integrity protections to increase the protection level?”

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 26 of 65

Dependencies among SWProtectionType instances are represented by means of the
dependsOnType association.

SWProtection instances are related to the Asset instances (via the addressesAsset
association) and AssetProperty instances (via the addressesAssetProperty association)
that they may mitigate risks on, and to the Attack instances that they aim at invalidating or
making more difficult (via the mitigates association). By means of the compromises
association, attacks are associated to the SWProtection instances they can invalidate (or
render useless or completely remove).

Attacks are mounted by attackers, represented by instances of the Attacker class, which
are related to the attacks they may be interested in performing by means of the mounts
association. We just sketch in the main model the relations of the Attacker class, which will
be presented more in details in Section 3.4.6 where the protection requirements sub-model
will be presented. To relate attackers to the attack they can mount, Attacker instances are
associated via the hasExpertise association to the AttackerIdentificationEnum values.
The attack paths attackers can mount are represented via the performs association. Attacks
are strictly related to the tools attackers use to actually perform an attack step. Attacker
instances are thus related to AttackTool instances using the canUse association. As
anticipated before, to be very precise, in the security model, each AttackStep instance has
been associated to AttackTools instances that can be used to mount the attack by means
of the mayBePerformedByMeansOf association. At present, we don’t expect to model single
attackers, we just need the flexibility to express that various attacks can be mounted by
several attackers that may have different expertise and different tastes on the attack paths to
follow to mount an attack (see Section 3.4.6).

3.4 Model Extensions: the Sub-Models
The main model presented above depicts the main concepts and their (high-level) relations.
However, a refinement is needed to allow a more fine-grained description of the protection
scenarios ASPIRE has to face. The main tool we use to refine the main model is inheritance.
It helps us to refine main model concepts and at the same time preserve the associations
among them.

Refinements to the main model will be presented by means of a set of sub-models that cover
six areas:

• Assets, which describe what to protect and report categorization already introduced
in D1.02.

• Applications and their execution environments, which precisely characterize the
application to protect. This will allow us to better target the protection protection and
to provide information about the execution environment that may determine classes of
attacks and protections. For example, attacks against an applications running on
Windows may be different from the ones the same application has to face on MacOS,
and some protection techniques cannot be available on all the platforms.

• Protections and protection types, which define a taxonomy of the different
protections.

• Attacks, which describe the attacks that can be mounted against applications,
including the attacks already identified in D1.02.

• Metrics, which provide a very preliminary identification of the classes to use to
convey information about metrics and the general types of metrics-related classes.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 27 of 65

• Protection requirements, which capture our initial ideas on how to specify protection
requirements on the target application, and which complete the information presented
in D1.03.

The areas and the corresponding list of sub-models is not definitive, as these are the areas
we currently identified. The next sections will present the initial definition of these sub-
models.

3.4.1 Application sub-model
The sub-model shown in Figure 11 presents an initial definition of information about the
target application that the ADSS will require to evaluate the impact of protections and thus
decide on the best protection according to user requirements.

We highlight five major concepts, which will be developed into separate packages:

• The parts and components the application is made of, described by means of the
ApplicationPart class and detailed in the ApplicationParts package.

• The platform where the target application or some of its components will be
executed, such as client and server stubs. This is described by means of the
ExecutionEnvironment class and detailed in the ExecutionEnvironment package;

• The possible communications between two or more of the application components
described by means of the Communication class and detailed in the
Communications package.

• The way the source code is compiled and linked to obtain the executables,
described by means of the Compiler and Linker classes, and detailed in the
Compilers&Linkers package.

• The types of abstract representations of the target application that could be needed
to evaluate the impact of protections, select the best protections, and actually enforce
them, described by means of the Representation class and detailed in the
Representations package.

These five packages will be independently developed during the next months. This list of
packages is also preliminary. Other packages could be added depending on the ADSS
design.

From Figure 11 it is possible to see that an Application instance is connected to:

• Its application components and parts, instances of the ApplicationPart class, via
the hasPart association, that has been already illustrated in the main model.

• The ExecutionEnvironment instances in which the application can be run via the
executedIn association.

• The Representation instances, that abstractly describe these application parts via
the one-to-many hasRepresentation association;

• The Compiler and Linker instances use to compile it, via the compiledWith and
linkedWith assocations, which are valid if the single application components are not
compiled independently.

• The Communication instances of which the Application is an endpoint, will be
identified by navigating the endpoint1 and endpoint2 associations in opposite
direction.

It is worth noting that ApplicationPart instances are also linked with the same concepts
are Application instances in the ApplicationParts package. The ApplicationParts
package presented in Figure 12 describes the parts of an application that are of interest for
the protection, for instance because they contain assets, are targeted by a protection, or are
the endpoints of some secure communication channel. We identified several concepts and
described them by means of inheritance. We consider the following subclasses:

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 28 of 65

• Function, and Procedure classes, whose instances explicitly declared functions,
procedures, and methods in the target application.

• Algorithm class, whose instances are algorithms, which may be formed of several
Function and Procedure instances (associated by means of the
includesAlgorithm and includesProcedure assocations).

• Slice and Fragment classes, whose instances represent parts of the code not
necessarily corresponding to entire functions and procedures. Examples are the
barrier slices (investigated in WP2) and the server and client parts generated during
code splitting, represented by ServerStub and ClientStub instances. Fragment
instances will describe sets of consecutive statements and will be needed to describe
metrics (see Section 3.4.5).

• Library class, used to describe static or dynamic libraries, represented as
StaticLibrary and DynamicLibrary class instances. DynamicLibrary instances
are connected to LibraryModule instances by means of the
containsLibraryModule association.

• StaticallyAllocatedData, used to describe (security-sensitive) data embedded in
the executable files or libraries, such as cryptographic keys (represented by means of
the CryptoKey class), initialization values for tables (represented by means of the
TablesInitiValues class), etc.. A notable example of statically allocated data are
strings, which attackers look after during certain attack steps, modelled with an ad
hoc subclass String.

• The File class is used to model external files and data, such as custom configuration
files (represented by means of the ConfigurationFile class), or registries/manifest files
that might contain relevant data to be taken into account (represented by means of
the Manifest class).

• Class is the only element presented in this initial characterization of application
components originating from object-oriented programming. We added this mainly as
a placeholder to remember us that object-oriented programming constructs and
entities need to be considered while extending or adapting the models. Because of
resource limitations, however, ASPIRE will only implement techniques for C code for
the time being.

The ApplicationPart instances are connected to:

• the Application instance they are part of (via the one to main hasPart association),
• the ExecutionEnvironment instances where they can be run via the

componentExecutedWIth association (as some application is made of several
independently executing component, like clients and servers),

• the Communication instances they are endpoint of (via the one-to-many endpoint1
and endpoint2 associations)

• the Representation instances, that abstractly describe these application parts (via
the one-to-many componentHasRepresentation association;

• if they are independently compiled and linked, the Compiler and Linker instances
via the componentCompiledWith and componentLinkedWith associations.

Note that we preferred the use of the work “component” instead of “part” for the associations
that are logically self-consistent like executable portions of the application (like clients and
servers) or independently compiled portions of the application.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 29 of 65

Figure 11: The Application sub-model.

Figure 12: The ApplicationParts package.

The Representations package (see Figure 13) will include all the abstract representations
that can be used by the ADSS or tool chain components. It includes the abstract
Representation class which will be subclassed any time a new abstract representation will
be of interest of the ASPIRE project. Currently, we included the following subclasses:

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 30 of 65

• SourceCode, and ObjectCode, whose instances are self-explaining.
• ControlFlowGraph, a graph representation that models how control can be

transferred in the procedure or program, i.e., in which orders instructions can be
executed.

• ControlDependencyGraph, a graph representation that models to what extent the
execution of instructions in a procedure or program depends on the execution of the
other instructions in that procedure or program.

• DataFlowGraph, a graph that models how values computed in the program are
computed out of other values computed (elsewhere).

• ProgramDependenceGraph, a graph that combines the data flow graph and control
dependency graph presentations to model how the execution of instructions depends
on other instructions being executed and on the values being computed by those
other instructions.

• CallGraphOfProcedure, a graph representation that models which procedures in a
program can call with procedures.

• Annotation, that will be used to report the annotations added by the developers or
by tool chain components to tag pieces of code.

Figure 13: The Representations package.

Representation instances are associated not only to Application instances, via the one-
to-many hasRepresentation association, but also to ApplicationPart instances, via the
one-to-many componentHasRepresentation association (as abstract representations are in
most cases created for components, like functions and procedures).

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 31 of 65

Figure 14: The Compilers&Linkers package.

For the Compilers&Linkers package depicted in Figure 14, we highlighted two main
concepts: compilers, described as instances of the Compiler class, and linkers, described as
instances of the Linker class. Application instances are associated to Compiler and
Linker class instances via the compiledWith and linkedWith one-to-many associations,
and to ApplicationPart instances via the compiledWith and linkedWith one-to-many
associations.

For the ASPIRE project, it is important to model the options/flags that can be selected during
compilation because they can affect the performance and structure of the code and may also
be incompatible with the processes performed by some protection tools. For example, Diablo
requires the availability of separate object files and a map file of the linked binary or library,
all of which can be generated by employing the appropriate options on existing compilers.
Furthermore, to select the most appropriate protections to be applied, it can be useful to
know, e.g., whether an asset in the form of a code fragment is duplicated because of
compiler optimizations such as inlining. For these reasons, we have foreseen the
CompilerOption class.

Application and ApplicationPart instances are bound to the options used to compile them
by means of the compiledWithOption and componentCompiledWithOption associations.
We want to note that CompilerOption instances are independent of the compilers. Each of
them models (equivalent) options that can be invoked with different commands on different
compilers. So each option is represented as a single CompilerOption instance and
associated via the validFor association to the Compiler instances where they are
available. The reason for this design approach is that the alternative method, i.e., creating
instances of all the options for each compiler and then explicitly requiring their equivalence,
is less efficient from the reasoning point of view.

Other code manipulations could also be of interest in this package. In particular, the
description of the optimizations that are performed by the compilers can be interesting to
derive some general information of the object produced and may serve the decision process.
The ASPIRE Consortium is still debating the need to include this information in this package.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 32 of 65

Figure 15: The Communications package.

Figure 15 displays the structure of the Communications package. Its main class is the
abstract Communication class. We foresee two types of communications, channel-oriented
and message-oriented communications. Therefore Communication has been subclassed in
Channel and MessageExchange classes. The Channel class has been further subclassed in
the ProtectedChannel class to describe protected channels. Instances of the
ProtectedChannel class are bounded to the security properties they guarantee by means of
the enforcesChannelProtection association. Security properties are represented by
SecurityPropertyEnum instances, an enumeration class listing all the possible security
properties that can be enforced on communications (e.g., integrity, confidentiality, replay
protection). A MessageExchange instance is composed of a set of messages, represented as
CommunicationMessage instances. To mark protected messages, i.e., messages that have
been processed to ensure some security property (like message authentication, integrity, and
confidentiality), we use ProtectedCommunicationMessage. Its instances are also
connected to SecurityPropertyEnum instances, via the enforcesMessageProtection
association.

Communications are characterized by their endpoints. In order to support non-oriented
communications as well, endpoints are described with the one-to-many endpoint1 and
endpoint2 associations from Communication instances to Application instances. In case
we want to describe oriented communication, the application referenced by the endpoint1
association can be considered the originator and the application referenced by the
endpoint2 association the consumer. It is worth adding that this enables the description of
communications between ApplicationPart	 instances, e.g., when their components are to
be executed on different machines, such as the different forms of stubs that will execute on
the client and on the server. For that reason, we introduced the one-to-many
endpointComponent1 and endpointComponent2 associations.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 33 of 65

Figure 16: The ExecutionEnvironments package

Finally, the ExecutionEnvironments package refines the abstract class
ExecutionEnvironment by subclassing it. Our initial list of the execution environments we
consider includes:

• OS class, which describes the operating systems where applications may be
executed.

