

Advanced Software Protection:
Integration, Research and Exploitation

D3.09
ASPIRE Online Protections

Project no.: 609734
Funding scheme: Collaborative project
Start date of the project: 1st November 2013
Duration: 36 months
Work programme topic: FP7-ICT-2013-10

Deliverable type: Report
Deliverable reference number: ICT-609734 / D3.09 / 1.0
WP and tasks contributing: WP 3 / Tasks 3.2 - 3.3
Due date: October 2016 – M36
Actual submission date: 9 December 2016

Responsible Organization: UEL
Editor: Paolo Falcarin
Dissemination Level: Public
Revision: 1.0

Abstract:
We present an update on the renewability framework, with integrated code diversity, and a
section summarizing the updates on remote attestation and its interaction with code splitting.
We describe our research on diversification: an update on the metrics used in the
experiments to maximize diversification, and an update on making diversification practically
useful.
Keywords:
Renewability, remote attestation, code splitting, diversification

D3.09 – ASPIRE Online Protections

ASPIRE D3.08 PUBLIC I

Editor
Paolo Falcarin (UEL)

Contributors (ordered according to beneficiary numbers)
Bjorn De Sutter, Bart Coppens, Bert Abrath (UGent)

Aldo Basile, Alessio Viticchiè (POLITO)

Mariano Ceccato (FBK)

Alessandro Cabutto, Paolo Falcarin (UEL)

Philippe Jutel, Paul Gunawan Hariyanto (GTO)

The ASPIRE Consortium consists of:

Ghent University (UGent) Coordinator & Beneficiary Belgium

Politecnico Di Torino (POLITO) Beneficiary Italy

Nagravision SA (NAGRA) Beneficiary Switzerland

Fondazione Bruno Kessler (FBK) Beneficiary Italy

University of East London (UEL) Beneficiary UK

SFNT Germany GmbH (SFNT) Beneficiary Germany

Gemalto SA (GTO) Beneficiary France

Coordinating person: Prof. Bjorn De Sutter
E-mail: coordinator@aspire-fp7.eu
Tel: +32 9 264 3367
Fax: +32 9 264 3594
Project website: www.aspire-fp7.eu

Disclaimer
The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 609734.
The information in this document is provided as is and no guarantee or warranty is given that
the information is fit for any particular purpose. The user thereof uses the information at its
sole risk and liability.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC II

Executive Summary
This deliverable presents the final status of WP3 activities and the outcomes at M36 on the
online protection techniques, grouped in two sections: Remote Attestation and Renewability.

In Task 3.2 (Remote Attestation), POLITO has improved, tested and applied Static Remote
Attestation to use cases. Dynamic and Implicit Remote Attestation has also been extended,
improved and tested on open source software.

As foreseen in D2.10, GTO reports on the Control Flow Tagging implementation providing
details about the process and the Reaction Unit, the integration with ACTC, and its role in the
Remote Attestation framework.

In Task 3.3 (Renewability), the Renewability Framework has been finalized, tested and
applied to NAGRA’s use case: UEL reports on this topic updating information provided in
previous deliverables.

UGent reports on the new design and implementation of their work on practically useful
software diversity, which allows distributing different versions of software to different users,
and still obtain accurate crash reports without too much overhead, bringing the distribution of
diversified software one step closer to commercial viability.

Finally, UEL and FBK report progresses made on Software Diversity maximization, in
particular on the validation of different similarity metrics.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC III

Contents

Section 1 Introduction .. 1

Section 2 Remote Attestation .. 2

2.1 Remote attestation reference architecture ... 2

2.2 Static Remote attestation ... 3

2.2.1 Reactive attestation .. 3

2.2.2 Integration with Code Mobility ... 4

2.2.3 Improvement of the attest at startup functionality ... 4

2.3 Dynamic Remote Attestation .. 4

2.3.1 DynRA formats ... 5

2.3.1.1 Attestation request .. 5
2.3.1.2 Attestation response ... 6

2.3.2 Components ... 6

2.3.2.1 Attestator ... 6
2.3.2.2 Verifier ... 6
2.3.2.3 Security Analysis ... 6

2.3.3 DynRA annotations ... 7

2.3.4 DynRA application: workflow .. 8

2.3.5 Overcoming limitations of the trace extractor on ARM 11

2.4 Implicit Remote Attestation ... 11

2.4.1 Simple IRA .. 12

2.4.2 Hybrid Dynamic IRA ... 14

2.5 Remote Attestation and Control Flow Tagging ... 15

2.5.1 Control Flow Tagging protection ... 15

2.5.1.1 Source level processing .. 16
2.5.1.2 Binary level processing ... 16

2.5.2 Attestation ... 18

2.5.2.1 Local attestation .. 18
2.5.2.2 Remote attestation .. 19

2.5.3 Reaction Unit .. 19

2.5.3.1 The Reaction Manager and the Reaction Unit .. 20
2.5.3.2 Reaction Unit Server ... 20

2.5.4 Protection analysis .. 21

Section 3 Renewability ... 23

3.1 Finalized implementation .. 23

3.1.1 Unbinder ... 24

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC IV

3.2 Renewability on use cases ... 24

3.2.1 Renewability on a toy example ... 24

3.2.2 NAGRA use case .. 24

3.2.3 Composability with other protection techniques ... 25

3.2.4 Conclusions .. 25

3.3 Practically useful software diversity .. 25

3.3.1 Introduction and Motivation ... 25

3.3.2 Background & Problem Statement ... 28

3.3.2.1 Offset Diversification ... 28
3.3.2.2 Necessary Debug Information .. 29
3.3.2.3 Indirect effects of in x86 binaries .. 31
3.3.2.4 Indirect effects in ARMv7 binaries .. 32

3.3.3 The ∆Breakpad Approach ... 32

3.3.3.1 Crash Handling & Stack Trace Generation ... 34
3.3.3.2 Generating the ∆data .. 35
3.3.3.3 Combining Multiple Diversification Processes .. 35
3.3.3.4 ∆ Minimization ... 36
3.3.3.5 Profile-Guided Diversification .. 37

3.3.4 Experimental Evaluation ... 37

3.3.4.1 Experimental Setup ... 37
3.3.4.2 Benchmarks and Correctness ... 38
3.3.4.3 Overhead .. 38

3.3.5 Related Work .. 38

3.3.6 Conclusions .. 39

3.4 Validation of Metrics for maximizing software diversity 39

3.4.1 Effect of Different Code Representation ... 39

3.4.1.1 Analysis of NCD Distribution ... 40
3.4.1.2 Analysis of NCD Correlation ... 42
3.4.1.3 Guidelines ... 43
3.4.1.4 Conclusions .. 44

Section 4 Conclusions ... 45

Section 5 List of Abbreviations ... 47

Bibliography ... 48

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC V

List of Figures
Figure 1: The workflow ... 8

Figure 2: Detailed workflow. ... 9

Figure 3: Annotated code example .. 17

Figure 4: Adding a Basic Block with binary code at the entry of a region 18

Figure 5: CFT Remote Attestation architecture .. 19

Figure 6: CFT Reaction Unit Server architecture ... 20

Figure 7: CFT Reaction Unit Server database with CFT table ... 21

Figure 8: Overview of Google's Breakpad tools for crash collection. 27

Figure 9: Stack frames in original and diversified binaries. .. 29

Figure 10: Source line mapping in the symbol file. ... 30

Figure 11: Stack walking information in the symbol file. ... 31

Figure 12: Overview of ∆Breakpad as an extension of Google Breakpad for reporting crashes
of diversified binaries .. 33

Figure 13: Histogram of NCD based on Jar representation. .. 41

Figure 14: Histogram of NCD based on Javap representation. .. 41

Figure 15: Histogram of NCD based on Java representation. .. 42

Figure 16: Boxplot of NCD based on different program representation. 42

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC VI

List of Tables
Table 1: Size overheads for crash reporting .. 38

Table 2: Subject apps considered in the experimental study. .. 40

Table 3: Descriptive statistics ... 42

Table 4: Analysis of correlation (Pearson correlation test). .. 43

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 1 of 49

Section 1 Introduction
Chapter Authors:

Alessandro Cabutto, Paolo Falcarin (UEL)

The goal of this deliverable is to document the final status and the tool support for the
Remote Attestation and Renewability techniques delivered in the ASPIRE Work Package 3.

This document also reports on control flow tagging since reporting of this technique, initially
foreseen for D2.10, was not done before. One reason it still fits in this deliverable on online
protection techniques, is that the technique, which was foreseen to be an offline technique in
the DoW, has actually been designed and implemented in two flavours, being an offline and
an online variant.

The remainder of this deliverable reports the updates implemented in the Remote Attestation
framework, with more details on the Static, Dynamic and Implicit implementations. Moreover,
it presents the integration of Control Flow Tagging with Remote Attestation.

The renewability support integration is reported along with its validation against the NAGRA
use case.

We also report here results coming from UGent research on practical useful software
diversity, and from the joint effort of UEL and FBK on maximizing software diversity.

This deliverable is structured as follows. Section 2 contains the final report on both Static and
Dynamic Remote Attestation and Control Flow Tagging integration with Remote Attestation.
Section 3 focuses on Renewability presenting three main topics: ASPIRE Renewability
Framework validation against NAGRA use case, updates on diversity in space and crash
reporting research conducted by UGent, and the validation of metrics used by UEL and FBK
in their research work for maximizing software diversity.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 2 of 49

Section 2 Remote Attestation
Chapter Authors:

Cataldo Basile, Alessio Viticchié (POLITO)

This section covers the work performed in Task T3.2 for the remote attestation technique.

The Static Remote Attestation (Static RA), which was already at reasonable stage of
development has been improved, tested and applied to use cases and other open source
applications. The updates to the Static RA originated by the need for protecting the use case
applications for the tiger team experiments. Together with the details reported in the sections
below, effort has been spent to support the integration of the last version of the ASCL that
now better supports multiple Attestators and verifiers, and to achieve a better integration into
the ACTC. Moreover, Static RA has been integrated with other remote protection techniques
developed in ASPIRE to enforce reactions to compromised applications. In particular, we
have developed a new technique, named Reactive Attestation, which builds on the
integration of Static RA and Client-Server Code Splitting and stops executing server-side
code if Static RA detects a compromised application. Moreover, we have integrated Static
RA with Code Mobility to stop serving code blocks to compromised applications.

The Dynamic Remote Attestation (DynRA) is the technique that monitors the correct
execution of an application based on the (likely and true) invariants. Starting from the design
at M24, DynRA has been improved, extended, and implemented. Moreover, DynRA has
been tested on open source application, unfortunately, it has not been tested on use cases
as, currently, no tools are available for ARM platforms to extract traces that are compatible
with likely invariants extractors (Daikon).

Implicit Remote Attestation (IRA) has been built on DynRA. Two versions have been
proposed. The Simple IRA, which has been implemented and tested on open source
applications, injects verifiers that check invariants into the source code of the application to
protect. Then these verifiers are split (with Client-Server Code Splitting) and executed on the
server without the need of explicit Attestators. Thus, the attestation is implicit. A more
complex version of the IRA has been designed that integrated DynRA with the simple IRA.
With this technique, invariants are checked starting from values of variables collected partly
with DynRA and partly directly taken from code executed on the server.

2.1 Remote attestation reference architecture
We report the final reference architecture of the remote attestation technique. It has not been
changed since the version documented in D3.04 but we repeat it here as it is useful for quick
references. Components explanation is available in the deliverable D3.02, D3.04, and D3.06.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 3 of 49

Application	server

AS
CL
-W

S

AC
CL

Application	logic

Remote	attestation

Reaction	
Manager

Verifier

Delay	data	
structure

Remote	attestation

Attestator

Reaction	
Enforcement	

Unit

RA	
Manager

AS
PI
RE

	p
or
ta
l

2.2 Static Remote attestation
We shortly report here that there are no changes in the architecture and workflow of the
static RA, which has been described in-depth in deliverable D3.04 and D3.06.

Only debugging and maintenance has been performed to the static RA in order to (1) apply it
on the use cases and on all the other sample applications that have been used for testing
and development purposes, and (2) allow a smoother integration with other ASPIRE
techniques.

2.2.1 Reactive attestation
Reactive attestation is the technique we have developed to react in case of compromised
applications based on the cooperation between remote attestation and client-server code
splitting. The design of the reactive attestation has been anticipated in the deliverable D3.06.
The reactive attestation first prepares the application and makes it dependent on the server
then it applies static remote attestation to detect modification to the areas of the application
binaries whose integrity must be ensured. Reaction to compromised applications happens by
notifying the server which thus stops serving them.

During the last months, this technique has been implemented and tested based on the D3.06
design. In a first phase, and to avoid to infringe Intellectual properties of industrial partners
and being able to publish results on this technique, RA and Code Splitting have been applied
in isolation (i.e., as two independent techniques, not through the ACTC and without the
ASCL/ACCL infrastructure). Moreover, reactive attestation has been applied on sample open
source applications we have download from the Internet. Indeed, the technique has been
presented in a paper that disseminates ASPIRE results [raadrst]. Therefore, we avoid the
repetition here of the design and the technical details that can be found in the paper that has
been attached to this deliverable for convenience.

However, in the last period we have successful tested the application of Reactive Attestation
when applied by means of the ACTC and on the use cases.

As an exploitation activity, we have started improving the analysis phase, which aims at
determining the best parts to split to have (1) guarantee of enforcement of a disconnect
policy in a (2) limited and reasonable overhead. The analysis phase is now very simple and
not automated, in the sense that several analyses are performed, mainly statically, then the
actual areas to split are identified by human beings (i.e., by ASPIRE experts) by manually
applying Code Splitting annotations.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 4 of 49

Therefore, we need to analyse dynamic information, that is, traces, and complete the
definition of the optimization models that estimate the performance degradation of splitting a
specific area, given the constraint that areas are candidate to be split if they are executed at
least with a certain threshold frequency. Given the difficulties to have valid traces on ARM
infrastructure we have started this work on a Linux x86 infrastructure. The purpose is to
publish a journal paper that extends the previously published results.

2.2.2 Integration with Code Mobility
Detective functions of RA have been also used in cooperation with the Code Mobility
technique. Since, clients depend on the Code Mobility server to work correctly, integrity
violations detected by the RA can be punished by stopping sending code mobility blocks,
thus forcing the stop of the application as soon as it needs a new block from the server.

The cooperation between Code Mobility and RA has been applied on the use cases.
Actually, it has been applied on all the three use cases for the tiger team experiments.

