

Advanced Software Protection:
Integration, Research and Exploitation

D3.08
Renewability Report

Project no.: 609734
Funding scheme: Collaborative project
Start date of the project: 1st November 2013
Duration: 36 months
Work programme topic: FP7-ICT-2013-10

Deliverable type: Report
Deliverable reference number: ICT-609734 / D3.08 / 1.0
WP and tasks contributing: WP 3 / Tasks 3.3
Due date: July 2016 – M33
Actual submission date: 9 September 2016

Responsible Organization: UGent
Editor: Bart Coppens
Dissemination Level: Public
Revision: 1.0

Abstract:
We present an update to the support for renewability, which includes support for renewable
white-box crypto, and improved interactions between the remote attestation protection and
mobile code. We describe our research on diversification: published experiments we
performed to maximize diversification, and diversified bytecode generation for the SoftVM.
Keywords:
Renewability, white-box crypto, remote attestation,
code mobility, diversification

D3.08 – Renewability Report

ASPIRE D3.08 PUBLIC II

Editor
Bart Coppens (UGent)

Contributors (ordered according to beneficiary numbers)
Bjorn De Sutter (UGent)

Brecht Wyseur (NAGRA)
Alessandro Cabutto, Paolo Falcarin (UEL)

Andreas Weber (SFNT)

The ASPIRE Consortium consists of:

Ghent University (UGent) Coordinator & Beneficiary Belgium

Politecnico Di Torino (POLITO) Beneficiary Italy

Nagravision SA (NAGRA) Beneficiary Switzerland

Fondazione Bruno Kessler (FBK) Beneficiary Italy

University of East London (UEL) Beneficiary UK

SFNT Germany GmbH (SFNT) Beneficiary Germany

Gemalto SA (GTO) Beneficiary France

Coordinating person: Prof. Bjorn De Sutter
E-mail: coordinator@aspire-fp7.eu
Tel: +32 9 264 3367
Fax: +32 9 264 3594
Project website: www.aspire-fp7.eu

Disclaimer
The research leading to these results has received funding from the European Union Seventh
Framework Programme (FP7/2007-2013) under grant agreement n° 609734.
The information in this document is provided as is and no guarantee or warranty is given that
the information is fit for any particular purpose. The user thereof uses the information at its sole
risk and liability.

D3.08 Renewability Report

ASPIRE D3.08 PUBLIC III

Executive Summary
In this Deliverable, we present an update to the work on renewability. This represents the
documentation of Deliverable D3.07 of type prototype. We discuss the improvements for
renewable white-box cryptography, which allows us to change the WBC tables dynamically by
sending different instances as part of mobile code blocks. Furthermore, we describe how we
extended the interaction between remote attestation and mobile code. When code regions in
a protected application are now to be protected ‘at start-up’, and this application also contains
mobile code, the delivery of the first mobile block will be postponed until the attestations of
these regions have been performed. This way, the mobile code can be used as an effective
anti-tampering reaction, even for short-lived applications. Previously, all mobile code could be
delivered to a tampered application if the requests for mobile code where completed before
the (asynchronously executed) attestations had occurred.

We also present our research into code diversification. Concretely, we present our research
into maximizing the diversity of a set of applications using machine learning. We do so by
comparing diversified applications pair-wise and applying different search heuristics. We also
briefly present the new Background contributed to the project by SFNT with regards to the
diversification of the bytecode central to the client-side code splitting protection (also called
SoftVM) of WP2.

D3.08 Renewability Report

ASPIRE D3.08 PUBLIC IV

Contents

Section 1 Introduction .. 1

Section 2 Renewable WBC ... 2

Section 3 Server Side Support .. 3

3.1 Code Mobility Server .. 3

3.1.1 Renewability support .. 3

3.1.2 Remote Attestation support .. 3

3.2 Renewability Manager .. 4

3.2.1 Renewability policies .. 4

3.2.2 Renewability support tools .. 5

3.2.2.1 Framework setup .. 5
3.2.2.2 Create a new application .. 5
3.2.2.3 Create a policy .. 6
3.2.2.4 Create new revision .. 6