• Processor and InstructionSet classes, which allows us to describe the processing
unit for which the application will be compiled.

• VM, Emulator, Interpreter, and InstrumentationToolkit classes that describe
virtual execution environments. Moreover, we will add more information on Virtual
machines as they are managed by one-to-many hypervisors, as described using the
Hypervisor class instances associated with the managedByHyperVisor assocation,
and run an operating system, as modeled with the hasOS association.

3.4.2 Assets sub-model
Figure 17 reports the categorization of assets presented in D1.02. The different asset
categories have been modelled with subclassing. The classes PublicData, TraceableData,
TraceableCode, ApplicationExecution, UniqueData, GlobalData, PrivateData, and
Code are subclasses of the main Asset class. Moreover, the Code class has been further
subclassed in SecurityLibrary, CustomAlgorithm, and PrivateProtocol.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 34 of 65

Figure 17: Assets sub-model.

3.4.3 SW Protection sub-model
Figure 18 shows the categorization of the protection techniques that are considered of
interest for the ASPIRE project.

First of all, it is possible to see the five lines of defence, i.e., the main, more abstract
categories of protections as detailed in the ASPIRE DoW. These techniques are represented
by means of the DataHiding, AlgorithmHiding, AntiTampering, RemoteAttestation,
and Renewability classes, all subclasses of the SWProtectionType class. Together with
the five lines of defence, we also added some more concrete protection types that play a
major role in the ASPIRE project.

They are represented by ClientSideCodeSplitting, ClientServerCodeSplitting,
ClientServerDataSplitting, and ReactiveTechnologies. 	

All the previously mentioned classes are the first level of categorization. We also specialized
some of these techniques, for instance:

• DataHiding has been subclassed in Source2SourceDataObfuscation and WBC
(white box crypto);

• AlgorithmHiding has been subclassed in:
o SourceLevelAlgorithmHiding, further subclassed in PatternRemoval;
o ClientSideVM;
o BinaryCodeObfuscation, further subclassed in CodeFlattening,

BranchFunctions, and OpaquePredicates;
• AntiTampering, has been subclassed in	 AntiCodeInjection,

AntiLibraryCallback, AntiDebug, and CodeGuards;
• Renewability has been subclassed in RenewabilityInSpace and

RenewabilityInTime
• ReactiveTechnique has been subclassed in TimeBombs.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 35 of 65

Integrity protection techniques, like remote attestation and anti-tampering techniques, are
also categorized as either static and dynamic. However, instead of using the subclassing we
plan to add a Boolean attribute (dynamic) in those classes.

Figure 18: SW Protection sub-model.

3.4.4 Attacks sub-model
Figure 19 presents the attack sub-model. The categorization of the attacks also comes from
D1.02, that distinguished static, dynamic, and hybrid attacks. To that extent, we introduced
the top-level subclasses StaticAttack, DynamicAttack, HybridAttack, PassiveAttack,
and ActiveAttack.

Static attacks are further subclassed in StructuralCodeRecovery,
StructuralDataRecovery, StructuralMatchingOfBinaries, and StaticTampering.
Dynamic attacks are further subclassed in DynamicTampering, DynamicDataAnalysis,
Debugging,	 AttacksOnCommunicationChannels, DynamicStructuralAnalysis, and
Fuzzying. AttacksOnCommunicationChannels has been further subclassed in
APIExploitation, Spoofing, Sniffing, Replay, and AttacksOnProtectedChannels.

The Attack sub-model also includes the part of the conceptual model that is needed to
represent the Petri nets that will be used for the simulation. Figure 20 depicts this part.

There are two ways to support the simulation with Petri nets: (i) static descriptions of known
attack paths, and (ii) dynamic discovery of attack paths from descriptions of attack steps. The
latter paths will be generated by the enrichment phases, e.g., when constructing Petri nets
for specific scenarios. This capability will allow the developers of the AKB and the ADSS to
populate it with generic, widely applicable attack steps that can be reused in many attack and
protection scenarios. The former, static descriptions will be useful to manually populate the
model with known attacks, e.g., because they are very specific combinations of attack steps
that make sense only in a very limited set of scenarios, or, during the project itself, because
the automated enrichment and reasoning in the ADSS is not yet mature enough to derive all
relevant attack path automatically.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 36 of 65

The transitions of a Petri net are instances of the class AttackStepInAttackPath - already
presented in section 3.3 together with the refersToAttackStep, refersToAttackPath, and
startsWith associations, the Asset, Attack and AttackPath classes and associations -
which refers to the AttackStep. Places of a Petri Net are instances of the class
AttackState. The relationships decomposedAND and decomposedOR are needed to further
specify dependencies among attack states, that is, it an attack state can be reached if one or
more previous states have been reached.

Figure 19: Attacks sub-model

Figure 20: Attacks, goals and Petri Nets

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 37 of 65

Goal is a generalization of AttackState, which means that some of them are goals as they
contain relevant information on assets or on the state of protections being undone or worked
around, like intermediate achievements. Moreover, some of the goals are the final objectives
of an attack, i.e., the targeted asset properties. This is represented by defining the
AssetProperty as a subclass of Goals.

Each arc in a Petri net connects one AttackState to an AttackStepInAttackPath or vice
versa; the relationship movesTo represents arcs connecting a transition to a place, while the
relationship enablesAttackStep represents arcs connecting a place to a transition; in this
way the whole static structure of a Petri net can be modelled. Starting from the final goal of
an attack the model can be navigated through the relationships movesTo and
enablesAttackStep to dynamically discover all the transitions and places leading to this
final attack goal.

Together with the nextStepORed and nextStepANDed associations, we introduced their
reciprocal associations to improve querying and reasoning. The relationship follows further
specifies the fact that one attack step follows another one and can be reached if at least one
of the previous attack steps has been completed, and followsAll can represent the fact
that to perform one attack step more than one previous steps must have been performed.

AttackState instances might require some information to be executed, might be performed
with an AttackTool and will produce some information. Any information used throughout the
attack has been named AttackFact as the most generic information represented as a fact
into a fact base, described by means of the FactBase class, composed of AttackFact
instances.

We can use this information to dynamically discover attack paths. Indeed, AttackStep
enabling constraints are depicted by (optionally) associating an AttackState instance to a
Condition instance, representing a predicate on some of the facts in the knowledge base,
by means of the attackStateRequires association between AttackState and Condition
instances, and the on association, between Condition and AttackFact instances.

The description of the information we expect to use has been obtained by subclassing the
AttackFact class. Our expectation is to use as facts the ApplicationPart instances (as it
is important to know what to attack), the associated Representation instances (as obtaining
AttackTool he has at his disposal (as we need to know what the attacker is able to do), and
the AttackPaths the attacker likes. Additionally, having performed and completed some
AttackStep or reached some AttackState (and Goal) is also important to evaluate if attack
steps and states can be executed (and determine dependencies). The known facts are
updated when attack steps and attack states are completed. Indeed, we have foreseen two
associations to this purpose, produces from AttackStep instances to AttackFact
instances, and attackStateProduces, from AttackState instances to AttackFact
instances.

In some cases, it is needed to explicit state that an attack step enables other attack steps
(without the need to dynamically derive it). This is done by using the enables self-
association of the class AttackStep.

The fact that Attack instances are also AttackStep instances (by generalization) shows
another advantage of the attack submodel: it can manage composition of attack paths. This
result will be achieved by hierarchical composition of Petri nets, where one transition (an
AttackStep instance) can actually represent another sub-net included in the main Petri net.

3.4.5 Metrics sub-model
The project's activity on code metrics in WP4 did not start yet, so the metrics sub-model is
just a place-holder for the time being. It will be refined when more details about metrics will
be elaborated and validated.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 38 of 65

At the moment, this sub-model considers the relations among metrics, application parts, and
attacks. The Metric class is an abstract class that will be sub-classed when project metrics
will be available. Metrics are computed on specific portions of the application. Therefore we
added the association computedOn between Metric instances and ApplicationPart
instances. The actual values of metrics will be conveyed by means of attributes whose type
(integer or real) will be decided depending on the metrics.

Additionally, metrics will be used to quantify the impact of a protection, applied on an
application part, against a specific attack. For this purpose, we have foreseen an association,
evaluatesImpactAgainst between Metric instances and Attack instances. In this case,
we expect to have several attributes as a protection might influence the attack probability, the
attack time or expertise required, etc.

Figure 21: Metrics sub-model

3.4.6 Protection requirements sub-model
One of ASPIRE objectives is to allow an Application Vendor without being an expert on
software protection. Therefore, we must allow an ADSS user without an in-depth knowledge
on software protection to easily specify his protection requirements. To this purpose, we
introduced a set of predefined protection profiles. However, ADSS users can have a strong
background on software protection. Therefore, the ADSS must also allow them to fine tune
their protection requirements by precisely specifying the attackers they want to face, the
attacks they think are relevant, and to restrict the software protection to use. That is, they
may want to constrain with precise directives the selection of the best protection for their
application.

To describe this scenario, we first introduced a utility concept, the User class, which just
serves to relate different protection profiles (to different ADSS users). User class instances
are related via the requiresProfile association to the ProtectionProfile class
instances, the class we introduced to convey information about software protection profiles.
Each protection profile is composed of a set of ProtectionRequirementForAssetProperty
instances that serve to specify the desired protection for a single asset property. The target
AssetProperty instance is specified by means of the many-to-one protectionFor
association.

We initially see two types of protection specifications, thus we subclassed
ProtectionForAssetProperty in the SimplifiedProtectionRequirement	 and
CustomProtectionRequirement.

Instances of SimplifiedProtectionRequirement can be used to specify the intended
hardening level by directly referring to an enumeration that determines the attacker expertise,
the AttackerIdentificationEnum class. That is, it will be possible for a user to specify that
he wants to protect against amateurs, geeks, experts or gurus (see D1.02). The ADSS will
first automatically select for the user all the attacks, attack paths and attack tools to protect
from, and then investigate the protection techniques to implement.

For a more fine grained specification of the requirements, we introduced the
CustomProtectionRequirement class, whose instances are composed of a set of

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 39 of 65

ProtectionTarget instances. ProtectionTarget instances allow users to define a set of
“attackers” to protect against. As explained in Section 3.3, the attackers to protect against
can be defined as Attacker instances, which are related with their expertise (i.e., with the
AttackerIdentificationEnum class), the attack tools at their disposal (i.e., with the
AttackerTool class), and the attack path they may be interested in perfoming (i.e., with the
AttackPaths class). Therefore, the ProtectionTarget is associated to the Attacker
instances via the restrictAttacker association. Morever, a ProtectionTarget instance is
also associated to AttackStep instances (via the restrictAttackStepTo) to permit a more
fine-grained definition of the weapons available to the attacker. Additionally, a
CustomProtectionTarget instance is associated to the SoftwareProtection or
SoftwareProtectionTypes instance the user wants to consider during the protections
selection phase (via the restrictProtectionsTo and restrictProtectionTypesTo
associations).

Figure 22: Protection requirements sub-model.

3.5 Mapping a Petri Net in the Knowledge Base
Some of the concepts introduced in our conceptual model (see Fig. 19 in Section 3.4) are
used to represent any Petri net in the knowledge base. Here, we define a mapping between
the Petri net elements and the classes and relationships defined in the conceptual model.