2.2.3 Improvement of the attest at startup functionality
In D3.06 (Section 3.2.1.2) we introduced the attest at startup functionality. Areas that are
annotated to be protected with the RA with the attest_at_startup option set to true,
are attested as soon as the application is launched. Correct support of attestation at startup
has required the implementation of a stateful mechanism to declare application valid only
after all the attest at startup areas of all the attestators have been successfully attested.

When the application is launched and the ASCL-WS initialization method is invoked by the
client application:

1. the RA Manager change the client in the UNKNOWN state (these values are in the
name field of the ra_reaction_status table);

2. the RA Manager sends the attestation requests for all the attest at startup areas;
3. the Reaction Logic verifies that all the responses to the sent attestation requests are

valid;
4. the currently implemented Reaction Policy marks as COMPROMISED the application if

any of the attestation responses fails, CORRECT if all the attestation responses are
valid. The reason for this strong policy is because, since RA was coupled with Code
Mobility, we wanted to avoid to provide valid blocks to applications that are known as
compromised since the beginning and prevent to supply mobile blocks unless the
client is proved to be untampered. However, other policies have been considered, like
sending additional attestation requests for the attest at startup areas. However, they
have not been implemented.

2.3 Dynamic Remote Attestation
The purpose of the Dynamic Remote Attestation (DynRA) techniques is to detect violations
of the integrity of the actually executed application code. They represent a big step forward
compared to the static techniques, which only base their verification on data that do not
depend on the executed code (like hashing the binaries as done by our static remote
attestation).

In ASPIRE, after a careful analysis of the available techniques, we have decided to
implement the DynRA that detects violations by exploiting invariants monitoring.

Invariants are predicates built on variable values. They can be explicitly defined by the
application developers, these are the true invariants, or deduced after analyzing the
application to protect, in this case they are named likely invariants.

for(int i = 0; i < 100; i++){
for(int j = 0; j < i; j++){
 ...

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 5 of 49

}
}
Invariants:
i<100, j<i, j<100

Since the number of true invariants is usually limited, that is, insufficient for the purpose of
integrity monitoring, our technique requires the identification of the likely invariants. While
techniques have been proposed to extract invariants from static analysis whose
effectiveness is debatable, we have focused on dynamic techniques and selected Daikon as
the likely invariants extractor candidate tool. Daikon has a major limitation (at least for the C
language), it is not able to infer invariants about inner scope variables that is, it does not
consider the variables used within functions or any other local scope (e.g., conditional or loop
statements) that are not passed to another function. In addition, Daikon is not able to detect
inter-function invariants, as it is only able to extract invariants regarding the same function
scope.

Verifying that invariants are satisfied consists in taking the values of the variables that are
part of the invariants, and finally evaluating the invariants’ expression.

Therefore, it is important to be able to extract the value of the variables from the target
application depending on the reached execution point. Consequently, being able to analyse
the function call stack is also crucial, as it allows understanding whether a variable value is
available or not. The last information that is fundamental to extract variables’ values is the
functions lifecycle, in terms of instruction pointer intervals. In fact, starting from the call stack,
the stack frame of each called function can be extracted together with the instruction pointer
value of each called function so that it is possible to evaluate if a variable is available in
memory. With all these data, we are able to:

1. stop the execution of the target application;
2. unwind the call stack and, for each stack frame, read the instruction pointer and

deduce the function that is associated to it;
3. for each function stack frame, deduce the extractable variables;
4. collect variables values.

Variables need to be univocally identified in order to allow the Verifier to recognise the
variables received from the Attestator.

DWARF information is used to predict the runtime information, that is, variables locations and
lifecycle, functions location and lifecycle.

Finally, there is another important aspect of the invariants to consider when designing a RA
based on invariants: invariants are related to values of variables extracted in the same
execution, that is, theoretically, it is not possible to evaluate an invariant by using the values
of the involved variables that are collected in different moments.

2.3.1 DynRA formats
2.3.1.1 Attestation request
An attestation request is a message that contains just a random nonce. No other data are
sent to the client. To avoid repetitions and replay attacks, nonces are 256 bit long.

We have considered alternative approaches, like asking for an explicit set of variables but we
have discarded them. Indeed, apart from global variables, all the other types of variables are
available in memory only when a specific part of the code is executed (e.g., variables
allocated into the stack). This may create two types of problem. First, the probability to find
the requested variables in memory was estimated as very low. Therefore, since the client
(thus an attacker) is legitimate to answer that a variable is not in memory, it may be allowed
to answer that even none of requested variables were available in memory during the
attestation response preparation to all the attestation requests.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 6 of 49

2.3.1.2 Attestation response
The attestation response contains the values of all the variables that are available in memory
at the moment of the attestation request. These data are sent as a sequence of n pairs
(where n is the total number of pairs):

Pi = (ID(vari), Value(vari))

With these pairs, the attestator computes (|| is the concatenation operator):

data = n || P1 || … || Pn

attestationResponse = data || H(data||nonce)

where H is a hash function of choice. For diversification purposes, we can use different hash
functions including SHA1, SHA256, and Blake2.

Again, for diversification purposes, we have also implemented Attestators that send the
keyed digest and the HMAC of data that use the nonce as the key.

2.3.2 Components
The RA Manager, the Attestator and the Verifier are independent of the target application. As
depicted before, the RA Manager is in charge of generating a random nonce and send it to
the Attestator, whenever it deems. The Attestator collects all the available variables’ values
and sends the attestation response to the verifier. The only application dependent part of the
DynRA technique is the data structure that describes the variables and functions lifecycles.

2.3.2.1 Attestator
The Attestator collects the value of all the variables and prepares the attestation response.

The current implementation of the DynRA simply sends all the available variables. This
simplified approach introduces a risk: attestation responses may too big in case an
application has too many global variables (which are always accessible thus always sent by
the Attestator). The risk is limited, however, we planned the implementation of a smarter
version of the Attestator that only sends the significant variables or a subset of the global
variables (and also knows when invariants depend on the time when values are collected).
Since this risk was not manifesting itself on the use cases, we have marked this issue at low
priority.

2.3.2.2 Verifier
The Verifier receives an attestation response. It reads the pairs (VarID, value), verifies the
hash then it looks for the invariants that can be evaluated. In this first simple implementation
of the Attestator, the Verifier queries the DB in order to determine all the invariants that
involve at least one of the variables found in the response. The only invariants that are
actually checked are those that involve only variables from the last attestation response and
for which all the involved variables are available. Optimized data structures to perform quick
invariants verifications have been considered outside the scope of this prototype.

2.3.2.3 Security Analysis
The proposed attestation request/response protocol is vulnerable to spoofing attacks, given
that it includes values of variables stored at the client-side, thus not directly verifiable, it is
formally impossible to create a communication protocol that is not vulnerable to forged
attestation response. Solutions that involve secure hardware could be considered but they
are outside the scope of the ASPIRE project. It is possible to block Man-in-the-middle attacks
if attestation requests and replies are transmitted within a secure communication channel (for
instance, the ASCL-WS with TLS enabled). However, this technique is still vulnerable from
Man-at-the-End attacks. Indeed, if an attacker is able to spot the location where the extracted
variables’ data are stored before the hash is computed, he can replace the data arbitrarily

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 7 of 49

thus going unnoticed. Therefore, the Attestator should be reinforced with the use of
protections that mitigate the risks associated to static and dynamic analysis.

2.3.3 DynRA annotations
There are two types of DynRA annotations.

One type of annotation is used to manually specify (true) invariants. These annotations
include a Pragma directive that is used to specify the invariant formula that uses variables
labels, __attribute__annotations used to label the actual variables used in the invariants.

int f(int max) {
 int i,sum = 0;
int y
__attribute__((ASPIRE("protection(remote_attestation,dynamic_ra
_variable(y))")));

_Pragma("ASPIRE begin protection(remote_attestation,
 dynamic_ra_invariant(x+y<100))");
 for(i=0; i<max; i++){
 y=2*max;
 sum+=y;
 }
 _Pragma("ASPIRE end");
 return sum;
}

int main(){

int x _attribute__((ASPIRE("protection(remote_attestation,
dynamic_ra_variable(x))")));
x = 33;
printf("Sum=%d",f(x));
return 0;

}

The second type of annotations is used to declare the code areas were the likely invariant
discovery tool must work to automatically discover likely invariants. These code areas are the
ones whose integrity must be protected.

int f(int max) {
 int i,sum = 0;
 int y;
 _Pragma("ASPIRE begin protection(remote_attestation,

 dynamic_ra_autodiscovery)");
 for(i=0; i<max; i++){
 y=2*max;
 sum+=y;
 }
 _Pragma("ASPIRE end");
 return sum;
}

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 8 of 49

2.3.4 DynRA application: workflow

vanilla	
sources

[annotated]

functions	injector

standard	compiler

invariants	extractor	
(Daikon)

invariants

standard	compiler

variables
and	

functions	
to	monitor

dwarf	parser

invariants
interpreter

database

variables	and	
functions

identification

dynRA-DS

invariants
descriptions

Figure 1: The workflow

The application of DynRA (see Figure 1) starts, as usual in ASPIRE, with an unprotected
application whose assets have been explicitly annotated with annotations compatible with the
ones in Section 2.3.3).

The application source code is taken as input by two processes:

• discovery of likely invariants;
• extraction of DWARF information.

In order to identify likely invariants, in a first step we tried to overcome the Daikon limitations
by adding, for each inner local scope, a call to an ad hoc generated function with an empty
body that takes as input all the variables declared in the scope and returns without doing
anything. In this way, Daikon can access all the variables and determine more invariants.
The injected source files are processed with the standard compiler with the debugging
options enabled (i.e., –g –gdwarf-2) and optimisation options disabled (i.e., -O0) in order
to generate a binary that can be analysed by an instrumenter (to extract traces) and then by
Daikon.

This first process produces two outcomes:

• the list of the invariants detected by Daikon, and
• the list of the variables whose values need to be retrieved at runtime.

The second process also starts from the unprotected application sources. The application is
compiled with the standard compiler with the options –g –gdwarf-2. Starting from the
obtained binary, a parser analyses the DWARF symbols contained in it and:

1. collects all the data about interesting functions and variables lifecycles;
2. assigns a unique ID to all the monitored variables (a progressive integer);

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 9 of 49

3. produces a binary file, namely DynRA-DS, which contains the information about
functions and variables that are useful for the Attestator to know how to retrieve
variables values at runtime. The DynRA-DS will be injected in the final protected
binary.

Finally, an invariant interpreter processes the output of Daikon and stores invariants in a
format that is suitable for verification. These invariants are stored in the ASPIRE DB and are
formatted so that the verification phase is facilitated. All the variable names in each invariant
are replaced with their unique ID. In this way, the Verifier only has to replace each variable’s
ID with the received value and to evaluate the resulting expression.

A closer look at the workflow and components actually used by DynRA (presented in Figure
2) can help understanding the actual state of development of the DynRA tool.

vanilla	
sources

[annotated]

Functions	injector

injected
sources

standard	compiler

injected	
binary
w/Dwarf

Traces	extractor
(e.g.	Kvasir	for	x86)

dtrace decls

Daikon

invariants

functions
relations

Functions	
associations
extractor

functions
associations

Decls	simplifier

simplified
decls

standard	compiler

vanilla
binary
w/Dwarf

VarDesc	generator

VarDesc
(interesting	variables)

Dwarf	parser

invariants
interpreter

variables
identifications

database

dynRA-DS

Figure 2: Detailed workflow.

The components that implement the workflow are:

Compiler. It is the standard compiler used to generate executable binaries.
Function injector. This component analyses the source code of the application to protect.
For each inner scope found it lists all the declared variables and generates ad hoc functions
that takes the variables as parameters.

double a(int a, int b){

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 10 of 49

int c; double d;
c=a+b;
d=(double)a/c;
return d;

}

The injector recognizes c and d as declared variables and generates the function:
void _____injectedFunction_rand (int c, double d){}

It injects a call to the generated function at the end of the scope where c and d are declared.
At the end of the process the resulting code is:

void _____injectedFunction_rand(int c, double d){}

double f(int a, int b){

int c; double d;
c=a+b;
d=(double)a/c;
_____injectedFunction_rand (c,d);
return d;

}

where rand is actually a random string that makes the function unique.

In addition, this component outputs a description file in which it reports, for each function in
the original program, all the injected functions. This output allows further steps in the
workflow to keep track of the injected functions, i.e., it allows going back to the original
function knowing the injected function.

This component is fully implemented and tested.

Traces extractor. This component executes the application with injected functions, which
has been previously compiled with debugging information, in order to collect execution
traces. We recall that the traces must be compatible with the Invariants extractor, in this case
Daikon, it is not just needed to have a tool that extracts traces. For x86 architectures, the
Daikon instrumenter, namely Kvasir, is works on the majority of the applications. In the ARM
environment, neither we were able to find a tool similar to Kvasir nor we had enough
resources to implement such a tool from scratch. In addition to traces, this component will
output also a declarations file (as Kvasir is able to do). The declarations file is useful because
it contains only the declaration for those variables that are actually interesting for invariants
evaluation; all other variables in the program are not reported.

Invariants extractor. This component properly calls Daikon that guesses the invariants from
the input traces. It outputs the list of the invariants.

This component is fully implemented and tested.

Function associations extractor. This component lists all the functions found in the binary
build after the functions injection phase. It associates each function name to its compilation
unit path name. This component is necessary to avoid problems tied to duplicated filenames
inside the folder structure of the original sources.

This component is fully implemented and tested.

Decls simplifier. This component processes the declarations file generated by the Traces
Extractor and simply selects the name of the variables that the technique must be able to
extract from the protected application to evaluate the deduced invariants.

This component is fully implemented and tested.

VarDesc generator. This component elaborates the data from the function injector, the
function associations extractor and the decls simplifier in order to produce a file that specifies
which are the data to extract from the binary built from the unprotected vanilla sources. In

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 11 of 49

particular, it will output a formatted file that specifies for each compilation unit (i.e. original
source file) the function and the variables for which the locations and lifecycles must be
extracted for runtime evaluations.

This component is fully implemented and tested.

Dwarf parser. This component processes the DWARF symbols inside the binary built from
built from the unprotected vanilla sources and extracts the data that are actually needed to
collect variables’ values at runtime. That is, it actually produces the DynRA-DS that will be
injected in the protected application. In addition, the dwarf parser inserts all the variables in
the database and uniquely identifies them. Each variable is stored in the database along with
the data about its owner function and compilation unit. The variables identifications are also
output as file for next steps.

This component is fully implemented and tested.

Invariants interpreter. This component elaborates the invariants extracted in previous steps
and rewrite them according to the variables identifications. In practice, it replaces the
variables names with the respective unique ID so that each invariant expression is directly
associated to the involved variables. The obtained expressions are stored in the database of
the verification phase.

This component is fully implemented and tested.