Section 4 Experiments to maximize diversity .. 7

4.1 Introduction ... 7

4.2 The experimental procedure ... 7

4.2.1 Filtering Twin Obfuscations .. 7

4.2.2 Validity of the Normalized Compression Distance .. 9

4.3 Experimental results ... 10

4.3.1 Distribution of similarity ... 10

4.3.2 Effectiveness of Filtering ... 10

4.3.3 Diversified versions ... 11

4.4 Conclusion .. 12

4.5 Future work ... 12

Section 5 SoftVM Bytecode Diversification .. 13

5.1 Introduction ... 13

5.2 Implementation and integration .. 13

Section 6 List of Abbreviations ... 15

Bibliography ... 16

D3.08 Renewability Report

ASPIRE D3.08 PUBLIC V

D3.08 Renewability Report

ASPIRE D3.08 PUBLIC VI

List of Figures
Figure 1 Interval of validity of the Normalized Compression Distance 9

Figure 2 Histogram of Similarity for Skype ... 10

D3.08 Renewability Report

ASPIRE D3.08 PUBLIC VII

List of Tables
Table 1 Obfuscation transformations that pass filtering ... 10

Table 2 Results of clustering .. 11

D3.08 Renewability Report

ASPIRE D3.08 PUBLIC Page 1 of 16

Section 1 Introduction
Chapter Authors:

Bart Coppens (UGent)

In this deliverable, we report on the progress we made since Deliverable D3.06 in M30 on the
research and development related to the renewability aspects of the ASPIRE project. This
document also serves as the documentation to deliverable D3.07 of type Prototype. We start
with an update of the support for renewable white-box cryptography in Section 2. Next, we
discuss the extended server-side support for renewability in Section 3. This includes both
support for this renewable white-box cryptography, and improved interactions between remote
attestation and code mobility.

The next two sections report on research we performed on diversification. First, Section 4
presents the results of research in applying machine learning to maximize diversity. This
resulted in a paper that was accepted at the Symposium on Search Based Software
Engineering. Finally, Section 5 briefly reports the work SFNT has contributed as background
research regarding the diversification of its SoftVM bytecode.

D3.08 Renewability Report

ASPIRE D3.08 PUBLIC Page 2 of 16

Section 2 Renewable WBC
Chapter Authors:

Bart Coppens (UGent), Brecht Wyseur (NAGRA)

In Deliverable D3.06 in M30, we already delivered a partial implementation of renewable white-
box cryptography (WBC). Since then we have improved the integration of this technique in the
ACTC with the following additions.

Firstly, we extended the ACTC to generate and call scripts that compile WBC primitives on an
ASPIRE server. Different invocations of these scripts will produce different instantiations of
WBC primitives that have been compiled in exactly the same way as each other, but for
different random seeds. This will result in binary files that differ in the data sections that store
the WBC tables.

Next, we extended the Diablo component of BLP04 to produce additional meta information
about the mobile blocks that have been extracted from the binary. This meta information
contains information about where which data sections are placed in the mobile blocks. This
information is then used to replace data chunks in the mobile code blocks that were extracted
from the client-side application by the ACTC, and inject the data blocks from the renewed
server-generated diversified WBC instances.

Finally, we extended the mobility server to let it serve the server-generated mobile code blocks
instead of the client-extracted ones. This is discussed in more detail in Section 3.

D3.08 Renewability Report

ASPIRE D3.08 PUBLIC Page 3 of 16

Section 3 Server Side Support
Chapter Authors:

Alessandro Cabutto, Paolo Falcarin (UEL)

This section reports the work of Task 3.1 on Code Mobility, Task 3.3 on Renewability.

3.1 Code Mobility Server
The Code Mobility Server is the server-side component in charge of mobile blocks delivery.
It’s design and implementation has been reported before in D3.02 Section 3.3.3 and during the
last months it has been enriched to support new features such as Mobile Code and Data
Renewability and Remote Attestation.

According to SLOCCount the actual core implementation is composed by ~270 lines of ANSI
C code.

3.1.1 Renewability support
D1.04 Section 6 reports different renewability strategies. The strategy we implemented is the
Basic Renewability Strategy that foresees diversification in time of mobile blocks. The support
to achieve diversification of blocks has been provided by UGent through a bash script that is
able to extract new blocks given the object file from which to take data and original blocks path.
Those new blocks are finally stored into the Code Mobility’s repository.

Since the first Code Mobility Server release the mobile blocks repository access strategy
evolved to support new features. Firstly the server was deployed along with blocks (i.e. in the
same directory), then during the ACTC integration phase an agreement on a shared location
for server-side backends repositories has been defined between online protections owners.
This well-known location on the file system is bound to the ASPIRE Application ID so that for
each application instance the only requested parameter to access data is the AID itself. To
support renewability a further extension to this design has been made: we introduced a new
level into the code mobility repository path so that the final version is in the following form

/opt/online_backends/AID/code_mobility/REVISION/MOBILE_BLOCK

where

• AID is the ASPIRE Application ID
• REVISION is a specific renewed version of the application instance in ‘rev%08x’ format

(e.g. rev00000001)
• MOBILE_BLOCK represents the mobile blocks contained into the repository in

‘mobile_dump_%08x ‘ format (e.g. mobile_dump_00000001)

The directory rev00000000 always contains ‘original’ blocks (i.e. the blocks generated from the
first ACTC pass).