In order to define such a mapping independently from the language chosen for the
knowledge base representation, we decompose Petri nets into triples. We will demonstrate
this mapping on the OTP generator example of Section 2.3, of which we replicated the Petri
net in Figure 23. In triples of the form <subject, predicate, object> to illustrate how the
mapping works: predicate can be one of the relationships defined in the conceptual model,
while subject and object are two instances of two classes linked by the predicate relationship;
the specialization is represented by the special relationship isA, while the instantiation of an
object is represented with the special relationship instanceOf.

The transitions T0-T11 in this Petri net are objects, i.e., instances of the class
AttackStepIntoAttackPath, which refers to the AttackStep, while places P0-P10 are
instances of the class AttackState;

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 40 of 65

Goals are a specialization of AttackStates, because some states in an attack correspond to
(sub-)goals being reached by an attacker. Examples are P2, when the attacker knows the
PIN, and P10, when the attacker has obtained the seed.

Figure 23: Petri net of the OTP attack (copied from Figure 7).

Each arc in the Petri net, connecting one AttackState to an AttackStep (and vice versa)
must be represented with a triple <subject, predicate, object>, where the predicate can be
movesTo for arcs connecting a transition to a place, or enablesAttackStep for arcs
connecting a place to a transition. For example, the sub-net from P0 to P1 is mapped onto
the triples of Listing 1.

The choice (OR) pattern represented by P1, T1, T2, and P2, where T1 or T2 can fire to
transit from P1 to P2, can be modelled similarly, as depicted in Listing 2. Moreover, the
concurrent pattern modelled by T3, P3 and P4 can be mapped as shown in Listing 3, and the
AND pattern denoted by nodes P5, P6, T6, P7 can be represented as in Listing 4. Finally, as
an attack is composed of different attack paths, it is also possible to model an attack path
such as Path 1: {T0, T2, T9, T10, T11}. This is illustrated in Listing 5.

T0	 instanceOf	 	 AttackStepIntoAttackPath	 	 	

P0	 	 instanceOf	 	 AttackState	 	

P1	 	 instanceOf	 	 AttackState	

P0	 	 	 	 enablesAttackStep	 T0	

T0	 	 	 	 movesTo	 P1	

Listing 1: Representation in triples of the sub-net P0->T0->P1.

T1	 instanceOf	 	 AttackStepIntoAttackPath	 	 	

T2	 instanceOf	 	 AttackStepIntoAttackPath	 	 	

P1	 	 instanceOf	 	 AttackState	 	

P2	 	 instanceOf	 	 AttackState	

P1	 	 	 	 enablesAttackStep	 T2	

P1	 	 	 	 enablesAttackStep	 T1	 	

T2	 	 	 	 movesTo	 P2	

T1	 	 	 	 movesTo	 P2	

Listing 2: Representation of the choice (T1 OR T2) between P1 and P2.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 41 of 65

T3	 instanceOf	 	 AttackStepIntoAttackPath	 	 	

P3	 	 instanceOf	 	 AttackState	 	

P4	 	 instanceOf	 	 AttackState	

T3	 	 	 	 movesTo	 	 	 	 	 P3	

T3	 	 	 	 movesTo	 	 	 	 	 P4	

Listing 3: Representation of the concurrent pattern (T3 enables P4 and P5 in parallel)

T6	 instanceOf	 	 AttackStepIntoAttackPath	 	 	

P5	 	 instanceOf	 	 AttackState	 	

P6	 	 instanceOf	 	 AttackState	

P5	 	 	 	 enablesAttackStep	 	 	 	 	 T6	

P6	 	 	 	 enablesAttackStep	 	 	 	 	 T6	

T6	 	 	 	 movesTo	 	 	 	 	 P7	

Listing 4: Representation of the AND pattern (P5 and P6 enables T6 to fire to place P7)

Path1	 instanceOf	 	 AttackPath	

Path1	 startsWith	 	 T0	

T9	 	 instanceOf	 	 AttackStepIntoAttackPath	 	 	

T10	 	 instanceOf	 	 AttackStepIntoAttackPath	 	 	

T11	 	 	 instanceOf	 	 AttackStepIntoAttackPath	 	 	

T11	 	 	 follows	 	 	 	 	 T10	

T10	 	 	 follows	 	 	 	 	 T9	

T9	 	 	 	 follows	 	 	 	 	 T2	

T2	 	 	 	 follows	 	 	 	 	 T0	

T11	 	 	 movesTo	 	 	 	 	 P10	

Listing 5: Representation of an attack Path leading to the final goal P10

An AttackState is related to the set of information (AttackFacts) available to the attacker
at that point of the attack. For example, the information (AttackFact) used during the OTP
attack includes CodeRepresentation, like execution traces produced by dynamic analysis
attack steps T9 and T11, while T10 (i.e., looking for code portions containing XOR op-codes)
will require the execution traces produced by T9 and will produce the lines of the identified
code portions.

Moreover, an AttackStep might require a (pre)-Condition to hold in order to be enabled,
and a Condition can be seen as an expression using one or more AttackFacts.

A Goal can be seen as a special AttackState where the available information at that point
(e.g., the PIN at P2, or the seed at the final state P10) is the actual goal related to an asset
targeted by the attacker.

The attack paths can be derived from the final goal P10 by navigating the diagram
backwards through the follows relationships, thus retrieving all the paths leading to the
same final goal.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 42 of 65

Section 4 Ontologies and Related Work
Chapter Authors:

Cataldo Basile (POLITO), Daniele Canavese (POLITO), Paolo Falcarin (UEL), Shareeful Islam (UEL),
Mariano Ceccato (FBK)

To represent the AKB, we have decided to use ontologies. The complete picture, include all
reasons we have for choosing ontologies, will only become available with deliverable D5.01,
due in M9, when the ADSS will be presented in details and the full role of the enrichment will
be illustrated.

This section introduces some background to formal ontologies, and provides already some
hints as to why we choose ontologies. Additionally, we present works on ontology
engineering and security modelling related to the ASPIRE knowledge base design and
implementation.

4.1 Background on Ontologies
Ontologies are an important tool for the design and implementation of the ASPIRE
knowledge base. This section presents a general introduction to the terminology and the
main technology available for ontology specification and management. Deliverable D5.01 will
report an extended version of this introduction that also covers ontology-based enrichment,
formal aspects of description logics, and design best practice for reasoning performance.

The concept of ontology comes from the world of philosophy, where it indicates the study of
the nature of being and reality in general. Most of the effort in this discipline is focused on
answering questions regarding which entities exist or can be said to exist, how such objects
can be grouped and how they relate within a hierarchy subdivided according to similarities
and differences.

After being adopted by artificial intelligence researchers, in recent years the development of
ontology-based tools has begun to surface in actual products and into the industrial world.

In information systems, the main objective of an ontology is the formal representation of the
concepts relevant to a specific application domain, according to the (partial or complete)
knowledge of the domain. In order to specify a conceptualization, a non-ambiguous definition
of the terms representing the available knowledge is needed.

The ontologies define a set of representational primitives that are used to model a specific
domain of knowledge or discourse. These primitives are:

• Individuals (or instances or objects) that represent concrete entities.
• Classes (or concepts) that embody the main categories according to which the world

is organized. They are abstract groups, sets and collections of individuals.
• Properties (or roles) that define a specific relationship between pairs of individuals in

the represented model.

Figure 24 graphically presents a sample of the application of the aforementioned entities
using a Venn-like diagram.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 43 of 65

Figure 24: Graphical representation of some ontological primitives

Furthermore, ontologies offer several inference computation capabilities, a.k.a. reasoning,
that are performed by a specific component called reasoner. The Description Logic (DL)
ontologies we will use in ASPIRE, are built on top of a well know family of logics, the
description logic, which is a decidable part of the first order logic (FOL), and which hence
ensures a great expressiveness, computational completeness, and decidability.

Description logic reasoning and queries can rely on highly optimized reasoners that can
deliver higher performances than traditional rule engines. Some of the most used and
powerful reasoners are:

• HermitT (http://www.hermit-reasoner.com/);
• Pellet (http://clarkparsia.com/pellet/);
• FaCT++ (http://owl.man.ac.uk/factplusplus/).

4.1.1 OWL
From a development point of view, ontologies are implemented using formal languages.
These languages are typically declarative in nature, which means that the ontology is
specified without providing an algorithm that describes how it should be constructed or how
the inference computation should happen. Examples of ontology languages are Common
logic [COM], RIF [RIF], and most notably OWL [OWL], which aims to be the standardized
and broadly accepted ontology language.

The Web Ontology Language (OWL) is built on top of the Resource Description Framework
(RDF) [RDF] and RDF Schema [RDFS]. RDF provides a way to express statements about
resources (that is, about anything) in the form of subject-predicate-object expressions or
triples, like the ones already introduced in Section 3.5 to describe attacks. RDFS is a
semantic extension of RDF that provides mechanisms for describing characteristics of
resources (such as the domains and ranges of properties), groups of related resources, and
the relationships between these resources. In practice, RFDS adds a meta-layer that
provides a mechanism to describe RDF resources, i.e., to support classes, properties,
values, and associations, in a way that is close to the paradigm of object-orientation.

OWL is an extension of these languages that provides superior machine interpretability. It
allows one to specify

• logical expressions via the traditional operators (AND, OR and NOT);
• equalities and inequalities;
• local properties;
• required and optional properties;
• required values;
• enumerated classes;
• symmetric and inverse properties.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 44 of 65

OWL defines three increasingly expressive sub-languages:

• OWL-Lite can be used to express taxonomies with simple constraints such as the
cardinality constraint where only the values 0 and 1 are allowed;

• OWL-DL combines maximum expressiveness with computational completeness and
decidability because it is based on Description Logic4;

• OWL-Full supports full expressiveness and syntactic freedom. This comes at the cost
of having no computational guarantees, and hence being semi-decidable. Therefore,
the inference computation is less predictable and it is not possible to perform a
completely automated reasoning.

OWL 2 is the successor of the Web Ontology Language (OWL 1). Backward compatibility is
ensured. All OWL 1 ontologies are completely valid OWL 2 ontologies, but not vice-versa
since the latter introduces a number of new and useful set of features such as

• keys;
• property chains;
• richer data types and data ranges;
• qualified cardinality restrictions;
• asymmetric, reflexive and disjoint properties;
• enhanced annotation capabilities.

The OWL 2 standard declares two sub-languages: OWL 2 DL and OWL 2 Full, which are
the obvious extensions of OWL-DL and OWL-Full. In addition, it defines three OWL 2 DL
sub-languages (or profiles) which can provide important advantages in certain application
scenarios. Each of them is a syntactic restriction of the OWL 2 structural specification and is
computationally complete. These profiles are the following:

• OWL 2 EL supports polynomial-time algorithms for standard reasoning tasks and it is
particularly useful in situations with very large ontologies;

• OWL 2 QL enables conjunctive queries to be answered in logarithmic space using
standard relational database technology;

• OWL 2 RL allows the implementation of polynomial-time reasoning algorithms using
rule-extended database technologies operating directly on RDF triples. It is useful in
environments with large number of individuals and where it is necessary to operate
directly on RDF triples.

Figure 25 shows the expressivity relationships between the OWL 2 profiles. Note that the
OWL 2 DL profiles are intersecting since they share some common operators.

4.1.2 SPARQL and SPARQL-DL
SPARQL is a query language for RDF datasets, but it can also be applied to ontologies since
every OWL ontology is an RDF dataset [SPARQ].