2.3.5 Overcoming limitations of the trace extractor on ARM
Currently, the DynRA has been tested on sample applications taken from open source
repositories. Together with the bzip2 example already used also for

However, DynRA has not been yet tested on use cases. Indeed, the limitations of the
available traces extractors working on ARM platforms have blocked the testing on the use
cases applications.

To overcome this limitation, we tried to compute the invariants by collecting traces on a Linux
x86 architecture. Theoretically, the invariants are independent on the platform on which the
application is executed. However, invariants are extracted from the traces collected on a
compiled application. Therefore, there may be differences.

However, we had problems with the NAGRA and GTO use cases, which are strongly
dependent on the Android framework and cannot be compiled for a Linux x86 platform.
Indeed, they rely on Android specific functions and libraries (the DRM framework and UI
classes), thus, they cannot be support due to lack of traces extractor limitations. We have
thus focused on the SFNT, which is also working perfectly in x86 environments. However, for
some reason, kvasir fails to extract traces. We have asked support to Kvasir developers but
we were not able to give them enough information to reproduce the bug1. Indeed, the use
case is confidential thus we did not provide them the source code.

2.4 Implicit Remote Attestation
The Implicit Remote Attestation (IRA) we have implemented builds on the DynRA. The idea
behind this Implicit Remote is that, if the Verifier knows the part that the client is actually
executing, it has much more possibility to avoid fake attestation replies and get the actual
variable value. Indeed, with this additional information the Verifier can guess with a
reasonable precision what are the variables that the client should be able to collect at the
moment of an attestation request.

Therefore, we use the Client-Server code splitting to interleave the execution between client
and server.

1 https://github.com/codespecs/daikon/issues/79

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 12 of 49

We have considered two forms of IRA. In the simplest form, which we have named Simple
IRA, entire pieces of code are split so that they are executed on the server and the values of
the variables composing invariants are available to be verified at server side. A more
advanced form, of IRA has been designed, named hybrid dynamic IRA, where parts of the
application functions are split and executed on the server so that invariants are evaluated
based on variables’ values sent by the Attestator and, at the same time, values that are
available at the server.

invariants

variables
and	

functions	
to	monitor

IRA	invariants	
processor

Injection	of	invariants	
verifiers

Client-server	Code	
Splitting

client-side	
application

vanilla	
sources	+
injected	
invariants	
verifier

[annotated]

server-side	
verifier	code

selected
invariants

2.4.1 Simple IRA
The instrumentation of the code is performed as follows

IRA invariants processor. This component reads the invariants and the actual functions to
monitor and selects the invariants to be monitored. Since Client-server Code Splitting
introduces an overhead (network latency, computation at the server, risk of server overload)
that is not negligible, the process that selects the invariants must decide based on dynamic
information. While an optimization process would be suggested based on traces information,
during the project we have focused on selecting a subset of invariants with process driven by
humans.
 void f(int a){

 int i, j;

for(i = 0; i < a; i++){
for(int j = 0; j < i; j++){
 ...
}

}
return;

}

 Invariants examples:

 0<i<a, 0<j<a, j<i.
Injection of invariants verifiers. This component creates ad hoc functions that are inserted
in the application source code for all the invariants to be protected. The functions include the
code to verify the invariants (indeed it is a custom invariant-specific micro verifier) and the
reaction logic that interrupts the execution of the application whenever an invariant is not

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 13 of 49

satisfied. Other reaction policies are possible, but since the reaction status must be
maintained at server side to be effective, the actual integration would have required too much
engineering.

void _____injectedVerifier_rand(int i, int j, int a){
_Pragma("ASPIRE begin protection (

barrier_slicing,
criterion(i,j),
label(slicing1))")

if(i>0 && i<a && j>0 && j<a && j<i)

 return;

else

interrupt_execution();

_Pragma("ASPIRE end")

}

void f(int a){

 _Pragma("ASPIRE begin protection (
barrier_slicing,
barrier(i, j),
label(slicing1))")

 int i, j;
_Pragma("ASPIRE end")

for(i = 0; i < a; i++){
for(j = 0; j < i; j++){
 ...
 _____injectedVerifier_rand(i,j,a);
}
_____injectedVerifier_rand(i,j,a);
}

_____injectedVerifier_rand(i,j,a);
return;

}

Code Splitting. This component executes the ASPIRE Client-Server Code Splitting
protection that coherently removes the previously inserted functions based on the
annotations and automatically adds all the network communication logic.

Note that this architecture of the implicit remote attestation does not require neither an
explicit Attestator at client side nor a Verifier at server side.

The following approach presents the following limitations. First, it includes in the code the
reaction, thus it is not allowed to change the reaction type after the protection has been
deployed without a rebuilding of the server. In the other RA techniques, the reaction is
decoupled from the detection to achieve this flexibility. Then, another limitation is on the
number and types of invariants to monitor. That is, it is not only important to consider how
effective may be monitoring an invariant, it is also important to estimate the overhead
generated by the splitting.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 14 of 49

2.4.2 Hybrid Dynamic IRA
vanilla	
sources

[annotated]

functions	injector

standard	compiler

invariants	extractor	
(Daikon)

invariants

variables	and	
functions	to	
monitor

invariants
interpreter

invariants
selection

selected	variables	
and	functions	

to	monitor	with	DynRA

Injection	of	IRA	
annotations

selected
	invariants

standard	compiler

dwarf	parser

dynRA-DS

vanilla	
sources	+
injected	
invariants	
verifier

[annotated]

Client-server	Code	
Splitting

client-side	vanilla
application

server-side	
verifier	code

database

variables	and	
functions

identification

invariants
descriptions

selected
variables	to	split

When the Hybrid Dynamic IRA needs to be deployed, in the first phase we borrow steps and
components from the Dynamic RA to have the list of invariants and the related functions and
variables to monitor.

Functions Injector. As presented in Section 2.3.4, in this phase ad hoc functions are
inserted in the vanilla application to identify inner scope invariants thus overcoming likely
invariants limitations.

Invariants extractor (Daikon). As presented in Section 2.3.4, Daikon is used as tool to infer
likely invariants.

Then another phase is performed to select the invariants that will be monitored and to decide
if variables’ values will be collected with a DynRA-like attestation of directly read with server-
side execution.

Invariants selection. This component reads the invariants and the related functions and
selects the invariants to be monitored. Once the invariants have been selected, it is also
needed the selection of the variables that will be observed on the server and the ones that
will be acquired by injecting the dynamic RA Attestator. There are two important aspects to

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 15 of 49

consider. As anticipated before, Client-server Code Splitting introduces an overhead that is
not negligible, therefore, invariants to monitor and variables to move on the server must be
carefully decided based on dynamic information. Then, the Attestator of the DynRA is not
able to retrieve all the variables that are needed at a given point as the computation can be
moved to another function. However, this risk can be reduced as the interleaving of server-
side and client-side computation allows a precise understanding of the code currently
running. Indeed, this interleaving strengthens the DynRA as it renders much more difficult to
replay variables values.

Then a task processes the variable selected to be monitored with a server-side computation,
as for the Simple IRA approach.

Injection of IRA annotations. As explained in Section 2.4.1, this component inserts
annotations to drive the client-server code splitting and move the execution of some
variables on the server. Annotations are places so that the code to move on the server is not
trivially understandable thus making hard to build a fake server. No additional code for the
verifier is injected in this phase.

Code Splitting. As explained in Section 2.4.1, the ASPIRE Client-Server Code Splitting
protection that removes the variables and related code and automatically adds all the
network communication logic.

The identification of variables must be performed, not on the vanilla application but on the
after splitting client-side application, which is compiled with the standard compiler to produce
DWARF information.

Dwarf parser. As presented in Section 2.3.4, this component processes the DWARF
symbols and extracts the data that are actually needed to collect variables’ values at runtime.
Finally, it produces the DynRA-DS that will be injected in the protected application and stores
the needed information in the ASPIRE DB.

Invariants interpreter. As presented in Section 2.3.4, this component elaborates the
selected invariants and stores them in the ASPIRE DB in a format prone to fast verification.

2.5 Remote Attestation and Control Flow Tagging
Chapter Authors:

Philippe Jutel, Paul Gunawan Hariyanto (GTO)

2.5.1 Control Flow Tagging protection
This sub-section details the work done to implement the Control Flow Tagging (CFT)
protection. This anti-tampering protection aims to check that some assertions are verified
during the execution of the application. An assertion in CFT is a logical expression that refers
variables that capture the way the application is executed.

Besides minor adaptations, the protection mechanism described in this document conforms
to what has been described in the subsection 4.5 of the Reference Architecture- D1.04 and
in the sub-section 6.3 of ASPIRE Offline Code Protection Report - D2.08. The reader should
not be confused by the fact that the CFT protection is alternatively described in WP2 and
WP3 documents because according to the place where the logical expressions are checked
the protection can be offline or online.

The granularity of the CFT protection is the Basic Block of the generated code. In a compiler,
a Basic Block is a section of intermediate or machine code that has a single entry and a
single exit. CFT applies on the Basic blocks of the generated code.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 16 of 49

As any others ASPIRE protections CFT relies on annotations placed in the source code of
the application. There are two types of annotations with CFT. The Gate annotation and the
Verifier annotation. A Gate is a region of the code that is associated with a counter. Each
time the activation of the application a Gate then the associated counter is incremented. The
Verifier is a region of the application code where it is possible to verify the value of the Gate
counters. Each Verifier annotation specifies a logical expression that refers to one or several
Gate counter variables. The verification of the expressions can be done locally on the device
or remotely on the server. If a logical expression is not verified, a reaction is triggered.

The Reaction Unit (RU) can be invoked in case the logical expression returns False when it
is evaluated. A reaction level is passed to the RU in order to trigger the adequate reaction
behaviour according to severity of the non-conformance controlled by the logical expression.
When RU is invoked it is necessary to put the initialization RU annotation before any Verifier
annotation.

The protection is implemented at both source and binary level. Both steps are required to
implement the protection.

2.5.1.1 Source level processing
The source level step prepares the code that evaluates the logical expressions. A logical
expression specified in the Verifier annotation can be any valid C language Boolean
expressions. The design is to prepare the source code that contains the code of the
annotation and to use the compiler to analyse and generate the binary code.

To implement this source level step, ACTC is adapted with an extra processing step. In the
SLP12 step ACTC calls a Python script that generates the C files that contain the verifiers
code embed in functions. These functions are either compiled with the application or placed
on the server for remote verification according to the ‘location’ option set in the annotation. In
the latter case, the script also generates code inserted in the application to send the counter
values to the server. The script scans the application code looking for CFT annotations. The
script uses some template C files, with pre-written functions to be filled with the code taken
from all CFT Verifier annotations.

Advantage of this design that relies on the compiler is that the code extracted from verifier
annotation can always be successfully compiled because it must be valid C code that only
refers to counter values with a known scope and data type.

The restriction comes from the specification of the expression where there is no way to mix
counter values with application code or application variables. More powerful verifier could be
envisioned with such expressions but possible side effects could lead to complex bugs.

2.5.1.2 Binary level processing
The binary step of CFT is implemented using the Diablo framework. The diablo-obfuscator
frontend is adapted to be able to inject the CFT binary code.

Only the code needed to identify and process the CFT annotations is included into the
frontend itself. The majority of the CFT code is compiled in a separate library that is
accessed by the frontend if required. This design was chosen to dissociate the CFT
protection from the other protections implemented in the frontend mainly for Intellectual
Property and maintenance reasons. That way, the frontend can recognize CFT annotations,
but the CFT implementation depends on the presence of the extern CFT library.

The frontend creates regions for each CFT annotation, as it does for the other protections. A
region is a group of basic blocks (BBLs) in the Control Flow Graph that is part of an
annotated section of the source code. Annotated section means that this code section is
marked out by an ASPIRE annotation. An example of CFT annotated code is shown in
Figure 3.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 17 of 49

A new command line argument to activate the protection is added in diablo-obfuscator as
well. When the ACTC calls the diablo-obfuscator frontend, it now passes an additional
command ‘-CFT on/off’.

Figure 3: Annotated code example

The main CFT binary level code is located in a shared library. If CFT is activated, diablo-
obfuscator access this library and call two functions: a first one to prevent Diablo from
deleting the verification functions that are injected at source level and a second one that
does most of the binary code handling that will be described next.

The first step is to create the Gates and the respective counters. Thanks to the Diablo
framework, it is possible to analyse the CFT Gate regions and to define the entries of these
regions. An entry is any edge that originates from a basic block from outside the region and
ends in an inside basic block. The only exceptions are the return edges from functions called
from inside the region. The entries are the places where the additional ARM assembly code
of the protection are added. This way we guarantee that each time the execution of the
application enters a region, it will first execute the Gate instructions. Figure 4: Adding a Basic
Block with binary code at the entry of a region pictures the insertions of a basic block in a
CFT region.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 18 of 49

CFT	Region							

BBL

BBL

BBL

BBL

BBL

Function

Function	call

Function	return

BBL

CFT	BBL
(ARM	code)

Figure 4: Adding a Basic Block with binary code at the entry of a region

Once the entries are defined, a data subsection in the Static Data segment is created. This
subsection is reserved to store the counters of each Gate. The counters are stored as
unsigned integers. Then the ARM instructions are injected. They are responsible for loading
the right counter value, incrementing the counter, verifying if it reached the maximum value
of an unsigned integer (in this case, the counter is not incremented) and, finally, storing the
new value.

Then, a similar procedure is implemented for the Verifier regions. After analysing and finding
the entries, the tool adds the proper ARM instructions. The goal of these instructions is to
load all the counter values referenced in the logical expression of the Verifier and to create a
branch to the proper Verifier function. The counter values are placed in the first four registers
to be passed to the function. For that reason, each logical expression can use four counters
at most. As explain at the beginning of this subsection, the functions are injected at source
level and compiled with the application.

Injecting all these assembly codes required a register management. Since the processing
needs to handle registers, each time a required register is being used by the normal
execution of the application, its value is stored in the stack and retrieved after all CFT
transformation. This is not very good because it helps the attacker during the static analysis.

2.5.2 Attestation
2.5.2.1 Local attestation
When the ‘location’ option of the Verifier annotation is set as ‘local’, the verification of the
logical expression is offline. The Python script creates the functions that verify if the counters
have reached their maximum value, in which case the verification cannot be done, checks if
the logical expression is valid and call a reaction otherwise.

In case of offline processing, the ‘reaction’ field in the annotation can specify three various
behaviours:

• The reaction level of the Reaction Unit: A number from 1 to 8 to define the level of
the reaction to be applied. The function ‘reactionUnitSyncNotification’ is called.