3.1.2 Remote Attestation support
The Remote Attestation protection technique owned by POLITO provides the capability of
detecting certain tampering actions on a target application. Information about the status of the
protected application is stored in a MySQL database shared between protection techniques
server-side backends. Supported statuses are:

• UNKNOWN
No information about the status is yet available

D3.08 Renewability Report

ASPIRE D3.08 PUBLIC Page 4 of 16

• COMPROMISED
According to the Remote Attestation the application has been tampered with

• NONE
No tampering actions has been detected

The initial status is UNKNOWN and as soon as an attestator collects enough information to
express a verdict the value stored into the database is updated.

To strengthen the protection of provided by Code Mobility and Remote Attestation for regions
marked to be attested at start-up we decided to combine the effect of those protection
techniques by extending the Code Mobility Server so that it refuses to serve mobile blocks to
applications marked as tampered with.

To further improve the effect of this combination a second update has been done: no mobile
block will be served until the application reaches a NONE status. The transition from status
UNKNOWN to NONE guarantees that Remote Attestation has detected no malicious action.
This feature mitigates the exposure of mobile code to possibly attacked applications; in fact
Code Mobility protected applications suffer dynamic analysis and memory dump attacks. If an
attacker collects enough memory dumps (maybe after several runs) containing already
delivered mobile blocks can understand the protection scheme and even try to patch the
application to circumvent the blocks’ download mechanism by injecting the dumped ones.

The combination of those two protection techniques in the presented way introduces a
drawback: deadlocks. When a certain mobile block is requested to the server and it is required
to complete the Remote Attestation procedure that writes the NONE status to the database
then a deadlock state is met. The Code Mobility Server waits for an input from Remote
Attestation and vice versa. To overcome this issue we decided to set specific constraints of
composability between protection techniques; of course the first constraint states that crucial
code for initial attestation procedures cannot be made mobile.

3.2 Renewability Manager
Renewability Manager is the server-side component in charge of orchestrating delivery to client
applications of diversified versions of specific mobile blocks. To achieve this goal it uses
renewability support from UGent (see D5.08, Section 3.1) and relies on the Code Mobility
Server (Section 3.1).

3.2.1 Renewability policies
The implemented policy is time based.

Renewability policies are stored in a dedicated MySQL database called RN_development. This
database contains information about managed applications, i.e. policy parameters and issued
revisions (renewed releases). That information is persisted in the following tables:

• rn_application Stores information about existing applications.

• rn_revision Stores information about issued revisions.

Column name MySQL type C type Description

application_id VARCHAR(32) char[32] Application id and primary key

description

TEXT char[50] Optional application description

inserted_at

TIMESTMAP char[19] Automatic application insertion
time reference.

D3.08 Renewability Report

ASPIRE D3.08 PUBLIC Page 5 of 16

• rn_application_policy Stores information about applications’ policy definition.

3.2.2 Renewability support tools
Some tools have been developed as API access to the renewability framework. Though those
tools is possible to integrate with ACTC and easily take advantage of renewability features.
Those tools are mainly implemented as bash scripts and can be used to perform basic
renewability operations. Renewability support tools are intended to be used inside the ASPIRE
VM but can be easily adapted to run in a standard Linux box.

3.2.2.1 Framework setup
Firstly, the renewability server-side backend has to be setup (once per VM instance): the
database support needs to be initialized and some support files have to be created. An
automated script (database_setup.sh) able to do so is provided; the same tool can be used to
reset an existing installation.

3.2.2.2 Create a new application
In order to start using renewability, an entry for a new application has to be inserted into the
rn_application table. An optional description can be provided and creation time is logged
automatically. To create such an entry a ‘create_new_application.sh’ script is provided; it takes

Column name MySQL type C type Description

id INT(11) long Record id and primary key

application_id VARCHAR(32) char[32] Foreign key that references the
application.

number VARCHAR(10) char[10] Revision number.

issued_at

TIMESTMAP char[19] Automatic revision insertion time
reference.

apply_from

TIMESTMAP char[19] Start of revision’s validity range.

apply_to

TIMESTMAP char[19] End of revision’s validity range.