Like SQL for relational databases, SPARQL can be used to retrieve a sub-set of the data in a
dataset. It is able to add and delete information, as well as to modify it. Moreover, SPARQL
is capable of federated queries, i.e., retrieving and combining data from multiple datasets
available from multiple servers. It can even be used to federate data from non-RDF sources,
since there are many tools which make existing formats, such as databases, spreadsheets,
and XML files, available to be “sparqled”.

4 Description Logic is a family of formal logics used for artificial intelligence because it is expressive
enough to cope with knowledge representation but guarantees good computational performance
[BD+03]. For this reason, DL has been selected by the W3C Semantic Web movement and it is used
for biomedical information codification.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 45 of 65

Figure 25: OWL 2 profiles expressivity relationships

SPARQL assumes a client-server interaction model between the program making a query
and the processor answering it. For this reason, its specifications consist of three main parts:

• the syntax of the queries;
• the protocol for the communication between the client and the SPARQL processor;
• an XML format for the results of a query.

SPARQL has been designed to be the analogous, in the ontology world, of SQL for
databases, as suggested by the name. The features of this language for searching data are
similar to the SQL’s ones. It enables filtering, sorting, aggregating, counting, grouping,
performing calculations and comparisons. However, it cannot be considered a really
equivalent language, as not all the SQL instructions are available in SPARQL, and vice
versa. Furthermore, the biggest difference is in the underlying model: Relational algebra for
SQL is substituted by a triple pattern approach, where information is linked for query
purposes by a subject-verb-object approach to build graph patterns, to be matched against
the RDF dataset (instead of using the join operation).

For instance, the trivial example shown in Listing 6 returns a set of pairs composed of a
person (?x) and his uncle (?z) obtained by creating a graph pattern having as nodes the
individuals ?x, ?y, ?z, and as edges the object properties hasFather and hasBrother. The
listing clearly shows the typical usage of RDF triples (subject-predicate-object) in the code.

PREFIX	 p:	 <http://someurl/>	
	
SELECT	 ?x	 ?z	
WHERE	
{	
	 	 	 	 ?x	 p:hasFather	 ?y	 .	
	 	 	 	 ?y	 p:hasBrother	 ?z	 .	
}	

Listing 6: A trivial SPARQL query

SPARQL-DL is a sub-set of SPARQL specifically tailored for working with OWL-DL and OWL
2 DL ontologies [Sir07]. It has a simpler syntax, it is less expressive (for instance, SPARQL
supports regular expressions while SPARQL-DL does not) and allows only two types of
instructions:

OWL2FULL$
$
$
$
$
$
$
$
$
$
$
$
$
$

OWL2DL$
$
$
$
$
$
$
$
$
$
$
$

OWL$2$$$$
EL$$$

$$$OWL$2$$
$$QL$

$
OWL$2$$
RL$

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 46 of 65

• select queries, which are used to retrieve some data from an OWL ontology (as their
SQL counterpart);

• ask queries, which are Boolean queries used to test the absence or presence of a
particular entity in a knowledge base.

For example, Listing 7 shows a simple SPARQL-DL query that can be used to retrieve the
complete class hierarchy by means of direct class and sub-class pairs. Note that the WHERE
part does not use triples anymore.

SELECT	 ?c	 ?d	
WHERE	
{	
	 	 	 	 DirectSubClassOf(?c,	 ?d)	
}	

Listing 7: A simple SPARQL-DL query

4.1.3 SWRL
Rule inference reasoning is widely used in knowledge management systems. Recently some
combinations of theorem proving systems and rule inference systems have been proposed to
address some limitations of decidable theorem proving systems. One of the main
advantages of combining rules and classical theorem proving systems is the support for
complex property chains. Property chaining is the ability to define a role as the composition
of other roles. For this purpose, W3C proposed the Semantic Web Rule Language (SWRL)
as the standard for integrating rule-based deductions into systems that represent knowledge
as a set of RDF triples such as OWL 1 and 2 [SWRL].

The SWRL language defines the syntax for expressing rules to declare property chains in a
Horn-like form [OKT05]. For example, Listing 8 shows a simple rule which can be used to
detect the “uncles” in an ontology containing a family-like taxonomy.

hasFather(?x,	 ?y),	 hasBrother(?y,	 ?z)	 -‐>	 hasUncle(?x,	 ?z)	

Listing 8: A simple SWRL rule

The chaining of the hasUncle property is graphically depicted in Figure 26.

Figure 26: Representation of the hasUncle property chaining

In order to preserve the sound joint system decidability and computation completeness
ontologies guarantee, SWRL specifies a set of constraints. The most important one is that
SWRL rules cannot be used to add or remove classes, properties and individuals. That is,
SWRL can assign couples of existing individuals to an existing object property (named
property assertion) like stating that Individual1 and Individual2 are bound by the hasUncle
object property. However, it does allow neither the creation of the hasUncle property nor the
creation of the Individual1 and Individual2 individuals.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 47 of 65

It is worth noting that OWL 2 introduced a specific syntax for property chaining. However, its
expressiveness is insufficient to express complex topological relationships. A notable
example of a problem that can be addressed with SWRL but not with OWL 2 schema level
chaining is the detection of object property chains.

4.2 Ontology Engineering
Modelling a knowledge base is a critical task in several research fields and real world
applications such as expert systems. A formal representation of the information is a
necessity not only to avoid ambiguities, but also to automatically infer features and properties
about a system. In order to develop such models (and meta-models), a great variety of logic
systems can be used, but when flexibility comes into play, ontologies are frequently one of
the most promising approaches. In the security area, there are several ontology-centric
works and proposals with a varying level of granularity and applicability.

Souag et al. analyzed several security ontologies, both IT and non-IT specific [Sou12]. They
classified them in eight families based on the specific security aspect that they are able to
represent and their domain of interest, such as the web oriented and risk based ontologies.
They also evaluated the modeling and semantic capabilities of such taxonomies in a semi-
qualitative way. Their effort in categorizing ontologies will be considered when precisely
defining our ASPIRE ontology.

Avizienis et al. proposed a classification for several security related concepts such as
dependability, integrity and confidentiality [Avi04]. They only proposed a taxonomy without
giving a formal definition of inference rules and axioms. Their work is purely theoretical, but
can be easily implemented in an ontology. It is an interesting example that can lead the
design of the ASPIRE security properties, but it is not directly usable in ASPIRE, where we
need to actually develop a formal ontology.

Karyda et al. suggested an ontological system for e-government applications (such as e-tax
and e-voting) [Kar06]. They provided an OWL ontology which can describe the traditional
security concepts (assets, threats and vulnerabilities) and validated their system by
performing a set of nRQL (new Racer Query Languagequeries in order to prove its flexibility
and adaptability in several different scenarios) [WM05]. nRQL has been designed
specifically for analytics that allows time-based data aggregation and filtering. Their model
has been already considered when designing the ASPIRE main model. Unfortunately, given
the different scenario and especially, given that they use the concept of vulnerabilities we
explicitly excluded, we cannot reuse their diagram. However, use of nRQL will be considered
in ASPIRE as an efficient way to aggregate and filter ontology data.

Tsoumas et al. described an ontology-centric framework for acquiring and managing security
related data [Tso06]. The core ontology is modeled in OWL and it is inspired by the
Distributed Management Task Force (DMTF) standard Common Information Model (CIM).
Their approach allows not only to represent assets, countermeasures and risks, but also to
specify several IT related notions such as network protocols, hardware and software
component. IT notions from this work will be evaluated when defining the application sub-
model and their packages, however, for the same motivations as with the ontological system
of Karyda et al., we cannot reuse their threat model in ASPIRE.

Another interesting work in the area was given in 2007 by Herzog et al. [Her07]. They
proposed a generic but flexible core ontology for modeling threats, vulnerabilities and
countermeasures for the IT world. In addition they also presented a number of ad-hoc sub-
ontologies for several specialized domains such as source code analysis and memory
protection sub-ontologies5. Their approach on the definition of ad-hoc sub-ontologies for
several specialized domains has been used during the design of the ASPIRE Knowledge

5 All the OWL files are freely available online at http://www.ida.liu.se/~iislab/projects/secont/.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 48 of 65

Base and we will certainly consider their specialized ontologies for source code analysis and
memory protection.

Assali et al. described how to represent and perform risk analysis in an industrial scenario
using several ad-hoc taxonomies and inference systems [Ass08]. They proposed a system
consisting of an ontology-based core that can be queried via a web interface for analysing
the safety-level of the system. Also in this case, the approach is interesting for our purposes
but the reusability of their models is not possible in ASPIRE.

One of the most prominent and renowned works in this field is due to Fenz et al.
[Fen09a,Fen09b]. In these documents, they described a set of ontologies that can be used to
model the security knowledge of a system by incorporating the most relevant information
such as threats, vulnerabilities, assets, controls and their relationships. The proposed
ontologies were created by using as a guideline a number of security standards such as the
IT Grundschutz Manual [ITG03] and the ISO/IEC 27001 [ISO27k]. The taxonomies are not IT
specific and can be used to model any system in which safety is a necessity. Recently, Fenz
et al. described FORISK, an expert system for semi-automatically infer the security controls
needed to protect a system using the aforementioned ontological systems [Fen13]. The
FORISK architecture will be considered when designing our enrichment framework and their
core classes (vulnerability excluded) have been inspiring us when defining the main model of
the ASPIRE knowledge base.

Massacci et al. proposed an ontology for formally describing security requirements using
high-level concepts that underlie natural language and human cognition, such as
propositions, goals, and activities [Mas11]. Furthermore, to prove the flexibility of the system,
they presented a case study where they studied the requirements needed in an air traffic
control scenario. While an air traffic control scenario is far from ASPIRE scope, the idea of
modelling requirements as a set of related propositions, goals, and activities will be
considered for the protection requirements sub-models.

4.3 Use of Ontologies in ASPIRE
In ASPIRE, we will use DL ontologies to be represented with OWL 2 DL. Being based on
description logics, it is possible to automatically perform logical inference to perform
sophisticated tasks, like checking the ontology for inconsistencies. Additionally, DL
ontologies are endowed with plenty of tools to manage, write, query, and reason about
knowledge represented in the ontology; all the “DL” versions of these tools offer better
performance and more guarantees (e.g., on decidability) than the general ones.

In this section, we argue that ontologies are appropriate for the purposes of this deliverable,
that is, to present the (static) conceptual model of the ASPIRE knowledge base. While the
fact that ontologies are able to represent class diagrams is easy to accept, we want to show
that the side effects of the use of ontologies are easy to deal with.

The main features required to represent our conceptual model are expressiveness and
extensibility.

For what concerns expressiveness, ontologies are able to represent classes, class
instances (called individuals), associations (called object properties), and attributes (called
data properties). That is, they can model class diagrams and entity-relationship diagrams like
the ones presented in Section 3.

However, there are differences that need to be remarked, compared to object-oriented or
E/R approaches. When used with full expressiveness (that is, in case of OWL Full
ontologies), classes are also instances, which makes it possible to represent relations
between classes, not only between class instances. This feature allows class-level
reasoning, which can be useful in ASPIRE to determine relations between protections.
However, given the unavailability of an ontology-based reasoner able to deal with OWL Full

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 49 of 65

and the impossibility of guaranteeing decidability in case of class-based reasoning, even if
some OWL Full feature could be of interest for the design of the ASPIRE knowledge base,
we will use DL ontologies.