• ‘exit’: In this case, the application will simply stop if the verification is not successful

• A call to a custom function: If a custom reaction function is defined in the
application, it can be called in case the verification fails.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 19 of 49

2.5.2.2 Remote attestation
The remote attestation for CFT is set when the annotation presents ‘remote’ in the ‘location’
field. It can only use the Reaction Unit to respond to attacks, so the ‘reaction’ option in the
annotation can only be a number from 1 to 8. The ASPIRE Portal is used to manage the
communication between the device and a server side component, as described in the Figure
5.

ASPIRE Server

Database

Other ASPIRE
services

Control Flow
Tagging
Backend

Reaction Unit
Server

A
SP

IR
E

 P
or

ta
l

A
SC

L-
W

S

Device

Protected application

A
C

C
L

Application logic

Other protections

Reacton Unit

Control Flow
Tagging

Figure 5: CFT Remote Attestation architecture

Instead of owning the verification function, in this case the device has a function whose role
is to receive the counter values, create a payload and send it to the server using the Simple
Request ASPIRE protocol. It is up to the binary manipulations performed by Diablo to
retrieve the counter values and invoke this function.

On the server side, the ASPIRE Portal receives the payload and executes the CFT Backend,
the server-side component of the CFT protection. The role of this backend is to receive and
interpret the payload forwarded by the ASPIRE portal, which includes the ASPIRE
application ID. Then, it accesses a shared library that contains the actual verification
functions for the given application ID. This library is built at compilation time by ACTC from
the verification functions created by the Python script. The file name must be the application
ID with the .so extension. The backend and the library must be placed in the same directory.

Finally, the CFT backend executes the verifications and connects to the ASPIRE database
dedicated to the Reaction Unit. It upgrades two tables: a specific CFT table that stores the
results of each Verifier, and a general Reaction Unit table, that can be updated by any
protection using the Reaction Unit, that contains the notifications to be sent to the devices.

The succeeding steps are managed by the Reaction Unit, responsible to send notifications
back to the device and apply the reactions.

2.5.3 Reaction Unit
The Reaction Unit (RU) is a reaction component embedded in the application that can be
used by any protection techniques. It is the component used by CFT to alter the application
in case an abnormal behaviour is detected. To be applied, its code must be compiled
together with the application by ACTC and a server side component is also required.

In the application code, an annotation is used to initialize the mechanism. The initialization
tries to connect the device to the ASCL component on the server side. If the connection is
not established, the offline mode is set and the status of the application is only updated

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 20 of 49

through the ‘reactionUnitSyncNotification’ function. If the device connects to the server, a
new thread is created to listen to the WebSocket channel. The
‘reactionUnitAsyncNotification’ is set as a callback function, called to update the device
status every time the device receives a payload from the server.

A second annotation defines where the reactions must take place. The reaction level defines
if the application will be slowed down only, if sensitive variables are to be altered or if the
application shall be crashed.

On the server-side, the Reaction Manager had already been developed to be a server
responsible to send notifications payloads to the device, triggering reactions in the client-
side. A more generic server side component, called Reaction Unit Server, has been
implemented based on the Reaction Manager.

2.5.3.1 The Reaction Manager and the Reaction Unit
The Reaction Manager (RM) developed earlier was designed to work with the Remote
Attestation (RA) described in the section 3 of D3.06. The Remote Attestation Manager sends
requests to the device asking for a code integrity verification. The results are sent back to the
server and stored in an ASPIRE database dedicated to this remote attestation. Then, the RM
queries this database and process the results according to a policy provided by the
developer of the application. At the end, it sends a notification payload to the Reaction Unit
components in the device.

This architecture correctly links this particular Remote Attestation technique to the Reaction
Unit, but it cannot be used for managing the communication between other protections and
the Reaction Unit. All the database accesses, the data processing and the policy application
are tailor made to work with the RA Manager.

2.5.3.2 Reaction Unit Server
The Reaction Unit Server, whose architecture is represented in Figure 6: CFT Reaction Unit
Server architecture, is designed to be a more generic mechanism than the Reaction
Manager. Most of its design derives from the Remote Manager developed earlier.

ASPIRE Server

Reaction Unit Server

Notification
Scanner

Payload
Sender

Reaction Notification
Queue

Database

Other ASPIRE
services

Protections using
the Reaction Unit

A
C

C
L

A
SP

IR
E

 P
or

ta
l

A
SC

L-
W

S

Reacton
Unit

Application
logic

Other
protections

Devices

Figure 6: CFT Reaction Unit Server architecture

The Reaction Unit Server can be used by any protection technique using the Reaction Unit.
The only requirement is that the protection technique must update the Reaction Unit
database. Each protection has to insert the result of its analysis in the database.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 21 of 49

There is a main notification table where each entry represents an attestation result. This
table stores the ID of the technique that performed the attestation, the ASPIRE application
ID, the status of the application (tampered or not) and the reaction level to be applied.

Additional tables can be included in the database to store important information about
particular protections and maintaining a history of the technique. Nevertheless, it is
mandatory that the technique interacts with the main notification table to be able to
communicate with the devices.

Figure 7: CFT Reaction Unit Server database with CFT table

The Notification Scanner is the component from the Reaction Unit Server responsible for
constantly scanning the database looking for unprocessed notifications. If an unprocessed
notification indicates that the application is tampered, then Notification Scanner creates a
Reaction Notification to be put in a queue.

It is the role of the Payload Sender to push and to process every element of the queue. A
pushed Reaction Notification originates a Reaction Unit Payload to be sent to the device
using the ASCL WebSocket protocol.

When the device receives a payload from the Reaction Unit Server, the
‘reactionUnitAsyncNotification’ callback mentioned before is invoked to reconstruct the
payload and update the device status, allowing the Reaction Unit in the client to apply the
required measures.

The Reaction Unit Server is a multi-threaded component. A main thread creates the other
elements and manages the communication with the WebSocket channel. In the meantime, a
pre-defined number of Notification Scanners and Payload Senders threads can run
separately.

2.5.4 Protection analysis
The online CFT, combined with the Reaction Unit, has the advantage that the logical
expression is not contained in the device because it has been placed on the server. That
way, an attacker cannot know the logical expression through reverse engineering. With
offline CFT, the Verifier codes that checks the logical expressions are a part of the
application code and are exposed to reverse engineering.

However, using the online CFT has constraints. The developer that wants to protect his
application must consider that when the execution reaches a Verifier region, there is a delay
between the dispatch of the payload containing the counter values and the application status
update that allows the reactions to be applied by the Reaction Unit. This delay exists

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 22 of 49

because the technique depends on the quality of the connection with the server. There is
also a delay due to the processing done by the CFT backend and the Reaction Unit Server.

Another aspect to be taken into account is the fact that the Reaction Unit needs a separate
thread to listen to the WebSocket channel. If an attacker identifies this thread and stops its
execution, the application will not receive the attestations results, disabling the protection. A
solution would be to insert a vital portion of the application in the same thread. That way,
killing the thread would cause the application to stop.

Finally, the CFT either offline or online can be combined with code integrity checking
techniques brought by code guards.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 23 of 49

Section 3 Renewability
Chapter Authors:

Alessandro Cabutto, Paolo Falcarin (UEL)

3.1 Finalized implementation
Since last report on Renewability (D3.08) the design and implementation did not change and
only minor improvements have been contributed. Among those improvements the most
impacting concerns the deployment layout of mobile blocks on the server side and their
subsequent renewing process. The repository structure has been updated as follows:

/opt/online_backends/AID/code_mobility/REVISION/MOBILE_BLOCK

where

• AID is the ASPIRE Application ID
• REVISION is a specific renewed version of the application instance in ‘%08x’ format

(e.g. 00000001)
• MOBILE_BLOCK represents the mobile blocks contained into the repository in

‘mobile_dump_%08x‘ format (e.g. mobile_dump_00000001)

The revision count starts from zero and is incremented by one unit each time the
diversification script is invoked. A pointer to the diversification script, produced during the
ACTC pass into directory BC05, is saved in the database backend along with other policy
information so that the Manager can invoke it when necessary.

The final implementation of the policy table (rn_application_policy) looks like the following

Newly introduced columns are highlighted. By default, new instances of the same application
start using revision 00000000, but a start_from_revision field has been introduced for future

Column name MySQL type C type Description

id INT(11) long Record id and primary key

application_id VARCHAR(32) char[32] Foreign key that references
the application.

number VARCHAR(10) char[10] Revision number.

issued_at

TIMESTMAP char[19] Automatic revision insertion
time reference.

start_from_revision VARCHAR(10) char[10] Use this revision when a
client starts.

diversification_script TEXT char[1024] Path to the diversification
script.

disable_renewability TINYINT(1) boolean Disable diversification at all.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 24 of 49

improvement. The disable_renewability flag has been introduced to allow disabling of the
whole renewability architecture for a certain application at a given time.

3.1.1 Unbinder
The Unbinder is a client side component that is used to restore calls to the Binder in GMRT
table. When invoked it loops through all GMRT entries by resetting downloaded flags and
setting up a call to the Binder instead of previously downloaded mobile blocks.

For sake of simplicity it is implemented into the same object file containing Binder
capabilities.

3.2 Renewability on use cases
The Renewability Framework is composed by several components both on the server-side
and the client-side. Those components are described in previous deliverable such as D3.06
and D3.08. To reliably verify the correct functionality of all of them a full deployment of the
architecture is needed.

Server Side. The Renewability Manager has to be running to ensure that clients are queried
for mobile blocks unbinding and code blocks are renewed. The ASPIRE Portal and Code
Mobility Server must be ready.

Client Side. The protected application must be linked to the Binder, Unbinder and
Renewability components in order to work correctly.

ACTC takes care of all the setup process both on the server and client side. A first round of
tests has been carried out on a toy example developed on purpose and then on NAGRA’s
use case.

3.2.1 Renewability on a toy example
A small toy example has been provided along with Renewability’s source code. It is very
simple but particularly useful in our test; it composed by a main function containing an infinite
loop with some delay between each operation:

while (1) {
 fn1();
 sleep(2);

 fn2();
 sleep(2);
}

Functions fn1 and fn2 are invoked continuously from the loop. They execute some
computation, emit some text on standard output and return to main. Output generated by
each function is different so that is easy to understand where it comes from. Both functions
are made mobile and renewable via annotations. While configuring ACTC’s input file, aspire.
json, we set a small timeout for diversified code blocks (see D3.08 Section 1.2 for further
details), 10 seconds in our case. In a non-renewable context mobile blocks containing
functions fn1 and fn2 would be downloaded only once. In a renewable scenario the
Renewability Manager detects client start-up and runs a process to apply pre-defined
renewability policies requesting the client to discard already downloaded mobile blocks when
necessary. By monitoring log files generated by Code Mobility Server and Renewability
Manager is easy to see that mobile blocks containing fn1 and fn2 are downloaded again and
again after timeouts expiration.

3.2.2 NAGRA use case
A full description of NAGRA’s use case can be found in D6.01 Section 2.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 25 of 49

To test renewability features on NAGRA use case we used its 1.2.1.1 version and ACTC
2.8.0. Since our renewability implementation is built on top of Code Mobility framework, only
mobile functions can be renewed, so we firstly selected some candidate functions to be
made mobile. So one of the criteria we used to select such functions is that candidates must
be repeatedly called by the client application over time. As first approach function
DrmKernel_getRightKey contained in DrmKernel.c of DRM plugin has been selected and
accordingly annotated in the source code. It is used for right verification purposes and so it is
periodically invoked (i.e. each time a content is purchased) by the application.

This scenario is similar to the one created for the toy example and can be easily validated by
using the same approach.

3.2.3 Composability with other protection techniques
Renewability has been tested successfully in combination with other techniques. First of all,
Code Mobility, but this is obvious since Renewability relies on Code Mobility Framework.
Some Binary Obfuscations (Flattening Functions and Opaque predicates) have been applied
in combination with Renewability. Finally, WBC and SoftVM have been also applied in
combination with Renewability.

To test these combinations of protections we applied annotations coming from patch files
produced to instrument source code of the use case for Tiger Team experiments. This
ensured us that suitable protections were applied in a realistic way.

3.2.4 Conclusions
The Renewability Framework provides a fully automated diversity in time deployment
system. Starting from the source code of an application is possible to obtain a first release of
binary, which can be delivered to users. Such release can then be updated on the client side
according to a pre-defined time based renewal policy. In our current implementation the
software producer defines the policy at compile time but, with minor engineering effort, is
possible to extend this feature making policies updatable at run time.

Thanks to its design Renewability can be used in combination with most of the other
protection techniques similarly to Code Mobility, used as basic component.

3.3 Practically useful software diversity
Section Authors: Bjorn De Sutter, Bart Coppens, Bert Abrath

In deliverable D3.04 – Intermediate Online Protections Report, UGent already reported its
initial work on making software diversity in space, where different users get different binaries
of their software to prevent attacks on one user's copy from attacking another user's copy.
Since D3.04 (Oct 2015), UGent has redesigned their approach and prototype
implementation, and has obtained good results. This section presents the current state, in
the form of the content of a draft paper. UGent intends to submit a full paper in early 2017,
when more measurement data will be available.

3.3.1 Introduction and Motivation
The monoculture in software, in which identical copies of programs are distributed to all
users, has long been blamed as easing the profitable exploitation of malware [For97, Coh93].
As a mitigation, software diversity has been proposed [Bau15]. This is the practice of
distributing and executing many structurally different versions of software components
without altering their observable behaviour from a benign user's perspective. The main goal
is to prevent that an identified attack path can automatically be scaled up to many systems,
thus lowering the expected profit of attacks. Many aspects of a program can be diversified

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 26 of 49

[Lar14] and diversity can be introduced at many stages of the software development life
cycle (SDLC) [Lar15]. As software diversification can protect against many types of attacks,
its use is becoming mandated for more and more systems. Examples include the
requirement in many settings to use Address Space Layout Randomization (ASLR) and
MovieLabs' Specification for Enhanced Content Protection [Mov13]. The latter mandates
software diversity and so-called copy & title diversity, albeit without prescribing specific
diversification schemes.

In practice, however, we observe that very few, and only very simple diversification schemes
gain widespread traction. With ASLR, for example, only absolute addresses are randomized.
But offsets within the code and static data segments of executable binaries remain constant,
and so do the offsets on the processes' stacks. These limitations open the door to
information leak attacks. When academics present new, more advanced diversification
schemes, industrial developers typically appreciate their usefulness in terms of protection
strength, but they also express reluctance. The costs and limitations the proposed schemes
impose on the SDLC severely restrict their practical usability. Amongst others, industrial
developers and vendors are afraid that the diversification might trigger bugs and that it will it
harder to support customers.

One of the customer support issues relates to crash collectors. Google Breakpad, for
example, is a small software component that can be embedded in applications to facilitate
the collection of useful crash reports, even when the application binaries are distributed to
end users without debug information. Its operation involving three parties is visualized in
Figure 8. When the application crashes on a user's system, the embedded Breakpad
component sends a stack dump (called minidump) to the crash collector server. On that
server, a tool then combines the minidump information with the debug information stored in a
so-called symbol file on the server. The tool then generates a stack trace, which most often
is first analyzed and classified automatically. If no equivalent traces are found in a database
of previously received traces, the vendor's developers are notified that a previously unknown
bug or previously unknown trigger has been identified, at which point they can start to study
the trace manually. For obvious reasons, crash collector tools like Breakpad have become
quite popular.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 27 of 49

Figure 8: Overview of Google's Breakpad tools for crash collection.

With spatial diversification schemes in which different users of an application execute
different code versions, the described crash collector system no longer works out of the box.
Unless the crash collector stores symbol files for all of the different versions, it will lack the
necessary information to identify and interpret the diversified stack frames in the received
minidumps. Simplistic solutions to overcome the mismatch between diversified minidumps
and a single symbol file, such as permanently storing debug information for all diversified
versions, are infeasible because symbol files are quite big. The alternative solution of
rebuilding a software version and its debug information on the server when a crash report
comes in is impractical as well: For larger programs, recompilation of every crashed version
would be compute-intensive, and it requires the precise reproduction of the developer's build
environment in the crash collection environment, which might reside on a third party's
infrastructure. Even if the precise reproduction would be considered technically feasible, it
will often be unacceptable because of security requirements, such as confidentiality.

As an alternative solution framework, we propose to extend both the diversified stack dumps
and the debug information stored on the crash collector server with a minimal amount of
delta data. Its purpose is to let the crash collection tool overcome the mismatch between the
diversified stack dumps and a single instance of debug information, without requiring large
amounts of persistent storage or communication bandwidth. Within this solution framework,
the research question then becomes the following: To which extent can we adopt
diversification techniques to provide more protection than simple ASLR without bloating the
delta data needed to support crash collection?

This is a non-trivial question because compilers are complex tools, in which seemingly trivial
diversifications of local code fragments can have global effects. On RISC architectures in
particular, we have observed that even minimal changes to the offsets between pairs of
instructions or to the sizes of stack frames can impact decisions made during instruction

debugging	information

application
code

Breakpad
client

linked
binary

Breakpad
symbol	
dumper	

Build	System

User's	System

distribute	
binary	to	end	user

Crash!	Breakpad
client	writes	minidump ...

...	and	submits	it
to	crash	collector

Crash	Collector

Breakpad
minidump
processor

human-readable
stack	trace

copy	symbol	file

symbol	file

minidump

stripped	binary

symbol
stripping

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 28 of 49

selection, register allocation, and instruction scheduling. As a result, even when it is possible
to predict the direct impact of a diversification scheme on the individual code fragments being
diversified, it is hard to predict the indirect effects on the surrounding code. Consequently, it
is quite impossible to replicate the diversification process on the crash collector server on the
basis of only the original binary, its debug information, and the parameters (such as random
seeds) that were used as input to the original diversification process. Instead, a mechanism
is needed that combines good but imperfect replication of the diversification process with
patching that can make up for the imperfection. To minimize the resource requirements
(bandwidth, storage, computational power), the mechanism should exploit the fact that the
replication and patching process only needs to produce sufficient debug information, not a
fully working binary.

In this paper, we provide a first answer to the above research question by presenting
∆Breakpad. This approach and prototype tool is the first practical solution to the problem of
crash reporting for applications with fine-grained layout diversification as a defence
mechanism against code injection and code reuse exploits. The tool and the presented
techniques comprise minimal adaptations to compilers to perform code and stack layout
diversification to significantly raise the bar for attackers, and to generate the necessary,
minimal delta data. It also comprises a method to bridge the gap between a diversified stack
dump and the debug information of an undiversified copy of the software on the crash
collector.

3.3.2 Background & Problem Statement
3.3.2.1 Offset Diversification
For our initial experiments with crash reporting for diversified binaries, we focus on
diversification schemes that alter offsets between instructions in a program binary and offsets
between elements in stack frames. We focus on compiled languages such as C and C++ that
provide no memory safety. The studied types of diversification have proven to be useful on
top of basic ASLR, because they raise the bar for information leak attacks: when offsets
within memory segments are diversified on top of the start addresses of the segments, one
leaked address no longer directly informs the attackers about the locations of all code
fragments in a binary or of all data on the stack.

We deploy the following offset diversification schemes:

• Function Shuffling The order of all the functions in a whole binary is randomized.
This randomizes inter-procedural code offsets with high entropy [Kil06].

• Randomized NOP Insertion at random locations, for some average frequency,
NOPs (no-operations) are inserted into the code bodies of all the functions in a
binary. This randomizes intra-procedural code offsets [Hom13].

• Randomized Stack Padding A random number of bytes is inserted in between the
stack locations of buffers and the stack locations of the return addresses [For97].
The impact on the stack frames is visualized in Figure 9. This randomizes the
distance from buffers to the location where the return addresses are stored, as well
as the distances between return addresses in different frames on the stack.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 29 of 49

Figure 9: Stack frames in original and diversified binaries.

To implement these forms of diversification, stochastic decision processes typically decide
on the function ordering, on the locations to insert NOPs, and on the amounts of stack
padding to insert. The stochastic decision processes are deterministic and based on a
pseudo-random number generator (PRNG). To generate diversified binaries, it then suffices
to feed the PRNG different random seeds.

Importantly, as these diversification schemes are rather simple, the stochastic decision
processes do not involve checks of complex pre-conditions on the code fragments to be
diversified. In other words, no complex compiler technology is needed to replicate the
decision process of a diversifying compiler (or other tool), outside that compiler: only the
number and order of the functions plus a minimal amount of information on the locations of
their function bodies and stack sizes need to be known. All of that information is readily
available in standard debug information.

A direct effect of all three the diversification schemes is that offsets encoded in the code
section of a binary change. With the first two schemes, the displacements between
instructions change, as does the offset of all instructions relative to the start of the code
segment of the binary. In the code section, this implies that the PC-relative offsets encoded
in, e.g., direct control flow transfers change. With the second scheme, the direct changes
occur in the displacements between the base pointer on the one hand, and the data items in
a stack frame on the other hand. So offsets encoded in stack memory operations change,
and so might the immediate operands of instructions that produce pointers to stack-allocated
data.

In all three schemes, the diversification hence results in changes to offsets encoded in
instructions as immediate operands. The indirect effect of those changes on the debug
information depends significantly on the type of processor architecture, as we discuss below.

3.3.2.2 Necessary Debug Information
Conceptually, the debug information of interest, which is embedded in the symbol files used
by Breakpad, consists of source line information on the one hand and stack unwinding
information on the other hand. For both forms of information, the code is partitioned in
regions, i.e., in short sequences of consecutive instructions. The line information then

return address

callee-saved
registers

local
area

arguments
to callees

return address

callee-saved
registers

local
area

arguments
to callees

random padding

FP FP

SP

SP

(a) original binary (b) diversified binary

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 30 of 49

consists of a single list of regions. For each region, the start address, the size, and the
corresponding source file and source line number are stored. In the symbol files that
Breakpad uses, this information is stored in human-readable form, as shown in Figure 10.
Each line containing only (hex) numbers corresponds to one region.

Figure 10: Source line mapping in the symbol file.

The stack unwinding information also consists of a list of regions. For each region the start
address is stored. In addition, for each region information is stored that pinpoints where in
the program state the stack unwinder can find the information necessary to unwind a stack.
Figure 11 shows an example of that information in the symbol file.

The post-fix expressions on registers (sp, r11, lr, ...) express how to compute the necessary
properties of the frames on the stack when execution has reached a program point in a given
region. These properties are the canonical frame address (.cfa), the return address (.ra), and
the values of callee-saved registers in a function's caller. The first three entries in the symbol
file excerpt relate to function1, which has a FP, as can be seen in the assembly code of its
prologue. Note that the ARM EABI reserves register r11 for the FP. The expression for .cfa
on the first line encodes that on entry to function1, the stack pointer (SP) still points to the
start of the function's stack frame. The second line clarifies, amongst others, that after the
push instruction, two callee-saved registers can be found on the stack, and that the SP now
points 8 bytes beyond the start of the frame.

6

!
!
!

!
!
!

!
!
!

Breakpad!
symbol!!
dumper!!

random!stack!!
binary!

default!
binary!

symbol!
differ1!

patch!
packer!

symbol!patch!2!

Breakpad!
symbol!!
dumper!!

Experimental!Build!System!

diversifying!
LLVM!

diversifying!
compilaAon! default!

compilaAon!

log!

diversifying!
Diablo!

symbol!patch!1!

fully!diversified!
binary!

trial!
Diablo!

noDop!
opportunity!log!

symbol!
differ2!

distribute!diversified!
program!to!end!user!

copy!symbol!file!!
&!opportunity!log!!
to!crash!collector!

stripped,!diversified!binary!!
with!encrypted!patches!

random!stack!
symbol!file!

default!!
symbol!file!

Fig. 3: Our prototype build system on top of two diversification tools.

4.1 Patch file 1: stack padding

As discussed in Section 3, the injection of stack padding can
cause additional instructions to be injected and existing code
to be reordered. Because our LLVM patches aim at limiting
the secundary effects of randomized stack padding, such
occurrences are rare. In particular the reordering happens
very rarely. So it is not problematic if we do not describe
the necessary patching for those cases in the most compact
form.

To generate the first patch, we developed a custom differ
(called differ 1 in Figure 3) that diffs the two symbol files
obtained from the two outputs of LLVM, i.e, the default one
and the partially diversified one. Those symbol files contain
two parts of interest.

The first part describes the mapping of function symbols
(using FUNC entries) and the mapping of instruction chunks

Description:
FUNC address size parameter_size name

address size line filenum

Example excerpt:
FUNC 157c 34 0 google_breakpad::LineReader::PopLine

157c 4 113 4

1580 30 116 4

FUNC 15b0 38 0 sys_close

15b0 4 2979 16

15b4 1c 2979 16

15d0 10 2979 16

15e0 8 2979 16

FUNC 15e8 5c 0 google_breakpad::PageAllocator::FreeAll

15e8 4 142 13

15ec 8 142 13

Fig. 4: Source line mapping in the symbol file

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 31 of 49

Figure 11: Stack walking information in the symbol file.

So in essence, when replicating the diversification of a binary to support the construction of a
stack trace from undiversified debug information, we need to be able to replicate changes to
the number and ordering of regions, changes to their start addresses and sizes, and changes
to the locations where relevant pieces of program state are stored.

3.3.2.3 Indirect effects of in x86 binaries
On variable-width CISC architectures such as Intel's x86, the indirect effects are mostly
limited to additional changes in the displacements between instructions. When, as a result of
a changed offset, less or more bytes are required to encode the changed offset as an
immediate operand to some instruction, the x86 compiler will simply generate another form of
the same instruction that uses less or more bytes, as needed. In addition, as the compiler
might decide to put certain instructions on specific alignments, e.g., to optimize instruction
fetching or instruction caching, the compiler might insert different amounts of padding when
the location of code fragments is altered because of the diversification. Most often, these
changes only alter the addresses and sizes of regions in the symbol files.

More or less the same happens as a result of the additional, randomized stack padding that
is inserted. In many functions, no instructions are present in the function prologues/epilogues
that only increment/decrement the stack pointer. To allocated/deallocate the additional
randomized padding in such functions, additional instructions have to be inserted in the
prologue/epilogue. In the symbol file, this comes mostly down to splitting regions in the stack
unwinding information.

So replicating the effect of diversification on the debug information stored on a crash
collector requires updating the number, addresses and sizes of regions, as well as the
offsets where relevant program state is stored in stack frames. To replicate these changes
when a crash report comes in from a diversified copy, it suffices for the crash collector to
have (i) the original, undiversified binary including its debug information; (ii) a script that
replays the deterministic decision processes of the randomizing diversification schemes; (iii)
and the random seeds that were used for generating the diversified binary.

7

Description:
STACK CFI INIT address size reg1: expr1 reg2: expr2 ...

STACK CFI address reg1: expr1 reg2: expr2 ...

Example symbol file excerpts:
STACK CFI INIT 1bdc f0 .cfa: sp 0 + .ra: lr

STACK CFI 1be0 .cfa: sp 8 + .ra: .cfa -4 + ˆ r11: .cfa -8 + ˆ

STACK CFI 1be4 .cfa: r11 4 +

...

STACK CFI INIT 28a4 f8 .cfa: sp 0 + .ra: lr

STACK CFI 28ac .cfa: sp 20 + .ra: .cfa -4 + ˆ r4: .cfa -20 + ˆ

r5: .cfa -16 + ˆ r6: .cfa -12 + ˆ r7: .cfa -8 + ˆ

STACK CFI 28b4 .cfa: sp 904 +

Corresponding assembler code excerpts:
<function1>:

push {fp, lr}

add fp, sp, #4

sub sp, sp, #16

...

<function2>:

push {r4, r5, r6, r7, lr}

cmp r3, #0

sub sp, sp, #884 ; 0x374

...

Fig. 5: Stack walking information in the symbol file

to source code files and line numbers (using entries starting
with the chunk’s address). An example is depicted in Fig-
ure 4. Our differ walks over all functions in this part of the
two symbol files. Per function, it first pair-wise compares
all the chunk entries. It is immediately clear whether or not
instructions were added or deleted in a function because
of the stack padding. If not, no information whatsoever
needs to be stored for the function. If instructions were only
inserted or deleted, a difference shows up in the second
column. In that case, we record which entry was changed
and how much. Furthermore, we check that the offsets
between the addresses of consecutive entries are consistent
in the two symbol files. If they show differences, we also
track that. We need to track both the changes in size and in
offset because of the potential presence of padding no-ops
and literal pools that the compiler might have inserted in
between code fragments.

When code has been reordered in a relevant manner, i.e.,
in a way that impacts this part of the symbol file, this is
obvious from the third and fourth column in a function’s
entries. In that very rare case, our differ produces a more
verbose diff record that simply states which lines to replace,
insert, and remove to convert the default symbol file entries
into the diversified ones.

All collected information is stored in the symbol patch in
order. To apply the patch, the patcher executed on the crash
collector simply walks through the default symbol file and
updates each entry on the fly, keeping track of the shifts in
absolute addresses.