Additionally, ontologies use the Open World Assumption (OWA) whereas object-oriented and
entity-relationships [Che02] approaches use the Closed World Assumption (CWA). If a
formal system (e.g., a formal logic) follows the CWA, it is implicitly assumed that any
statement is considered false, unless it is not possible to explicitly declare its value as true by
means of an explicit assignment or by logical inference. With OWA, any statement is
assumed as true (resp. false), only if it is possible to explicitly declare its value as true (resp.
false). That is, the truth values of any statement are decoupled from any implicit assumption.

The differences between CWA and OWA are important from the philosophical/theoretical
point of view: OWA is preferred when no entity knows the entire system hence no entity can
make any assumption on the truth value of any statement. When there is such an entity,
CWA is indeed to be preferred. But there is also a major difference in practice. Statements
for which there is no explicit information on their truth value are assumed as unknown with
OWA and false with CWA. Therefore, when designing the inferences needed by the ADSS to
determine the combinations of protections to apply on a target application, the fact that
ontologies use OWA is one of the first aspects we are considering.

Ontologies must precisely depict the knowledge about a specific domain, but first, domain
knowledge can be refined, second, it could be needed to combine the knowledge of more
domains. Therefore, ontologies have been designed with extensibility in mind. Their
extensibility features are enough for our purposes.

There are two standard techniques that can be used to achieve such a result: ontology
inclusion and merging, both graphically depicted in Figure 27. Ontology inclusion works very
similarly to the #include preprocessor directive in C/C++ and it is implemented in the OWL
2 standard. The host ontology explicitly specifies the sub-ontologies to include. When the
main ontology is loaded, the system automatically looks-up the sub-ontologies on the file
system or on the web, after which they are joined. The ontology merging method is very
similar to inclusion. During the merging process, the sub-ontologies axioms (i.e., roughly
speaking, everything we know in one domain, including classes, individuals, data/object
properties and inference rules) are directly copied into the main ontology using external tools.
From a reasoning point of view there is no difference between the aforementioned
techniques. However, merging has the advantage to generate a monolithic ontology which
subsequently does not require any of the originating sub-ontologies. In both cases we have
the same representation of the knowledge domain and approximately the same size and
computational performance (the “sum” of the “inclusion ontology” with the included ones is
usually very slightly bigger than the merged ontology as the inclusion ontology also stores
links to the original ontologies). Currently, we did not make a decision on the method to use
for the ASPIRE knowledge base. Most likely, we will create a stable core part of the
knowledge base with merging thus we will use inclusion for parts that need to be dynamically
joined.

Performance on accessing and querying ontologies is not comparable to the performance of
traditional DB. Additionally, ontologies are not very compact to represent, as OWL-DL is an
XML-based format. However, having a performance that is not really superb for most of the
activities is the natural price to pay for using such a powerful tool. Fortunately, not having
satisfactory performance is the only risk we see at the moment, as for all the other aspects
ontologies defeat the other traditional modelling approaches.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 50 of 65

Figure 27 : Examples of ontology inclusion (left) and ontology merging (right).

Nevertheless, as ASPIRE is a research project we are convinced that investigating the full
potential of ontologies is worth the risk of not having excellent performance. In fact, we plan
to investigate and evaluate other implementation and optimization tricks during the third
project year in case the performance would not be fully satisfactory. We are currently
investigating several approaches, some are sophisticated (and research intensive), other are
more implementation tricks. Furthermore, there already exists literature on best practice for
ontology design to improve reasoning performance [LS08,H14]. The problem is that
reasoners are based on different techniques. Hence what is good for one reasoner (e.g., for
Pellet which uses tableaux reasoning) is not necessary good for another (e.g., Hermit which
uses hyper-tableaux). In case of performance issues for the DL reasoning, we will investigate
an ‘adaptive merging approach’, that is, we will only join the axioms from the required sub-
ontologies, in order to optimize the reasoning process techniques. At the implementation
level, we are considering the use of XML databases to store data and to derive the full
ontology or we could maintain more than one synchronized format, one for I/O and querying
and one for reasoning. However, the use of equivalent representations will be decided later,
when, depending on the assessment of the types of operations needed by the ADSS, we will
balance the costs to maintain more synchronized representations with other computational
advantages.

To conclude, since there is not a unique optimal approach to address performance issues,
the actual optimization will be done later, on the final knowledge base due at M24.

4.4 Use of Ontologies in other EU Projects
Ontologies are seeing a practical use that is constantly growing both in several research
areas and actual implementations. One prominent and interesting usage can be seen in the
PoSecCo FP7 European Project (http://posecco.eu/), a recently and successfully concluded
international project about the management of policy-based systems. The main aim of
PoSecCo was to ease the job of the administrators and IT experts by giving them a set of
powerful tools able to manage business requirements, policies and low-level configurations
of networks and distributed systems with a very minimal human intervention.

In this context, a powerful toolbox named SDSS (Security Decision Support System) was
implemented by making an extensive use of ontologies and inferential engines
[Pos31,Pos32]. Its main tasks are to:

• edit high-level policies and configurations, if needed;

• harmonize policies (i.e., detect and resolve policy anomalies);

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 51 of 65

• refine the policies into highly optimized and conflict-free configurations;

• create a report about the conflicts found in the configurations, if manually edited.

A bird’s eye overview of the SDSS workflow for refining authorization policies (i.e., policies
for configuring firewalls and security protocols such as SSL/TLS) is given in Figure 28.

Figure 28: Posecco SDSS workflow

The workflow consists of four consecutive principal phases which make use of a central
PoSecCo ontology which acts both as a central repository of all the information required and
as a flexible inference-capable tool for detecting additional properties.

The first step is to gather all the information needed for a further analysis about the IT
infrastructure to configure. During this phase all the data about the network topology, the
nodes’ capabilities, the installed software and the policies to refine are collected in order to fill
the core ontology. The SDSS is able to read this information both locally from a set of files
and also remotely using the data stored in a MoVE server (http://move.q-e.at/).

Once all the available data has been collected, the enrichment phase can begin. The current
standard ontological technologies [OWL,SWRL] offers a great level of flexibility, but in a
number of practical circumstances their applicability can be severely limited due to
constraints imposed by their logic systems. For instance, the open-world assumption can be
cumbersome in some scenarios. To overcome these limitations, a common approach is to
perform a so-called enrichment of the ontology, where an ad-hoc reasoning is implemented
by using traditional programming languages (usually Java) or interfacing the ontology with
some external tools (e.g., prolog engines or Boolean satisfiability solvers). These additional
inferential components are implemented in a set of software modules called enrichment
modules (EMs). The SDSS makes use of a number of EMs for a variety of purposes that
includes:

• finding the filtering zones (i.e., the set of nodes which can be traversed without
passing through a firewall);

• enabling the WS-Security protocol in a communication if an outsourcing environments
is detected;

• identifying the set of not configured web-services.

Once all the data has been collected and reasoned via traditional ontological techniques and
custom EMs, the SDSS starts to extract all the possible intermediate representations of the
configurations, which are then written back in the ontology for a latter use. These “raw”

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 52 of 65

configurations contain most of the data of the final configurations and are built by performing
a set of complex queries on the core ontology, mainly using the SPARQL-DL language, a
SQL-like language for interrogating OWL-DL ontologies [Sir07].

The last phase of the refinement consists of two steps. First, an integer linear programming
ILP model is dynamically generated and solved in order to detect the “best” intermediate
configurations, usually by minimizing the risks or by maximizing the network throughput.
Optionally, the user can perform a pruning phase before the optimization begins, in order to
discard the least interesting configurations to decrease the computation time of the ILP
solving. When the golden intermediate configurations are detected, the final step is to
translate them into the final configurations containing all the necessary details for their
deployment in the network.

It is a well-known fact that the growing complexity of IT systems is rapidly making them
harder and harder to configure and protect. This is certainly true both for networks and
software systems. The design of expert systems that can completely substitute the human
factor or at least reduce its fallibility is a hot research topic in many areas. The SDSS toolbox
has proven that this approach works in a network scenario. The ASPIRE project wants to
corroborate the fact that an ontology-based expert system such as the one presented before
can be applied successfully in the software protection area. The ADSS will make use of the
experience gained during the PoSecCo project and will leverage a similar ontology-centric
approach (through enrichment and ILP optimization) to detect and apply the best protection
techniques for a software in a semi-autonomous way.

Another project that is making extensive use of ontologies is Multi-Objective Decision
Support for Efficient Information Security Safeguard Selection (MOSES3) by SBA Research
GmbH (actually from TU Wien researchers), funded by the Austrian Science Fund (FWF)
[Mos13,Mos14]. The MOSES3 project focuses on describing attacks and countermeasures
against network-based applications in corporate scenario, i.e., traditional network security.
MOSES3 proposes the use of a dynamic attack model, where adversaries are modelled as
agents that make active, probabilistic decisions in attacking a system, deliberately exploiting
dynamic interactions of vulnerabilities. The knowledge gained with this attack model is then
used to enable decision-makers to evaluate how to improve the “security” by enforcing
remediation and mitigation strategies.

MOSES3 bases all its results on the use of a knowledge base, which mainly includes
attacks, countermeasures and a precise definition of the target system (in their case a
network). Attacks are modelled through attack patterns, sets of clauses formed by
preconditions and actions. As a consequence of actions, the knowledge base can be
updated, e.g., to register a successful attack. In terms of ASPIRE knowledge classification,
MOSES3’s attack patterns are part of the a priori knowledge.

System are modelled by a set of facts that must allow the simulator to understand if and
when preconditions are met. That is, in MOSES3, systems are described in the execution-
specific part of the knowledge, but authors have defined a set of standard predicates
(corresponding to our application package classes) used for the preconditions, which are
instead in the a priori knowledge.

Probabilistic analysis is performed to simulate all the possible ways attackers have at their
disposal to mount an attack. Additionally, attack patterns are associated to standard
behaviours to profile adversaries (like we do with our attacker expertise). The analysis is
implemented by means of a pool of simulations that execute schedules of discrete events
and records various outcome variables which can later be analysed and aggregated. A
mathematical framework then tries to capture complex causal relations and timing
interactions.

MOSES3’s approach, architecture design, and used technology are certainly inspiring for our
work. However, porting their results directly into ASPIRE is impossible, given the completely

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 53 of 65

different environments. We will constantly monitor progress to evaluate which results can be
also applied to our software protection scenario.

4.5 Security Modelling: Attack Trees and Petri Nets
Petri nets were first introduced to model sequences of chemical reactions [Pet66], and later
utilized to model concurrency and synchronization in distributed systems [Pet77].

Petri-nets are a super-set of state-transition diagrams, and have more consolidated
mathematical foundation, and their usefulness for attack modelling was pointed by
McDermott as an alternative to attack trees [Der10], as Petri nets are better at representing
the actions of simultaneous attackers collaborating on the same attack.

Dalton et al. [Dal06] suggested generalized stochastic Petri nets for attack modelling.
Stochastic Petri nets are a type of timed Petri nets where transitions fire after random times;
in their work, transition delays were assumed to be exponentially distributed which
transformed the stochastic Petri net into an equivalent Markov chain, used to calculate joint
probability based on conditional probabilities.

Coloured Petri nets (CPN) have attracted some attention for attacks because they are more
expressive than basic Petri nets: in coloured Petri nets, tokens carry data values represented
by colour which enables different attackers to be distinguished with separate identities in the
model. Wu et al. [Wu08] suggested coloured Petri nets for hierarchical attack modelling: an
attack represented at a high level is a simple coloured Petri net where certain transitions
actually represent a separate CPN sub-net.

Dahl et al. [Dah06] suggested the use of interval timed coloured Petri nets where tokens
carry timestamps and colour: the firing delays of transitions are limited by definite time
intervals; their concern is timing-dependent attacks carried out by multiple attackers against
different targets.