The second part of the symbol file describes how to walk
the stack. Using post-fix expressions on symbolic register
names (r3,r11,lr,...), this part describes code chunks and
how to compute certain stack-related values when execution
has reached a point in a given chunk. The “registers” of
which the values can be computed are the cannonical frame
address (.cfa), the return address (.ra), and the values of
callee-saved registers in a function’s caller. The two example

excerpts in Figure 5 illustrate in interesting point. The first
three entries relate to function1 that has a FP, and for which
register r11 is reserved on ARMv7. The expression for .cfa
on the first line encodes that on entry to function1, the SP
still points to the start of the function’s stack frame. The
second line clarifies, amongst others, that after the push
instruction, two callee-saved registers can be found on the
stack, and that the SP now points 8 bytes beyond the start
of the frame. The third entry, corresponding to the program
point following the add instruction that sets the FP, indicates
that the start of the frame can be computed by adding 4 to
the FP.

In the example, function2 does not have a FP. As a
consequence, even after the sub instruction that allocates
the local area on the stack, the start of the stack frame has to
be computed by adding 904 to the SP.

When random padding is inserted, the stack part of the
symbol file changes in three ways. First, the addresses and
sizes of the code chunks in the STACK entries can change.
We keep track of those like we did for entries in the line
number part. Overall, such changes are rare.

Secondly, the numeric constants in the post-fix expres-
sions can change. With our implementation of randomized
stack padding as discussed in Section 3, such changes are
limited to STACK entries such as the last one in Figure 5
that define the .cfa in terms of the SP. Such changes are
obviously easy to check. If the .cfa is defined in terms of
the FP, the values do not change as a result of stack padding,
because the padding does not alter the location of the FP in
the stack frame. which is specified by the ARM EABI. Con-
cretely, this means that such changes only occur when the
software was compiled with the -fomit-frame-pointer
option enabled. In that case, all diversified functions with a
local stack area and a fixed SP (i.e., no varargs) will result in
at least one entry in the symbol patch.

4.2 Patch file 2: no-op insertion and function shuffling
As discussed in Section 3.1, no-op insertion only requires us
to track where no-ops, trampolines, literal pools, and jumps
over literal pools have been added or removed from the
code. Function shuffling only requires us to store the starting
addresses of the shuffled instructions. All of this information
is obtained trivially from the instruction address mapping
that Diablo produces.

It is important to realize that the insertion of the men-
tioned instructions and data, as well as the shuffling of
functions only influence the instruction addresses that occur
in the symbol file, not the source line numbers or the
stack properties. Literal pools’ addresses do not occur in
the symbol file. Inserted no-ops and inserted jumps over
(moved) literal pools can be mapped onto the same source
line as the chunk they are added to, so the effect on the
symbol file merely involves increasing the size of a chunk,
and shifting remaining chunks down in the address space.

In dynamically linked binaries or libraries, trampolines
need to be inserted very rarely. If some are needed, they
can most often be inserted right next to the branch or call
instructoin that requires the trampoline. This is the case,
e.g., when the 20 offset bits in a conditional branch do not
suffice to reach the target, but the 24 bits in an unconditional

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 32 of 49

So on architectures like the x86, for extending the flow of Figure 8 to support binaries
diversified with the three studied schemes, it more or less suffices to embed the random
seeds in the diversified binary, to patch the Breakpad client to let it send the seeds along with
the minidump to the crash collector, and to extend the Breakpad minidump processor to let it
replicate the impact of the diversification process on the symbol file. For that replication, not
the whole original compiler is needed, only a simple script that replays the stochastic
diversification decision process.

3.3.2.4 Indirect effects in ARMv7 binaries
On architectures like the ARMv7 RISC architecture, the situation is quite different. The same
effect plays, e.g., with respect to the function prologues and epilogues, but in addition, there
are many more indirect changes as a result of offset diversification. There are three
underlying reasons.

Fixed-width instruction encoding. ARMv7 instructions are 16-bit or 32-bit wide. The
immediate operands of ALU and LD/ST instructions can therefore only be quite narrow, so
when offsets grow bigger because of diversification, it can become impossible to encode
them as immediate operands. Instead, the offsets then have to be stored in registers instead.
This requires additional instructions and puts extra pressure on the register allocator, as a
result of which instructions can become scheduled in different orders. In fact, we have
observed that if the same offset has to be generated multiple times, the compiler sometimes
applies common-subexpression-elimination, which can have a global impact on register
allocation and instruction scheduling. Furthermore, we have observed that the compiler
sometimes changes the base register used in LD/ST instructions, e.g., when the offsets of a
location in the stack frame relative to the SP and/or the FP change.

Rotating immediate operands. The ARMv7 architecture has a peculiar way of encoding
offsets as 8 consecutive bits that can be rotated over a 5-bit amount. It therefore also
happens that offsets that could not be encoded as immediate operands in the original binary,
become perfectly fine ones after they have become bigger in the diversified binary. For
example, an original offset 0x3ff0 cannot be encoded in an immediate operand, but the
bigger offset 0x4000 that might result from stack frame padding can.

The visible program counter. ARMv7 code is full of PC-relative computations, both in
position-independent code and in position-dependent code. The reason is the visible
program counter. To produce constants that cannot be encoded in immediate operands, (or
constants unknown at compile time, such as absolute addresses or inter-modular offsets)
constants are often loaded from so-called literal pools: short data chunks dispersed in
between the code. These pools are accessed through PC-relative load operations. As our
diversification schemes can result in changes in the size of code, and as only narrow offsets
can be encoded, the diversification affects the location where the compiler injects the literal
pools into the stream of instructions.

In conclusion, when targeting an architecture like the ARMv7, we have to expect much
further reaching changes to the code section contents, even if we only apply our three
relatively simple offset diversification schemes.

Moreover, in this case it is impossible to replicate the changes to the corresponding symbol
file completely without replicating a lot of the compiler infrastructure that was used during
register allocation, instruction selection, and instruction scheduling. In other words, it will not
suffice to put a simple script on the crash collector server to replicate the impact of the
diversification on the symbol file.

3.3.3 The ∆Breakpad Approach
To overcome the discussed problem, our ∆Breakpad approach combines three main
concepts. The first concept is imperfect replication of the diversification process' impact on
the symbol file. The second is patching of the imperfect replication result to make it perfect.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 33 of 49

The crash collector will not only receive the necessary random seeds to replicate the
diversification decision process, but also a patch that will allow it to fix any imperfection of the
performed replication. So the ∆Breakpad client has to send both the minidump, the random
seeds, and the patch to the crash collector.

The third concept is ∆ minimization, with which we denote the adaptation of the
diversification process to minimize the sizes of the patches that the client has to send to the
crash collector.

Figure 12 presents an overview of our ∆Breakpad approach. It looks much more complicated
than Breakpad in Figure 8, but the main Breakpad components are still present, and are in
fact reused as is.

Figure 12: Overview of ∆Breakpad as an extension of Google Breakpad for reporting crashes of

diversified binaries

strip	debug	
info

Breakpad
symbol
dumper

diversified
binary

default
binary

!Breakpad
symbol	
differ

!data
packer

!data

Breakpad
symbol
dumper

Build	Systemdiversifying
compilation

tools
diversifying	compilation default	compilation

User's	System

distribute	diversified
program	to	end	user

Crash!	!Breakpad client	
writes	minidump
plus	encrypted	!data	...

...	and	submits	it
to	crash	collector

Crash	Collector

!Breakpad
replicator

Breakpad
minidump
processor

human-
readable
stack	trace

copy	symbol	file	&
opportunity	 log

decision
process	
log

diversified
symbol	file

default	
symbol	file

diversified
symbol	file

minidump

stripped
diversified
binary

stripped,	diversified	binary	
with	encrypted	!data

diversity	
opportunity	

log

diversity	
opportunity	

log

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 34 of 49

3.3.3.1 Crash Handling & Stack Trace Generation
Importantly, our ∆Breakpad approach does not require any change to the minidump that is
sent by the client to the server. The minidump file format as developed by Microsoft is similar
to core dump files, but much smaller, better documented, and less OS-specific. A minidump
contains

• A list of the executable and all shared libraries loaded into the process when the
dump was created.

• A list of the process threads, with their stacks and processor register contents.
Complete stacks are included because the applications typically do not contain debug
information to analyse the stack.

• Some more system information, incl. the processor and OS versions, as well as the
reason for the crash.

We only adapt the Breakpad client such that it sends the server a small chunk of ∆data along
with the minidump (bottom right of Figure 12). The ∆data contains the random seeds and
other parameters that the server needs to perform the imperfect replication, as well as the
aforementioned patch. The ∆data can be encrypted with the crash collector's public keys to
guarantee integrity and confidentiality.

The crash collector server still persistently stores debug information of the default binary in
Breakpad's existing symbol file format. Our approach requires no changes to that format, so
all Breakpad symbol dumper utilities for the major OSs, which simply extract the necessary
information from the DWARF or STABS debug sections in ELF object files or from stand-
alone PDB (Microsoft's Program Database format) files, still operate out of the box.

In addition, the server persistently stores a diversity opportunity log. This log is generated
during the default compilation, i.e., when the diversifying tool chain is invoked without
applying any actual diversification to generate the default binary. It lists all the opportunities
for diversification that occurred during the generation of that binary, but that were, per
definition, not exploited. For example, it lists all the program points where the diversification
process considered (but skipped) inserting NOPs. The essential feature of the diversity
opportunity log file is that it lists all decision points where, during an actual diversifying run of
the tools, random numbers are drawn from the PRNG.

When a crash report arrives on the server, the ∆Breakpad replicator replicates the impact of
the complete diversification process on the symbol file in a couple of steps. First, the
replicator extracts, decompresses and decrypts the ∆data.

Next, the replicator extracts the random seeds and parameters from the ∆data, and uses
them to replicate the impact of the diversification decision process on the default symbol file
by means of the opportunity log. To that extent, the replicator initializes a PRNG with the
same parameters and random seeds that were already used on the build system for the
actual diversification of the binary from which the crash report was achieved. The replicator
then draws random numbers from that PRNG at each point where the original diversification
process had already drawn numbers. For each drawn number, the replicator then adapts the
content of the symbol file to reflect approximately what change the diversification step had
caused on that file. The overall result of this step is an approximation of the diversified
symbol file, the latter being the symbol file that the original Breakpad symbol dumper tool had
produced on the build system for the diversified binary.

The resulting symbol file is only an approximation because the replicator only models direct
effects of the diversification, such as increased region sizes resulting from inserted NOPs,
but none of the secondary effects like the ones we discussed in Section 3.3.2.4. So finally,
the replicator extracts the patch from the ∆data and applies it to the approximation, thus
reproducing an exact copy of the diversified symbol file.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 35 of 49

As the contents of that diversified symbol file matches the contents of the received
minidump, the existing Breakpad minidump processor can then be used to produce the
human-readable stack trace, which can then be processed as needed. Notice that this stack
trace only contains information at the abstraction level of the source code. Crashes occurring
in corresponding regions in differently diversified versions of the binaries will hence produce
exactly the same stack trace. As such, all existing manual or automatic tools and techniques
to analyse and classify the stack traces still work out of the box.

3.3.3.2 Generating the ∆data
The top part of Figure 12 shows the adapted build system. On the right, the standard
Breakpad symbol dumper flow is shown to generate the default symbol file to be stored
persistently on the crash collector server. This symbol file is extracted from the default
binary.

On the left of the build system in Figure 12, the diversified binary is generated, along with the
diversification decision process log that consists of the same info as the opportunity log plus
a description of the actual result from the applied diversification, and a diversified symbol
file. Based on this log and symbol file, and on the default symbol file, the ∆Breakpad symbol
differ then generates the ∆data. Finally, the ∆data packer compresses and encrypts the data
and injects it as an additional section into the stripped diversified executable. The resulting
binary is then distributed to the end user, ready to crash.

3.3.3.3 Combining Multiple Diversification Processes
In order to make the described approach work, we need to ensure that the replication of the
decision processes on the crash collector on the basis of the opportunity log generated for
the default binary stays synchronized with the decision process as it was executed during the
generation of the diversified binary. This is non-trivial when one wants to apply multiple forms
of diversification one after the other: As the replication process does not know the exact
outcome of an earlier diversification applied to some code fragment, it does not know the
exact form of the code fragment onto which the later applied diversification is applied.

For example, suppose randomized padding is injected into a function's stack frame first, and
random NOPs are inserted in its code body afterwards, after instruction scheduling has been
performed. Given the ordering of compilation phases in a compiler, this is not an
unreasonable assumption. As discussed in Section 3.3.2.4, the injected padding can cause
changes in the number of instructions of the function body. If this actually happens, and if the
later NOP insertion process draws a random number for each instruction in the code to
decide whether or not to insert a certain number of NOPs after that instruction, the replicator
will draw more or less random numbers from the PRNG than were counted during the
generation of the default binary.

So in that case, the replication of the decision process on the crash collector will at some
point become desynchronized with how the actual diversification was decided. Unless
special care is taken, this will result in completely diverging replication from that point on,
which can only be compensated by including a huge patch in the ∆data.

To avoid this, two approaches can be combined. First, the decision processes of the
combined diversification schemes need to be carefully designed to become mostly, if not
completely independent. We achieve this by applying the later decision processes at a
granularity of code fragments that is not likely impacted by earlier decision processes.

Trivially, the order in which functions are shuffled is completely independent on the number
of NOPs inserted in them or on their stack padding size.

We also observed that although random stack padding and function shuffling often result in
changes in the number of instructions in the function bodies, in particular when the ARMv7
architecture is targeted, they only rarely impact the structure of the functions' control flow
graphs. The only occasions in which we saw this happening was when trampolines had to be

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 36 of 49

inserted or could be removed as a result of changed displacements in the code, or when
basic blocks became so big or small that they (no longer) had to be split, e.g., to provide
space for a literal pool.

We build on this observation by performing the stack padding insertion first, then the function
shuffling, and finally the NOP insertion, of which the decision process is performed basic
block per basic block, and with a fixed number of random numbers drawn per block. So
however the number of instructions in the basic blocks are impacted by the former two
diversification steps, as long as the CFG of a function is not impacted, the replicator's
decision process will remain synchronized.

To ensure that the few cases in which a function's CFG is actually impacted by the former
two diversifications do not result in a desynchronization that spills over into other functions,
i.e., to contain the desynchronization, our ∆data format offers a way to resynchronize the
decision process, i.e., the number of drawn random numbers, upon entry to a function. The
∆Breakpad symbol differ can easily determine when and where such resynchronization is
needed.

3.3.3.4 ∆ Minimization
Our main research goal is to demonstrate that crash reporting for diversified software is
feasible with minimal overhead. So we aim for small ∆data. We have opted not to achieve
that small ∆data at all cost, however. In particular, we want to make as many of the additional
processing steps of our approach as generic as possible. So we opted to design the
∆Breakpad symbol differ, the ∆Breakpad replicator, and the ∆data format to be architecture-
independent and compiler-independent.

Furthermore, apart from the restrictions discussed in 3.3.3.3, we do not want to impose strict
limitations on the freedom with which to apply the diversification schemes. For example,
when we let a compiler select a randomized amount of stack padding for some function, we
do not want to restrict its selection to values that preserve the code schedules in the function
body. Besides helping us to keep the diversification process decision logic (in the compiler as
well as in the replicator) independent of compiler internals, this ensures that the entropy
generated by means of the diversification does not depend more than strictly necessary on
artefacts of the code being diversified. From the perspective of security, this is obviously an
advantage.

Finally, we also want to limit the changes we need to make to existing compilers used for
generating and/or diversifying the binaries.

What remains then, to minimize the size of the ∆data, is the selection of the default
compilation strategy, and a minimal set of adaptations to the compilation tools to enforce the
default compilation.

For the three forms of offset diversification that we evaluated, we only found one generically
useful adaptation that can be implemented with minimal changes to the compiler: To
generate the default, non-diversified binary, ensure that all functions to which random stack
padding will be added during the diversification, get 8 bytes of such padding. During the
diversification itself, add 8 bytes or more of padding to all those functions.

There are two reasons why this adaptation is useful. First, because it enforces the insertion
of padding in all functions, it limits the number of cases where the code regions in the
function prologues and epilogues need to be split as discussed in Section 3.3.2.3.
Furthermore, we observed quite some functions where the local area of a stack frame only
holds relatively large arrays whose sizes are powers of two. In those functions, the
prologues/epilogues contain instructions that increment/decrement the SP with large values
of which the least significant bits are all zeroes. Those values can hence be encoded as
immediate operands in the ARMv7 and similar architectures. By adding another 8 bytes of
padding, a lower bit becomes set as well. So in those functions, the value can no longer be

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 37 of 49

encoded as an immediate operand in the default binary, just like it won't be encoded as an
immediate operand in the diversified binary. The average difference between the default
binary and the diversified binaries, and hence the average amount of information to be stored
in the ∆data, is hence reduced. For other functions, such as those with small local areas, the
added 8 bytes typically don't change anything. But there the insertion of a (limited) amount of
random padding does not change anything either.

An additional advantage is that this adaptation can be implemented very easily in a
(diversifying) compiler, as it is completely architecture-independent. In, e.g., a diversifying
version of the LLVM 3.6.2 we only needed a 3-line patch.

In addition, we also adapted the LLVM ARM back-end, with a one-line patch that disables the
optimization in which accesses via the FP are selected over accesses via the SP depending
on the offsets of a stack location to those two base registers. This patch also reduces the
number of changes introduced in the diversified code as a side-effect as discussed in
Section 3.3.2.4.

3.3.3.5 Profile-Guided Diversification
Some forms of diversification can benefit from profile information to reduce the performance
overhead. For example, as it is typically not necessary to insert a random number of NOPs in
between every pair of instructions, the performance overhead of NOP-insertion can be
reduced by concentrating NOPs on infrequently executed program points.

Our approach supports such profile-guided diversification without any problem: as long as
both the default compilation and the diversifying compilation runs are served the same profile
information, the decision process logs and the diversity opportunity log will be consistent with
each other, so the ∆Breakpad replicator will work just fine.

3.3.4 Experimental Evaluation
3.3.4.1 Experimental Setup
As we want to demonstrate that our approach can work with acceptable ∆data sizes, we
evaluated it on the more challenging ARMv7 architecture. In particular, our proof-of-concept
implementation supports the 32-bit subset of the ARMv7-A architecture. So in our
experiments, we do not target 16-bit Thumb or Thumb2 code.

To ease our research, the uncompressed ∆data we generate consists of simple human-
readable ASCII text files. With more but relatively simple engineering, smaller patch sizes
can be obtained. So any ∆data sizes we report, i.e., sizes of the ASCII text files, are upper
bounds on what could be achieved with a more mature implementation. Moreover, there size
would still be reduced if they are compressed, e.g., with bzip.

As noted in literature, diversification processes can be applied at many stages during the
SDCL. To demonstrate that we can actually support combinations applied at different stages,
we opted for the following tool flow.

First, we adapted LLVM 3.6.2 to apply randomized stack padding. In our prototype
implementation, all functions get a random stack padding between 8 and 256 bytes, but
always a multiple of 8 bytes. This ensures that the generated code keeps respecting the
ARM EABI, which requires stack frames of non-leaf functions to be aligned on 8-byte
boundaries.

Next, we use the standard GNU linker to perform function shuffling. In preparation, we use
the -ffunction-section compiler flag to ensure that each function is put into a separate code
section in the generated object files. To perform the actual shuffling, we simply generate a
linker script that enforces a shuffled order of all the code sections, and hence of all functions.
This way, we only use existing functionality, and we did not need to apply any patch to the
GNU code base.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 38 of 49

Finally, we use the post-link-time binary code rewriter Diablo (http://diablo.elis.ugent.be) to
perform randomized NOP insertion, implementing a decision process as discussed in
Section 3.3.3.3.

As a result of using three separate tools, our prototype implementation functions slightly
differently from the approach presented in Section 3.3.3.3. In particular, the ∆data consists of
two parts, and the ∆Breakpad replicator correspondingly applies not just one decision
process replication followed by one patching phase, but two iterations consisting of a round
of replication and a round of patching.

3.3.4.2 Benchmarks and Correctness
For evaluating and testing the ∆Breakpad approach, we relied on C and C++ benchmarks
from the SPECint 2006 benchmark suite. We compiled the benchmarks with a patched LLVM
3.6.2 to deploy stack padding (with flags -g -O2 -ffunction-sections -fomit-framepointer) used
the binutils ld linker version 2.23.2 with customized, randomized linker scripts to perform the
function shuffling, and used Diablo to apply the NOP insertion. The produced, diversified
benchmarks were executed on the test inputs to verify their correctness.

3.3.4.3 Overhead
Table 1 presents the measurements results on the SPECint benchmarks we used. It is clear
that the ∆data is in the order of kilobytes, even for the largest benchmarks of which the
binaries are multiple MB large. It can also be seen that the diversification itself adds little size
overhead, and that the sizes of the extra files to be stored in the crash reporting server are
acceptable. In particular, the opportunity log adds in between 5% and 20% to the server-side
data (i.e., the data to be stored there on top of the default symbol file).

Table 1: Size overheads for crash reporting

Extensive performance measurements are still being conducted. We can already report,
however, that the performance overhead of using diversification is small on the user system.

3.3.5 Related Work
In the past, both spatial and temporal software diversity has been proposed as a solution to a
wide range of problems: Instruction set randomization can prevent, or at least delay, reverse-
engineering and tampering [Wil09]. Multi-variant execution can be used to detect malware
intrusions [Vol15]. Limited, rather coarse-grained forms of run-time randomization, such as
address space layout randomization (ASLR), are widely used and significantly raise the bar
for memory corruption attacks [PAX04]. In the academic literature, more fine-grained forms

Benchmark
!data	

(average)
!data	
(max)

	!data	
(average)

	!data	
(max)

!data	
(average) !data	(max)

!data	
(average)

!data	
(max)

opportunity	
log	

default	
symbol	file	

diversified	
symbol	
file	

(average)

stripped	
default	
binary

average	
stripped		
diversified	
binary

perlbench 225 285 142 180 510 1394 877 1859 365618 1831701 1831377 1083072 1083087
bzip2 274 480 40 55 347 451 661 986 15299 93199 93205 77080 77080
gcc 1495 2994 378 410 2235 3582 4109 6986 1164354 5403175 5409708 3153972 3154145
mcf 80 83 15 18 0 0 95 101 2355 20086 20084 17032 17032
milc 127 130 44 61 0 0 170 191 29588 226073 225544 133976 133977
namd	 111 207 285 312 16 48 412 567 48542 349884 350079 255356 255387
gobmk 1125 1448 169 190 2245 2474 3539 4112 214270 1557066 1556648 3298912 3298912
soplex 889 979 258 315 157 470 1304 1764 95159 816099 815740 349300 349358
povray 1479 2633 794 876 1861 2031 4134 5540 234612 1853193 1854007 922332 922344
hmmer 254 413 266 303 40 119 559 835 86187 509540 509726 284796 284817
sjeng 493 913 29 38 313 509 835 1460 33796 207938 208293 148684 148660
libquantum 58 59 50 67 0 0 108 126 8300 64305 64333 43224 43013
h264ref 434 475 239 276 55 58 728 809 116478 1078908 1079615 623380 623380
lbm 66 67 22 32 0 0 88 99 1011 21048 21037 14444 14444
omnetpp 163 189 263 308 260 780 687 1277 114649 1007846 1008165 648160 648160
astar 94 126 49 60 0 0 143 186 8155 77388 77307 39220 39219
sphinx3 339 540 93 118 318 381 750 1039 48310 284746 284306 181572 181572

file	sizes	(bytes)
stack	padding function	shuffling NOP	insertion three	diversifications	combined

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 39 of 49

of diversification have been proposed to raise the bar even further [Kil06,Giu12], including for
code dynamically generated with JIT compilers [Hom13]. Dynamic temporal diversity has
been proposed to mitigate timing side channel attacks [Cra15]. Advanced software
fingerprinting schemes can help in identifying the source of illegitimate software copies
[Col07]. Diversification can prevent collusion attacks to identify software vulnerabilities based
on patches [Cop13]. Some software vendors diversify the code of their applications when
major new versions are released, to hide the location of the new, valuable functionality in the
new versions. Obfuscation tools and other software protection tools inherently rely on
diversification to minimize the learning capabilities of attackers and to achieve stealthiness
[Col09]. Microsoft diversifies the Window's system call numbering over time to prevent
(malicious and benign) software targeting APIs they do not want to keep backwards
compatible [Jur].

With the exception of the latter form of diversification, the other forms can only provide strong
protection if code is diversified, i.e., if the diversification is not limited to changes in the
embedded data.

3.3.6 Conclusions
With ∆Breakpad, we have demonstrated that it is possible to diversify software in space, i.e.,
distribute different versions of software to different users, and still obtain accurate crash
reports without too much overhead. It suffices to include a couple if kilobytes of extra data in
the binaries, and to send that data to the crash server along with the stack trace to restore a
debug report on the crash server. As such, we have brought the distribution of diversified
software one step closer to commercial viability.

3.4 Validation of Metrics for maximizing software diversity
Chapter Authors: Alessandro Cabutto, Paolo Falcarin (UEL), Mariano Ceccato (FBK)

D3.08 Section 4 reports our experimental results about maximizing software diversity. After
that we improved the analysis with a validation of metrics used in our work. Following sub-
sections contain considerations about NCD, its applicability to the experimentation context
and some usage guidelines.

3.4.1 Effect of Different Code Representation
As a black-box metric, NCD requires no knowledge about the content of the files to compare.
In fact, the semantics of the compared files is not considered. The compared files are never
parsed, they are just read and compressed, possibly after concatenation (see Equation 1).

𝑁𝐶𝐷 𝑣%, 𝑣' =
𝐶 𝑣%𝑣' − min	(𝐶 𝑣% , 𝐶 𝑣')

max	(𝐶 𝑣% , 𝐶(𝑣'))

Equation 1: Normalized Compression Distance formula

As such, several different code representations could be potentially considered when
computing NCD, and they might be not equivalent.

We consider several representation of the code. They are:

• Jar: This is the Java bytecode. We obtain Java bytecode from Android apps by
converting their Dalvik bytecode with the dex2jar tool [dex2jax];

• Javap: The Disassembled textual representation of the Java bytecode. We obtain
this representation by executing the javap disassembler, which is part of the official
Java Development Kit, distributed by Oracle. Disassembled code contains the
instructions that comprise the Java bytecode, for each of the methods in a class;

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 40 of 49

• Java: Decompiled Java source code, obtained by running the jd Java Decompiler [jd]
using jd-cmd [jd-cmd] command line tool.

Alternative representation should be considered, because an attacker might be working on
any of them to elaborate, reuse or adapt an attack. In fact, Android apps are distributed as
Dalvik bytecode, a high level language that is quite easy to convert with popular tools (as
those used in our experimental setting). After conversion, an attacker might work on the
representation that is more appropriate to her/his experience.

Name Category Downloads Score Size (kB) Classes

Airdroid Utility 10-50M 4.5 2.000 2.165

Chrome Internet Browser 500-1.000M 4.3 3.484 3.069

ESX-File Explorer Utility 500-100M 4.6 4.720 4.107

Go Tetris Game 10-50M 4.3 163 190

Opera Internet Browser 100-500M 4.4 267 185

Twitter Social Network 100-500M 4.1 747 634

Table 2: Subject apps considered in the experimental study.

As case studies, we consider real world Android apps. We select 6 from the most popular
apps as ranked in the official Android store, namely Google Play (data collected in 2013).
They spread on different categories (utility, social network, games, internet browser) and
their popularity goes from 10 to 500 millions of downloads. Their size is between 100kB to
almost 5MB. The smallest apps contain about 200 classes, while the largest apps contain
about 4,000 classes. Table 2 lists the apps considered in this study, with their category,
popularity (number of time they have been downloaded), the score given by users (i.e.
number of stars in the range [0-5]) and their size and the number of classes in the app.

We generate many different versions of each app using Zelix KlassMaster8 a commercial
obfuscation tool for Java and Android. Zelix KlassMaster supports 15 distinct configuration
parameters to control which transformations are activated and how they are configured. For
each app, we obtain 15 variants by simply running this tool on the original app 15 times, each
time with a distinct parameter activated.

3.4.1.1 Analysis of NCD Distribution
To study the impact of the representation used to compute NCD, we compute NCD among
pairs of the same app obfuscated in different versions.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 41 of 49

Figure 13: Histogram of NCD based on Jar representation.

Figure 13 shows the histogram of the distribution of NCD values when computed on the Java
bytecode. NCD values are concentrated on the left-hand size of the graph, with the majority
of them around 0.2. Generally low distance might be due to a number of reasons. Maybe the
adopted obfuscation is ineffective in generating quite different versions, or the Java bytecode
format might include common recurring structures that (independently from the classes
content) make versions all quite similar.

Figure 14: Histogram of NCD based on Javap representation.

Figure 14 shows the histogram of the distribution of NCD value computed on the
disassembled Java bytecode. Differently from the previous case, now most of the NCD
values populate the right-hand side of the graph, suggesting that higher values of NCD can
be reached on average. Thus, we can exclude that the adopted obfuscating tool is
ineffective.