Wang et al recently proposed to use Petri nets to compute the cost of attacks on protected
applications [Wan12]. ASPIRE shares the concepts of attack steps/tasks and attack goals
but it aims at better quantifying time and probability of each attack step, while their approach
is just ranking the transitions in five levels (from fully automated to fully manual).

Chen et al [Che11] used coloured petri nets to describe attacks in smart grids. As Petri net
models require a great amount of manual effort and detailed expertise in security threats,
they proposed a hierarchical method to construct large Petri nets from a number of smaller
Petri nets that can be created separately by different domain experts: the construction
method is facilitated by a proposed model description language that enables identical places
in different Petri nets to be matched; their effort might be considered in ASPIRE when
modelling and integrating different attack paths sharing the same goal into a unique Petri net.

ASPIRE relies on Petri nets for security analysis, because Petri nets were designed for
concurrent processes. They can be utilized for simultaneous actions of multiple attackers
more naturally, as multiple attackers can be represented with multiple tokens.

Instead, the attack tree approach for coordinated attacks has major drawbacks because its
view is limited to a sequence of actions leading to a final goal, and it cannot easily represent
simultaneous actions.

Traditionally attack trees have been the most common type of model for representing known
attacks [Sch99, Mau05]. In an attack tree, the root of the tree represents the ultimate goal
while the branches show all possible sequences of action steps towards the goal. The
modelling approach of an attack tree visualizes an attack as a hierarchy of sub-goals leading
to the final goal. Attack trees are a popular modelling approach because they are good at
describing an attack in an intuitive visual way; show all attack paths within a broad picture;
and can lead to useful mathematical analysis (e.g., risk assessment, vulnerability analysis) if

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 54 of 65

nodes are assigned values. However, attack trees are limited in their view of attacks only
arranged in sequential steps, focusing on a single goal and a single attacker.

Attack trees come with different proposals with their own syntax, semantics and tools.

The basic attack tree have been extended to attack graphs with nodes might have
associated values or logical “and/or” conditions [She04]. Other proposals of attack graphs
have emerged with different semantics and visual representation [Ing09,Gup07,She04,
Ou06,San13,Kij10], but they all share the modelling of attack goals as nodes and attack
tasks as transitions and their behaviour is similar to state-transition diagrams.

For example, Sheyner proposed system tools for generating and analysing the attack graphs
[She04]. They use existing network attack models to generate attack graphs automatically
from information on network configuration to analyse the system vulnerabilities [She04b].
Other proposals also utilized attack graphs for modelling network attacks and
countermeasures [Ing09,Kij10], while Gupta et al used attack graphs more as a visual aid to
document the known security risks of a system, and to capture the possible path attackers
could use to attack an application [Gup07]. These related approaches are interesting for our
purposes but the reusability of their models is not possible in ASPIRE as they are focused on
network security or they lack formal representation.

A formal representation of attack graphs is proposed by Santhanam et al. who provided a
framework for analysing attack graphs [San13], while Jha et al. utilized model-checkers to
analyse attack graphs [Jha02]. They share the same high-level goal of ASPIRE but they use
different technologies (attack graphs and model-checkers) to analyse threats in a different
domain (network security).

The following works might also be important for ASPIRE, even if they use models different
from Petri nets: Ou et al. described attack graph generation from a PROLOG knowledge
base [Ou06]. As the AKB will be defined with OWL instead of PROLOG, we will get useful
insights from this work on how to adapt it to extract attack paths from the ASPIRE knowledge
base. Roy et al. [Roy12] proposes Attack countermeasure trees (ACT) to extend attack trees
to take into account both attacks and protections; Xu et al. [Xu06] also models attack with
petri nets and they define aspect-oriented petri nets to superimpose protections as sub-nets
to be interconnected with the attack model; the way in which the connections among attacks
and protections are modelled in such approaches can be adapted to the ASPIRE attacks
modelling and influence the knowledge base structure. Bistarelli et al. [Bis07] identifies the
best configuration of defense strategies to protect a system modelled with CP-nets and
defence trees.

Xie et al. used Bayesian networks for security analysis under uncertainty [Xie10], while
Piétre-Cambacédès et al. used Markov processes to evaluate attacks probability [Cam10].
ASPIRE can leverage on both approaches to adapt them to evaluate the probability of
attacks.

Braynov et al. [Bra03] proposed a coordinated-attack graph, where nodes represent system
states and arcs depict actions causing state transitions: a transition can be executed only if
its preconditions are true, and its execution creates some post-conditions. They first consider
the sequential actions of a single attacker called an individual plan, and then a coordinated-
attack plan for a group of attackers can be created by the union of individual plans. A
coordinated-attack graph is the union of all coordinated-attack plans that start from the same
initial states and reach the same final goal. ASPIRE addresses the same problem of
coordinated attacks but our approach is related explicitly to Petri nets, but the ASPIRE
innovation is the simulation the attacker's behaviour before and after protections have been
applied in order to evaluate protection's effectiveness: in our case, the simulation will involve
relevant data related to attacker effort and success probability, collected from code metrics
and by doing manual attack experiments.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 55 of 65

4.6 Security Modelling
Another set of related works that is worth mentioning comes from the requirements
engineering, goal-modelling, and model-based security communities.

The work in model-based security engineering is often based on extensions of the Unified
Modelling Language (UML). Jürjens proposes UMLsec as an extension UML, to include the
modelling of security related features, such as confidentiality and access control, as well as
tool support for UMLsec [Jur04, Jur05].

Basin et al. use UML to specify access control specification in an application and describe
how one can then generate access control mechanisms from the specifications [Bas06].
They consider role-based access control and give additional support for specifying
authorization constraints for restricting access.

In requirements engineering, Sindre et al. proposed a misuse case driven approach to elicit
the software system’s security requirements at an early stage of the development of software
systems [Sin05]. Visual links are established between use cases and misuse cases that are
used to guide the analysis of functional requirements against security requirements and the
threat environment. An executable misuse case is proposed by Whittle et al. to specify
misuse case scenarios so that potential attacks within a system context and its mitigations
are identified and analysed [Whi08]. These works might provide some guidelines when
modelling the relationships between attacks and protections in the ASPIRE knowledge base.

Mouratidis and Giorgini introduced SecureTropos as an extension of the Tropos
methodology for modelling and analysing system security properties such as confidentiality
and integrity requirements [Mou06]. Mouratidis and Giorgini further extended SecureTropos
with the notion of security attack scenarios, where possible attackers, their attacks and
system resources that can be attacked are modelled. SecureTropos is used to visualize goal
models graphically. It has some similarities with attack graphs but it still lacks a formal
representation of the models and it is more focused on security requirement dependencies
than on software security as in ASPIRE.

The term Goal Modelling Language mainly refers to the use of goals for analysing system
properties and requirements. In particular, Goal-Oriented Requirements Engineering (GORE)
has become very popular in recent years for elicitation, evaluation, analysis, and
documentation of requirements [Lou95].

i*/Tropos and KAOS are well known methodologies for goal modelling language. i*/Tropos
deals with the early requirements, emphasizing the need to understand not only what the
organizational goals are, but also how and why the intended system would meet its
organizational goals [Yu97, Yu01]. The KAOS (Keep All Objective Satisfied) approach aims
to model not only the "what" and "how" aspects of requirements but also "why, who, and
when" [Lam09]. A goal in KAOS is a prescriptive or descriptive statement of intent that the
system should satisfy through the cooperation of its agents such as humans, devices, and
software. The initial goal model in KAOS later on introduced obstacles and constraints that
can be seen as boundaries in requirements analysis [Lam00]. Both goals and obstacles can
be refined through AND-refinements or OR-refinements for constructing goal model and
obstacle model. The goal modelling language is further extended for systematically analyse
and manage software development risks.

Such methodologies used to model security requirements relationships might be helpful as
guidelines when translating ASPIRE's informal requirements into the concepts and
relationships within the ASPIRE knowledge base.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 56 of 65

Section 5 Conclusions and Next Steps

This deliverable presented the initial design and concepts of the ASPIRE security model, i.e.,
the integrated set of modelling techniques that will be used to formally represent and
evaluate the different MATE attacks in the ASPIRE project.

The security model represents the core of the overall ASPIRE approach to model and
evaluate attacks, as well as the main technologies used in this approach and in the ADSS.
The security model defines the simulation models and the structure of the knowledge base,
which are the basis of the ASPIRE protection evaluation methodology that will be further
developed and extended in WP4, and of the ADSS that will be developed in WP5.

The initial conceptual model in Section 3 is composed of a main model and a set of sub-
models which detail and extend the concepts in the main model.

We have already decided to use Petri nets to simulate attacks on vanilla and protected
applications, and ontologies to represent the ASPIRE knowledge base. An enrichment
framework (incl., e.g., a Petri nets simulator) will be able to dynamically extract the attack
paths from the knowledge base, and the output of such simulations will be stored in the
knowledge base.

The future enhancements of the security model will be completely described in D4.06
(ASPIRE Security Evaluation Methodology), which will refer to the results obtained
throughout the project, as well as in the other deliverables: D4.02 (Preliminary Complexity
Metrics), D4.03 (Security Model, Knowledge Base, Human experiments), D4.04 (Security
Model, Knowledge Base, Advanced Human experiments), and D4.05 (Public challenge).

In particular, the ASPIRE Security Model and the ASPIRE Knowledge Base will be
developed through different phases:

• Formal definition of knowledge base enrichment (M9, D5.01)

• Intermediate update of conceptual model and the attack simulation models for a more
in-depth definition of metrics (M12, D4.02);

• Final delivery of the security model (M24 with D4.03 for the conceptual definition,
D5.07 for the knowledge base enrichment).

There are many other indispensable aspects of the conceptual model that will only be
produced during the next months, such as the ASPIRE tool chain, the characteristics of
applications to protect that need to be considered in the security evaluation, the impact of
software protections on the asset in the target application, exact relations and effects of the
consecutive use of two or more protections on the same application, and so on.

Actual knowledge about concrete attack paths, protections, relations between them, etc. will
be described manually by ASPIRE partners and added to the knowledge base as it becomes
available as output of WP4 task and result of the ADSS design.

The precise definition of which information will be needed by the ADSS is not fully specified
at the time of writing of this report. The definition of the enrichment framework both for the a
priori knowledge and for the execution-specific knowledge is therefore foreseen to be
delivered in phase 4.

We will therefore elaborate an important sub-model that describes metrics and how they can
be computed on vanilla and protected applications. In this document, a very preliminary
definition of metrics has been presented. However, since tasks related to metrics (mainly
T4.2, but also T4.3, T4.4) did not start yet, results in that sub-model cannot be considered
mature. Deliverable D4.02 (M12) will serve to cover this lack in the initial version of the meta-

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 57 of 65

model: D4.02 will report an updated version of the conceptual model that details on metrics
(phase 5).

The final version of the ASPIRE knowledge base will be documented in two deliverables:
D4.03 (M18) will present the final conceptual model; D5.07 (M24) will present the final
enrichment framework.

By taking advantage of the expansibility of both the conceptual model and of the enrichment
framework, possible changes that may be required during the last year will be easily
supported.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 58 of 65

Section 6 List of Abbreviations

Abbreviation Meaning

ADSS ASPIRE Decision Support System

AES Advanced Encryption Standard

AKB ASPIRE Knowledge Base

API Application Program Interface

ASM Attack Simulation Model

ASPIRE Advanced Software Protection: Integration, Research and Exploitation

CFG Control Flow Graph

CPN Colored Petri Net

DL Description Logic

DoW Description of Work

EMF Eclipse Modelling Framework

ER Entity-Relationship

GUI Graphical User Interface

MATE Man At The End (attack)

OO Object-Oriented

OTP One Time Password

OWL Web Ontology Language

PIN Personal Identification Number

PN Petri Net

PNML Petri Net Markup Language

RA Remote Attestation

RDF Resource Description Framework

RDFS RDF Schema

SPARQL SPARQL Protocol and RDF Query Language

SWRL Semantic Web Rule Language

UML Unified Modelling Language

WP Work Package

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 59 of 65

Bibliography

[Age] AgenaRisk, software for Bayesian Network and Simulation Software for Risk
Analysis and Decision Support. On-line at http://www.agenarisk.com

[Anc07] B. Anckaert, M. Madou, B. De Sutter, B. De Bus, K. De Bosschere, and B.
Preneel. Program obfuscation: a quantitative approach. In Proceedings of the
ACM Workshop on Quality of Protection, 2007, pp. 15–20.

[Ass08] Amjad Abou Assali, Dominique Lenne, Bruno Debray, “Ontology Development for
Industrial Risk Analysis”, In Proceedings of the International Conference on
Information and Communication Technologies: From Theory to Applications
(ICTTA 2008), 2008

[Avi04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, Carl Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure Computing”, In
Transactions on Dependable and Secure Computing, 2004

[Bas06] Basin DA, Doser J, Lodderstedt T (2006) Model driven security: from UML
models to access control infrastructures. ACM Trans Softw Eng Methodol
15(1):39–91

[BD+03] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider: The
Description Logic Handbook: Theory, Implementation, Applications. Cambridge
University Press, Cambridge, UK, 2003.

[Bis07] Bistarelli, Stefano, Fabio Fioravanti, and Pamela Peretti. "Using CP-nets as a
guide for countermeasure selection." Proceedings of the 2007 ACM symposium
on Applied computing. ACM, 2007.

[Bra03] S. Braynov and M. Jadliwala, “Representation and analysis of coordinated
attacks,” in Proc. ACM Workshop Formal Methods Security Engineering (FMSE),
2003, pp. 43–51.

[Bro07] A. Brogi, S. Corfini, S. Iardella. From OWL-S descriptions to Petri nets. In
Service-Oriented Computing ICSOC 2007 Workshops - Third international
workshop on engineering service-oriented applications: analysis, design and
composition (WESOA’07), Wien, Austria, September 17, 2007. LNCS 4907,
pages 427-438. Springer.

[Cam10] Piétre-Cambacédès, L., and M. Bouissou. 2010. “Beyond attack trees: dynamic
security modeling with Boolean logic driven Markov processes (BDMP)”. In
European Dependable Computing Conference (EDCC 2010), 199–208.

[Cap12] A Capiluppi, P. Falcarin, and C. Boldyreff. "Code defactoring: Evaluating the
effectiveness of java obfuscations." 19th Working Conference on Reverse
Engineering (WCRE), IEEE, 2012.

[Cec08] M. Ceccato, M. Di Penta, J. Nagra, P. Falcarin, F. Ricca, M. Torchiano, P.
Tonella. Towards Experimental Evaluation of Code Obfuscation Techniques. In
Proceedings of the ACM Workshop on Quality of Protection, 2008, pp. 39–46.

[Cec09a] M. Ceccato, M. Dalla Preda, J. Nagra, Ch. Collberg, and P. Tonella. Trading-off
Security and Performance in Barrier Slicing for Remote Software Entrusting.
Automated Software Engineering 16(2), 2009, pp. 235–261.

[Cec09c] M. Ceccato, M. Di Penta, J. Nagra, P. Falcarin, F. Ricca, M. Torchiano, P.
Tonella. The Effectiveness of Source Code Obfuscation: an Experimental

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 60 of 65

Assessment. In Proceedings of the 17th IEEE International Conference on
Program Comprehension, 2009, pp.178–187

[CheO2] P. Chen. 2002. Entity-relationship modeling: historical events, future trends, and
lessons learned. In Software pioneers, Manfred Broy and Ernst Denert (Eds.).
Springer-Verlag New York, Inc., New York, NY, USA, p. 296-310.

[Che11] Chen, T., Sanchez-Aarnoutse, J.-.C. and Buford, J. (Dec 2011). Petri nets
models for cyber-physical attacks in smart grid. IEEE Trans. on Smart Grid, 2,
741-749.

[COL] COLOANE Petri Nets tool. On-line at https://coloane.lip6.fr/

[Col97] C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating
transformations. Technical Report 148, Department of Computer Science,
University of Auckland, 1997.

[COM] International Organization for Standardization, “ISO/IEC 24707:2007 -
Information technology — Common Logic (CL): a framework for a family of logic-
based languages”, 2007

[CPN] CPN-tools, Colored Petri Nets tool. On-line at http://cpntools.org/

[Dah06] O. Dahl and S. Wolthusen, “Modeling and execution of complex attack scenarios
using interval timed colored Petri nets,” in IEEE Int. Workshop Innovative.
Architectures Future Generation High-Performance Processing System, 2006,
pp. 49–55.

[Dal05] M. Dalla Preda and R. Giacobazzi, "Semantic-based code obfuscation by
abstract interpretation," in In Proceedings of the 32nd International Colloquium on
Automata, Languages and Programming (ICALP’05).

[Dal06] G. Dalton, R. Mills, J. Colombi, and R. Raines, “Analyzing attack trees using
generalized stochastic Petri nets,” in Proc. IEEE Workshop Inf. Assurance, West
Point, NY, Jun. 2006, pp. 116–123.

[Der10] J. P. McDermott, "Attack net penetration testing," in Proceedings of the 2000
workshop on New security paradigms, New York, NY, USA, 2001, pp. 15-21.

[Dew07] Dewri, Rinku, et al. Optimal security hardening using multi-objective optimization
on attack tree models of networks. In: Proceedings of the 14th ACM conference
on Computer and communications security. ACM, 2007. p. 204-213.

[EPNK] Petri Net editor ePNK; on-line at http://www.imm.dtu.dk/~ekki/projects/ePNK/

[Fal06] Falcarin, Paolo, Riccardo Scandariato, and Mario Baldi. "Remote trust with
aspect-oriented programming." Advanced Information Networking and
Applications, AINA 2006. Vol. 1. IEEE, 2006.

[Fen09a] Stefan Fenz, Andreas Ekelhart, “Formalizing information security knowledge”, In
Proceedings of the International Symposium on Information, Computer, and
Communications Security (ASIACCS 2009), 2009

[Fen09b] Stefan Fenz, Thomas Pruckner, Arman Manutscheri, “Ontological mapping of
information security best-practice guidelines”, In Lecture Notes in Business
Information Processing, 2009

[Fen13] Stefan Fenz, Thomas Neubauer, Rafael Accorsi, Thomas Koslowski, “FORISK:
Formalizing information security risk and compliance management”, In
Proceedings of the Conference on Dependable Systems and Networks
Workshop (DSN-W 2013), 2013

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 61 of 65

[Gia12] R. Giacobazzi and A. Toppan. On Entropy Measures for Code Obfuscation. In
Proceedings of ACM SIGPLAN Software Security and Protection Workshop,
2012, 8 pages.

[Got00] H. Goto, M. Mambo, K. Matsumura, and H. Shizuya. An approach to the objective
and quantitative evaluation of tamper-resistant software. In Proceedings Third
International Workshop on Information Security, 2000, pp. 82–96.

[Gup07] Gupta, Suvajit, and Joel Winstead. "Using attack graphs to design systems."
Security & Privacy, IEEE 5.4 (2007): 80-83.

 [H14] K. Hammar, “Reasoning Performance Indicators for Ontology Design Patterns”,
presentation http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall_2014_02_06,
2014.

 [Ham11] J. Hamilton and S. Danicic, "An Evaluation of the Resilience of Static Java
Bytecode Watermarks Against Distortive Attacks," IAENG International Journal of
Computer Science, vol. 38, pp. 1-15, 2011.

[Her07] Almut Herzog, Nahid Shahmehri, Chaudiu Duma, “An Ontology of Information
Security”, In International Journal of Information Security and Privacy, 2007

[Hou05] Houmb SH, Georg G, France RB, Bieman JM, Jurjens J (2005) Cost-benefit
trade-off analysis using BBN for aspect-oriented risk-driven development. In:
Proceedings of the 10th IEEE international conference on engineering of complex
computer systems. IEEE Computer Society, pp 195–204

[Hub90] Huber, Peter, Kurt Jensen, and Robert M. Shapiro. "Hierarchies in coloured Petri
nets." Advances in Petri Nets 1990. Springer Berlin Heidelberg, 1991. 313-341.

[Ing09] K. Ingols, M. Chu, R. Lippmann, S. Webster, and S. Boyer, “Modeling modern
network attacks and countermeasures using attack graphs,” in Proc. Annu.
Comput. Security Appl. Conf. (ACSAC), Austin, TX, Dec. 2009, pp. 117–126.

[Iri10] I. Hadar, T. Kuflik, A. Perini, I. Reinhartz-Berger, F. Ricca, and A. Susi. An
empirical study of requirements model understanding: Use Case vs. Tropos
models. In Proceedings of the ACM Symposium on Applied Computing, 2010, pp.
2324–2329

[Isl14] S.Islam, H. Mouratidis, and E. Weippl. An Empirical Study on the
Implementation and Evaluation of a Goal-driven Software Development Risk
Management Model, Journal of Information and Software Technology, Vol 56,
Issue 2, February, 2014, Elsevier.

[ISO27k] International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC), ISO/IEC 27001:2013, Information Security
Management System (ISMS) standard, 2013

[ITG03] IT Baseline Protection Handbook. Germany. Federal Office for Security in
Information Technology. Bundesanzeiger, Cologne 2003-2005.

[Jen09] K. Jensen, L.M. Kristensen, Coloured Petri Nets, Springer-Verlag Berlin
Heidelberg 2009

[Jen96] Jensen, Finn V. An introduction to Bayesian networks. Vol. 210. London: UCL
press, 1996.

[Jha02] Jha, Somesh, Oleg Sheyner, and Jeannette Wing. "Two formal analyses of
attack graphs." Computer Security Foundations Workshop, 2002. Proceedings.
15th IEEE. IEEE, 2002.

[Jur04] Jürjens, J.: Secure Systems Development with UML. Springer, Berlin (2004)

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 62 of 65

[Jur05] Jürjens, J.: Sound methods and effective tools for model-based security
engineering with UML. ICSE 2005, ACM, pp. 322–331, (2005)

[Kar06] Maria Karyda, Theodoros Balopoulos, Lazaros Gymnopoulos, Spyros Kokolakis,
Costas Lambrinoudakis, Stefanos Gritzalis, Stelios Dritsas, “An ontology for
secure e-government applications”, In Proceedings of the International
Conference on Availability, Reliability and Security (ARES 2006), 2006

[Kij10] KIJSANAYOTHIN, Phongphun; HEWETT, Rattikorn. Analytical approach to
attack graph analysis for network security. In: Availability, Reliability, and
Security, 2010. ARES'10 International Conference on. IEEE, 2010. p. 25-32.

[Kin12] J. Kinder. Towards Static Analysis of Virtualization-Obfuscated Binaries. In
Proceedings of the 19th IEEE Working Conference on Reverse Engineering,
2012, pp. 61–70.

[Lam09] A. van Lamsweerde. Requirements Engineering: From System Goals to UML
Models to Software Specifications. Wiley, 2009.