Eventually Figure 15 shows the histogram of the distribution of NCD values computed on the
decompiled Java source code. Decompiled code seems to have a trend similar to dis-
assembled code, with most of the values in the right-hand side of the graph. In the following,
we will Investigate these NCD distributions are not just similar but also correlated.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 42 of 49

Figure 15: Histogram of NCD based on Java representation.

Table 3 reports the corresponding descriptive statistics (median and standard deviation).
Values in this table confirm that NCD computed on bytecode (Jar) tends to assume low
values, while NCD computed on the textual bytecode representation (Javap) and on the Java
source code (Java) on average assumes higher values. The comparison of this trend is also
evident in the boxplot of NCD reported in Figure 16.

Representation Mean SD

jar 0.28 0.24

javap 0.63 0.21

java 0.61 0.22

Table 3: Descriptive statistics

Figure 16: Boxplot of NCD based on different program representation.

3.4.1.2 Analysis of NCD Correlation
Then, we study if there is any correlation between NCD computed on different code
representations. To this aim, we use the Pearson correlation test, available from the R
statistical package [r-stat]. This test computes the correlation coefficient r, a symmetric,
scale-invariant measure of association between two random variables. It ranges from −1 to
+1, where the extremes indicate perfect (positive or negative) correlation and 0 means no
correlation. The correlation is considered significant when the p-value is <0.05 (assuming a
confidence of 95%). Significant cases will be reported in boldface.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 43 of 49

Table 4 shows the results of the analysis of correlation of NCD among all the pairs of
representations. As we can see, the only case of statistically significant correlation is
between the bytecode representation (Jar) and the Java source code representation (Java)
with a correlation coefficient r = 0.75.

 Javap Java

 Correlation P-value Correlation P-value

Jar 0.07 0.19 0.75 <0.01

Javap - - 0.07 0.24

Table 4: Analysis of correlation (Pearson correlation test).

This result suggests that using Jar or Java to compute NCD would lead to overall similar
research considerations, because the two distance metrics are correlated.

Based on these results, we can formulate the following:

NCD computed on the disassembled Java bytecode (Javap) and on Java code (Java)
assumes higher values than NCD computed the Java bytecode (jar). NCD computed on the
Java bytecode (Jar) and computed on the decompiled Java source code (Java) are highly
correlated, however the former one tends to contains lower values of distance than the later
one. NCD computed on the disassembled Java bytecode (Javap) are not correlated with
NCD computed on the other representations.

3.4.1.3 Guidelines
Based on the experimental results and observations, we can formulate the following
guidelines for NCD users:

The size of the files to compare matters. When using NCD, researchers and practitioners
should pay attention to the size to the files that they are measuring. In fact, the most common
compression algorithms, namely gzip and bzip2, involve serious limitations to the file size,
respectively 32Kbytes and 470Kbytes (see D3.08 Section 4.2.2). Depending on the adoption
domain, the most common compression algorithms could be still usable. However, in our
case, we had to measure distance among Android apps, whose code size clearly exceeds
these limits. Thus, the only option was to compute NCD with rzip as compression algorithm,
because its validity interval was compatible with our domain.

Validate NCD before using it. Many more compression algorithms are available to
researchers and practitioners, and all of them can be potentially used to compute NCD. We
recommend adopting the approach described in D3.08 Section 4.2.2 to validate new
compression algorithms before using them for NCD. Validity intervals should be identified
and respected in the particular adoption context.

NCD on compiled code is lower than NCD on textual code. The difference in code
representations involves a difference in the distribution of distance values. In particular, NCD
tends to assume lower values when computed on compiled Java bytecode, and higher
values on its corresponding textual representation, disassembled or decompiled code (see
analysis of NCD distribution, Section 3.4.1.1). Researchers and practitioners should be
careful in evaluating the performance of their diversifying tools, when they tools generate
compiled programs with low distance values. In fact, when considering compiled code, NCD
values are, on average, quite low. This trend is probably connected to the particular structure
of compiled code, that is subject to distance measurement.

NCD on Java bytecode is correlated with NCD on Java source code. Decompiled code
represents an alternative to compute distance among programs that is highly correlated with

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 44 of 49

distance on compiled bytecode (see analysis of NCD correlation, Section 3.4.1.2). When
source code is not available or not easy to recover, using the compiled bytecode represents
a good proxy (high correlation). Even if they are highly correlated, NCD based on compiled
bytecode assumes on average low values, while NCD based on decompiled source code
assumes quite high values. This difference in distributions of values could be useful when
NCD is used in analysis algorithms that are sensitive or problematic when distance values
are near to 0 or near to 1.

3.4.1.4 Conclusions
NCD has been used to measure difference between programs. Despite this metrics looks
intuitive and easy to implement, it involves dangerous pitfalls. We showed that the interval of
validity of NCD depends on the underlying compression algorithm, which could limit this
metrics to files whose size is of few kilobytes or of many megabytes. Moreover, NCD
computed on Java source code is highly correlated to the NCD computed on Java bytecode,
but little correlated with NCD computed on disassembled Java bytecode.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 45 of 49

Section 4 Conclusions
Chapter Authors:

Alessandro Cabutto, Paolo Falcarin (UEL), Bjorn DeSutter (Ugent), Cataldo Basile (POLITO)

The work of the ASPIRE consortium in the online protections work-package (WP3) has
achieved more than the foreseen objectives, by delivering through the project many
innovative results: the design, development, implementation and integration of code & data
mobility; client-server code splitting; static, dynamic, and implicit remote attestation; anti-
cloning; and several forms of renewability (incl. native code diversity in space and time, WBC
renewability and bytecode diversification).

The Renewability Framework has been fully integrated with ACTC and successfully tested
against use cases, relying on the code mobility framework to provide diversity in time
deployment features to the ASPIRE Framework; it has been applied to some of the ASPIRE
online protection techniques:

• bytecode and SoftVM diversification, such that each software instance can have a
custom bytecode and interpreter to limit the learnability of the client-side code splitting
protection;

• mobile code diversity, such that mobile code can vary from one program execution to
another, again to limit the learnability of the code and the ease to collect and combine
multiple execution traces of the same program;

• white-box crypto renewability, such that by delivering re-randomized keys by combining
code and data mobility, attackers can only reuse broken keys for very short time frames.

In parallel with the aforementioned renewable forms of protections, code diversity in space
was further researched: one on error reporting for diversified code, and another on diversity
maximization (whose results has been published in a conference paper [ssbse16]).

Static Remote Attestation and anti-cloning protections had been integrated into the ACTC.

Implicit Remote Attestation (IRA) has been fully designed based on the Dynamic Remote
Attestation (DynRA), as a technique that monitors the correct execution of an application
based on its invariants. DynRA has been improved, extended, and tested on an open source
application; unfortunately, it has not been tested on use cases as no tools are available for
the ARM platforms to extract traces compatible with the tool for invariants extractors
(Daikon).

Control Flow Tagging (CFT) has been implemented and integrated with ACTC and used in
combination with other online and offline protection techniques.

Reaction Mechanisms are used to degrade the application when tampering has been
detected. They are typically called by the CFT protection when a CFT attestation is not
verified successfully, and they have been applied on the OTP use case.

Reactive attestation is another form of reaction, based on the cooperation between remote
attestation and client-server code splitting, which transforms applications to make them de-
pendent on the server, applies remote attestation to detect modification, and thus reacts by
stopping serving compromised applications: a peer-reviewed paper on this combination of
protections has been published [raadrst].

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 46 of 49

Support for occasionally connected scenarios was supposed to rely on the integration be-
tween the SFNT SoftVM, code mobility, and the Implicit Remote Attestation (IRA) technique.
The composability analysis, at the end of year 2, has showed that the techniques are not
composable: the main reason is that IRA and code mobility would need a VM that emulates
an entire physical machine to support occasionally connected scenarios and temporarily
substitute the real server. However, the SFNT SoftVM cannot be used to this purpose, being
a protection technique to be injected into existing applications.

However, we exceeded the expectations by providing additional solutions not foreseen in the
DoW: fully automated static and dynamic remote attestation, reactive attestation, integration
of code mobility and remote attestation, IRA was implemented with invariants monitoring and
even applied to the use-cases.

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 47 of 49

Section 5 List of Abbreviations
ACTC ASPIRE Compiler Tool Chain

AID ASPIRE Application ID

ALU Arithmetic- Logic Unit

ARM Not an acronym, only a company name and its architecture

ASPIRE Advanced Software Protection: Integration, Research and Exploitation

CFG Control Flow Graph

CFT Control Flow Tagging

DynRA Dynamic Remote Attestation

DynRA -DS Dynamic Remote Attestation Data Structure

EABI Embedded Application Binary Interface

FP Frame Pointer

IRA Implicit Remote Attestation

LD/ST Load/Store

LLVM Low-Level Virtual Machine (now just the name of the compiler project)

NCD Normalized Compression Distance

NOP No-Operation

OS Operating System

PC Program Counter

PRNG Pseudo Random Number Generator

RA Remote Attestation

SP Stack Pointer

SQ Similarity Quality

WBC White-Box Cryptography

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 48 of 49

Bibliography
[Bau15] B. Baudry and M. Monperrus, “The multiple facets of software diversity: Recent

developments in year 2000 and beyond,” ACM Comput. Surv., vol. 48, no. 1, pp.
16:1–16:26, Sept. 2015. [Online]. Available: http://doi.acm.org/10.1145/2807593.

[Cil05] R. Cilibrasi, P.M.B. Vitanyi, Clustering by compression, IEEE Trans. Inform.
Theory, 51:12(2005), 1523–1545.

[Ceb05] M. Cebrian, M. Alfonseca, A. Ortega, "Common pitfalls using the normalized
compression distance: what to watch out for in a compressor", Communications
in Information & Systems Vol. 5, No. 4, pp. 367-384, 2005

[Coh93] F. B. Cohen, “Operating system protection through program evolution,”
Computers & Security, 1993.

[Col07] C. Collberg, C. Thomborson, and G. M. Townsend, “Dynamic graph-based
software fingerprinting,” ACM Trans. Program. Lang. Syst., vol. 29, no. 6, Oct.
2007. [Online]. Available: http://doi.acm.org/10.1145/1286821.1286826

[Col09] C. Collberg and J. Nagra, Surreptitious Software: Obfuscation, Watermarking,
and Tamperproofing for Software Protection, 1st ed. Addison-Wesley
Professional, 2009.

[Cop13] B. Coppens, B. De Sutter, and K. De Bosschere, “Protecting your software
updates,” Security Privacy, IEEE, vol. 11, no. 2, pp. 47–54, March 2013.

[Cra15] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz, “Thwarting
cache side-channel attacks through dynamic software diversity,” in Proceedings
of the Network and Distributed System Security Symposium, Feb 2015.

[For97] S. Forrest, A. Somayaji, and D. Ackley, “Building diverse computer systems,” in
Proceedings of the 6th Workshop on Hot Topics in Operating Systems (HotOS-
VI), ser. HOTOS ’97. Washington, DC, USA: IEEE Computer Society, 1997, pp.
67–72. [Online].

[Hom13] A. Homescu, S. Brunthaler, P. Larsen, and M. Franz, “Librando: transparent code
randomization for just-in-time compilers,” in Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, ser. CCS ’13. New
York, NY, USA: ACM, 2013, pp. 993–1004. [Online]. Available: http:
//doi.acm.org/10.1145/2508859.2516675

[dex2jax] Dex2jar tool. On-line at https://sourceforge.net/projects/dex2jar/

[Giu12] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced operating system
security through efficient and fine-grained address space randomization,” in
Proceedings of the 21st USENIX Conference on Security Symposium, ser.
Security’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 40–40. [Online].
Available: http://dl.acm.org/citation.cfm?id=2362793.2362833

[jd] Java Decompiler project. On-line at http://jd.benow.ca/

[jd-cmd] Command line Java Decompiler. On-line at https://github.com/kwart/jd-cmd

[Jur] M. Jurczyk, “Windows X86 system call table (NT/2000/XP/2003/Vista/2008/7/8),”
[Online] Available: http://j00ru.vexillium.org/ntapi/.

[Kil 06] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address space layout permutation
(ASLP): Towards fine-grained randomization of commodity software,” in
Proceedings of the 22Nd Annual Computer Security Applications Conference,

D3.09 Renewability Report

ASPIRE D3.08 PUBLIC Page 49 of 49

ser. ACSAC ’06. Washington, DC, USA: IEEE Computer Society, 2006, pp. 339–
348. [Online]. Available: http://dx.doi.org/10.1109/ACSAC.2006.9  

 [Lar14] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated software
diversity,” in Proceedings of the 2014 IEEE Symposium on Security and Privacy,
ser. SP ’14. Washington, DC, USA: IEEE Computer Society, 2014, pp. 276–291.
[Online].

[Lar15] P. Larsen, S. Brunthaler, and M. Franz, “Automatic software diver- sity,” Security
Privacy, IEEE, vol. 13, no. 2, pp. 30–37, Mar 2015

[Mov13] MovieLabs Specification for Enhanced Content Protection – Version 1.0, Motion
Picture Laboratories, Inc., 2013.

[PAX04] PaX Team, “Address space layout randomization,” http://pax.
grsecurity.net/docs/aslr.txt, 2004.

[r-stat] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2015.

[raadrst] Alessio Viticchié, Cataldo Basile, Andrea Avancini, Mariano Ceccato, Bert Abrath,
and Bart Coppens. 2016. Reactive Attestation: Automatic Detection and Reaction
to Software Tampering Attacks. In Proceedings of the 2016 ACM Workshop on
Software PROtection (SPRO '16). ACM, New York, NY, USA, 73-84. DOI:
http://dx.doi.org/10.1145/2995306.299531

[rzip] RZip algorithm. On-line at https://en.wikipedia.org/wiki/Rzip

[ssbse] M Ceccato, P Falcarin, A Cabutto, YW Frezghi, CA Staicu, “Search Based
Clustering for Protecting Software with Diversified Updates”. In International
Symposium on Search Based Software Engineering (SSBSE-2016), pp 159-175,
Springer.

[Vol15] S.Volckaert, B.Coppens,andB.DeSutter,“Cloning your gadgets: Complete ROP
attack immunity with multi-variant execution,” Dependable and Secure
Computing, IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2015.

[Wil09] D. Williams, W. Hu, J. W. Davidson, J. D. Hiser, J. C. Knight, and A. Nguyen-
Tuong, “Security through diversity: Leveraging virtual machine technology,” IEEE
Security and Privacy, vol. 7, no. 1, pp. 26–33, Jan. 2009. [Online]. Available:
http://dx.doi.org/10.1109/MSP.2009.18