[Lam00] A. van Lamsweerde and E. Letier. Handling obstacles in goal oriented
requirements engineering. IEEE Transactions on Software Engineering, 26:978–
1005, 2000.

[Lin03] C. Linn and S. Debray, "Obfuscation of executable code to improve resistance to
static disassembly," in Proceedings of the 10th ACM conference on Computer
and communications security, 2003, pp. 290-299.

[Lou95] P. Loucopoulos and V. Karakostas. System Requirements Engineering. McGraw-
Hill, Inc., New York, NY,USA, 1995.

[LS08] H. Lin and E. Sirin, “Pellint - A Performance Lint Tool for Pellet”. 'OWLED' CEUR
Workshop, 2008.

[Mas11] Fabio Massacci, John Mylopoulos, Federica Paci, Thein Thun Tun, Yijun Yu, “An
Extended Ontology for Security Requirements”, In Proceedings of the
International Workshop on Information Systems Security Engineering (WISSE
2011), 2011

[Mau05] S. Mauw and M. Oostdijk, Foundations of attack trees, in Proc. 8th Annual Int.
Conf. Inf. Security Crypto. (ICISC), Seoul, Korea, Dec. 2005, pp. 186–198.

[Mos13] Kiesling E., Ekelhart A., Grill B., Strauss C., Stummer C. (2013) "A simulation-
optimization approach for information security risk management," International
Conference on Operations Research (OR 2013), Rotterdam, Netherlands, Sept.
3-6.

[Mos14] E. Kiesling, A. Ekelhart, B. Grill, C. Stummer, and C. Strauss (2014), "Evolving
Secure Information Systems through Attack Simulation," 47th Hawaii
International Conference on System Science, Hawaii, USA, Jan 6-9.

[Mou07] Mouratidis, H., Giorgini, P.: Secure tropos: a security-oriented extension of the
tropos methodology. Int. J. Softw. Eng. Knowl. Eng. (IJSEKE) 17(2), 285–309
(2007)

[Mou07b] Mouratidis, H., Giorgini, P.: Security Attack Testing (SAT)— testing the security of
information systems at design time. Inf. Syst. 32(8), 1166–1183 (2007)

[Mou06] Mouratidis,H., Giorgini, P.: Integrating security and software engineering: an
introduction. In: Integrating Security and Software Engineering: Advances and
Future Actions, pp. 1–14. Idea Publishing Group, Miami, 2006.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 63 of 65

[Myl05] G. Myles, C. Collberg, Z. Heidepriem, and A. Navabi, "The evaluation of two
software watermarking algorithms," Software: Practice and Experience, vol. 35,
pp. 923-938, 2005.

[Net] Netica tool for advanced Bayesian Belief Networks, https://www.norsys.com/

[OKT05] Martin J. O'Connor, Holger Knublauch, Samson W. Tu, Benjamin N. Grosof, Mike
Dean, William E. Grosso, and Mark A. Musen. “Supporting Rule System
Interoperability on the Semantic Web with SWRL.”, International Semantic Web
Conference, volume 3729 of Lecture Notes in Computer Science, page 974-986.
Springer, (2005)

[OM] OpenMarkov software tool for probabilistic graphical models (PGMs)
http://www.openmarkov.org/

[Ou06] X Ou, WF Boyer, MA McQueen, A scalable approach to attack graph generation,
ACM CCS 2006

[OWL] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L.
McGuinness, Peter F. Patel-Schneider, Lynn Andrea Stein, “OWL 2 Web
Ontology Language Document Overview”, W3C Recommendation
(http://www.w3.org/TR/owl-overview), 2012

[OWL2PN] OWLS2PNMLtool for translating OWL-S service descriptions into Petri nets
http://www.di.unipi.it/~brogi/projects/owls2pnml/

[Per09] A. Perini, F. Ricca, and A. Susi. Tool-Supported Requirements Prioritization.
Comparing the AHP and CBRank Methods. Information and Software
Technology 2009, pp. 1021–1032.

[Pet66] Petri, CA, Communication with automata, 1966. DTIC Research Report
AD0630125.

[Pet77] J. L. Peterson, "Petri nets," ACM Computing Surveys (CSUR), vol. 9, pp. 223-
252, 1977

[PIP] PIPE2, Platform Independent Petri net Editor 2. On-line at
http://pipe2.sourceforge.net/

[PNML] Petri Net Mark-up Language, ISO/IEC 15909 Part 2 standard. On-line at
http://www.pnml.org/

[PNW] Petri Net World: on-line at http://www.informatik.uni-hamburg.de/TGI/PetriNets/

[Pos31] PoSecCo consortium, “D3.1 – Initial SDSS Architecture and Workflow”, 2011

[Pos32] PoSecCo consortium, “D3.2 – Security Ontology Definition”, 2011

[RDF] Graham Klyne, Jeremy J. Carroll, “Resource Description Framework (RDF):
Concepts and Abstract Syntax”, W3c Recommendation
(http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/), 2004

[RDFS] Dan Brickley, R. V. Guha, “RDF Schema 1.1”, W3C Recommendation
(http://www.w3.org/TR/rdf-schema/), 2014

[Ric07] F. Ricca, M. Di Penta, M. Torchiano, P. Tonella and M. Ceccato. The Role of
Experience and Ability in Comprehension Tasks Supported by UML Stereotypes.
In Proceedings of the 29th International Conference on Software Engineering,
2007, pp. 375–384.

[Ric08] F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, M. Ceccato and C.A. Visaggio.
Are Fit tables really talking? a series of experiments to understand whether Fit
tables are useful during evolution tasks. In Proceedings of the 30th International
Conference on Software Engineering, 2008, pages 361–370.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 64 of 65

[Ric09] F. Ricca, M. Torchiano, M. Di Penta, M. Ceccato and P. Tonella. Using
acceptance tests as a support for clarifying requirements: A series of
experiments. Information and Software Technology 51(2), 2009, pp. 270–283.

[Ric10] F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, and M. Ceccato. How
developers' experience and ability influence web application comprehension
tasks supported by UML stereotypes: A series of four experiments. IEEE
Transactions on Software Engineering 36(1), 2010, pp. 96–118.

[RIF] Michael Kifer, Harold Boley, “RIF Overview”, W3C Working Group Note
(http://www.w3.org/TR/rif-overview/), 2013

[Roy12] Roy, Arpan, Dong Seong Kim, and Kishor S. Trivedi. "Attack countermeasure
trees (ACT): towards unifying the constructs of attack and defense trees."
Security and Communication Networks 5.8 (2012): 929-943.

[San13] SANTHANAM, Ganesh Ram; OSTER, Zachary J.; BASU, Samik. Identifying a
preferred countermeasure strategy for attack graphs. In: Proceedings of the
Eighth Annual Cyber Security and Information Intelligence Research Workshop.
ACM, 2013. p. 11.

[Sch99] Schneier, Bruce. "Attack trees." Dr. Dobb’s journal 24.12 (1999): 21-29.

[She04a] Sheyner, Oleg Mikhail. Scenario graphs and attack graphs. 2004. PhD Thesis.
University of Wisconsin.

[She04b] Sheyner, Oleg; WING, Jeannette. Tools for generating and analyzing attack
graphs. In FMCO: Formal methods for components and objects. Springer Berlin
Heidelberg, 2004. p. 344-371.

[Sin05] Sindre G, Opdahl AL (2005) Eliciting security requirements with misuse cases.
Requir Eng J 10(1):34–44

[Sir07] Evren Sirin, Bijan Parsia, “SPARQL-DL: SPARQL Query for OWL-DL”, In
proceedings of OWL Experience and Directions (OWLED 2007), 2007

[Sou12] Souag Amina, Salinesi Camille, Comyn-Wattiau Isabelle, “Ontologies for Security
Requirements: A Literature Survey and Classification”, In Proceedings of the
Advanced Information Systems Engineering Workshops (CAiSE 2012), 2012

[Sut06] I. Sutherland, G. E. Kalb, A. Blyth, and G. Mulley, "An empirical examination of
the reverse engineering process for binary files," Computers & Security, vol. 25,
pp. 221-228, 2006.

[SWRL] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof, Mike Dean, “SWRL: A Semantic Rule Web Rule Language Combining
OWL and RuleML”,W3C Member Submission
(http://www.w3.org/Submission/SWRL/), 2004

[TINA] TINA, Time Petri Net Analyzer. On-line at http://projects.laas.fr/tina/

[Tso06] Bil Tsoumas, Dimitris Gritzalis, “Towards an ontology-based security
management”, In Proceedings of the International Conference on Advanced
Information Networking and Applications (AINA 2006), 2006

[Udu05] S. Udupa, S. Debray, and M. Madou. Deobfuscation: reverse engineering
obfuscated code. In Proceedings of the 12th Working Conference on Reverse
Engineering, 2005, pp. 45–54.

[Wan98] Wang, Jiacun. Timed Petri nets: Theory and application. Vol. 39. Dordrecht:
Kluwer Academic Publishers, 1998.

[Wan00] C. Wang, J. Hill, J. Knight, and J. Davidson, "Software tamper resistance:
Obstructing static analysis of programs," University of Virginia 2000.

D4.01 - Preliminary ASPIRE Security Model

ASPIRE D4.01 PUBLIC Page 65 of 65

[Wan12] N. Wang, D. Fang, Y.X. Gu, Z. Tang, H. Wang. The Effectiveness Evaluation of
Software Protection based on Attack Modeling. In Proceedings of ACM SIGPLAN
Software Security and Protection Workshop, 2012, 8 pages.

[Whi08] Whittle J, Wijesekera D, Hartong M (2008) Executable misuse cases for modeling
security concerns. In: ICSE ’08: proceedings of the 30th international conference
on Software engineering. ACM, New York, pp 121–130

[WM05] M. Wessel and R. Möller. A High Performance Semantic Web Query Answering
Engine. In I. Horrocks, U. Sattler, and F. Wolter, editors, In Proceedings of the
International Workshop on Description Logics, 2005.

[Woh00] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, and A. Wesslen.
Experimentation in Software Engineering - An Introduction. Kluwer Academic
Publishers, 2000.

[Wu08] R. Wu, W. Li, and H. Huang, An attack modeling based on hierarchical colored
Petri nets, in Proc. IEEE Int. Conf. Comp. Electrical Eng. (ICCEE), 2008, pp.
918–921.

[Xie10] Xie, Peng, Jason H. Li, Xinming Ou, Peng Liu, and Renato Levy. "Using
Bayesian networks for cyber security analysis." In Dependable Systems and
Networks (DSN), 2010 IEEE/IFIP International Conference on, pp. 211-220.
IEEE, 2010.

[Xu06] Xu, Dianxiang, and Kendall E. Nygard. "Threat-driven modeling and verification
of secure software using aspect-oriented Petri nets." Software Engineering, IEEE
Transactions on 32.4 (2006): 265-278.

[Yu97] E. Yu. Towards modeling and reasoning support for early-phase requirements
engineering. In RE ’97: Proceedings of the 3rd IEEE International Symposium on
Requirements Engineering, page 226, Washington, DC, USA, 1997. IEEE
Computer Society.

[Yu01] E. Yu, L. Liu, and Y. Li. Modelling strategic actor relationships to support
intellectual property management. In ER ’01: Proceedings of the 20th
International Conference on Conceptual Modeling, pages 164– 178, London, UK,
2001. Springer-Verlag.

[Zha12] Y.-J. Zhao, Z.-Y. Tang, N. Wang, D.-Y. Fang, and Y.-X. Gu, "Evaluation of code
obfuscating transformation," Ruanjian Xuebao/Journal of Software, vol. 23, pp.
700-711, 2012.