Column name MySQL type C type Description

application_id VARCHAR(32) char[32] Application Identifier.

revisions_duration INT(11) long Default revisions duration is
seconds.

timeout_mandatory

TINYINT(1) bool Defines whether revisions’
timeout has to be strictly
respected.

D3.08 Renewability Report

ASPIRE D3.08 PUBLIC Page 6 of 16

the ASPIRE Application ID and a description as arguments. Application ID is unique and the
insertion of an existing one will result in an error.

3.2.2.3 Create a policy
A policy defines how the Renewability Manager should behave with respect to a given
application. The implemented policy is time based (i.e. a renewed version is released when a
timeout expires) and for each application is possible to define some parameters:

• Revisions Duration
Specifies the number of seconds after which a new diversified version should be
issued and served to a client application.

• Timeout Mandatory
Specifies if server-side components have to stop serving a client that does not
acknowledge a revision change within a given timeout.

To define a policy, a support tool is provided (create_new_policy.sh). It takes the ASPIRE
Application ID, the revision duration and the timeout mandatory as arguments.

3.2.2.4 Create new revision
A new revision consists of a set of diversified mobile blocks obtained by means of the
update_mobile_blocks.sh script.

To create a new revision for a certain application a support script (create_new_revision.sh) is
provided. It takes the ASPIRE Application ID, a revision number, a diversified source object
file and the validity range as arguments.

When a new revision is requested, the original mobile blocks set is cloned into a new directory
named after the revision number. This set is used to create a new diversified one and a
reference to that revision is stored in the database. Depending on revisions’ validity range, the
Renewability Manager, will request the client to unbind its already downloaded mobile blocks.
New requests for mobile blocks will result in new revision delivery.

D3.08 Renewability Report

ASPIRE D3.08 PUBLIC Page 7 of 16

Section 4 Experiments to maximize diversity
Chapter Authors:

Alessandro Cabutto, Paolo Falcarin (UEL), Mariano Ceccato (FBK)

This section reports the work of Task 3.3 on Software Diversity: its improvement and extension
since last report (D3.04, M24), and experimental results.

The results of this work has been reported in a paper titled "Search Based Clustering for
Protecting Software with Diversified Updates", that will be published in October 2016 in the 8th
edition of the annual symposium dedicated to Search Based Software Engineering
(SBSE2016), co-located with the 32nd Conference on Software Maintenance and Evolution
(ICSME2016).

4.1 Introduction
IN D3.04 Section 7.2 we already presented the problem formulation, the case studies, the
algorithms and the metrics that we to applied during our experimentation. We closed our last
report with an open problem: the search space reduction (see D3.04 Section 7.2.5). We solved
that problem by formulating and applying a reduction algorithm (see Filtering Twin Obfuscation
section for more details). During our work we also realised that we were applying NCD metrics
calculation outside its validity domain; we also found a solution to address this issue (see
Validity of the Normalized Compression Distance section).

4.2 The experimental procedure
The empirical investigation is conducted according to the following experimental procedure:

• The original version of an app (as it is distributed by the apps market) is subject to all
the atomic obfuscation transformations available in Zelix KlassMaster (no combinations
of obfuscations);

• Twin obfuscations (i.e. obfuscations that do not introduce much similarity) are then
detected and one of them is excluded for this particular app;

• The remaining atomic obfuscation transformations are applied to the app, in all the
possible combinations, resulting in the versions candidate for diversified updates;

• Pairwise similarity is computed among all the pairs of these versions;
• The search heuristics (agglomerative clustering, hill climbing and genetic algorithm) are

applied to compute optimal clustering based on similarity.

Agglomerative clustering is a deterministic algorithm and it requires a fixed number of fitness
function evaluations that is equal to the number of versions to group into the clusters.
Conversely, hill climbing and genetic algorithm are non-deterministic, so we set a search
budget: in particular, they are stopped after 100.000 fitness function evaluations or when a
plateau (a local optimum) is detected.

4.2.1 Filtering Twin Obfuscations
Many versions can be generated by blindly combining all the available code obfuscation
transformations. However, some of these distinct transformations in the catalogue could
generate programs that are not so different, so they should be detected and excluded.

D3.08 Renewability Report

ASPIRE D3.08 PUBLIC Page 8 of 16

Since transformations can be combined, let’s call the transformations in the catalogue the
atomic obfuscations. If we consider 𝑚 atomic obfuscations, we can elaborate 𝑛 = 2𝑚 distinct
combinations of atomic obfuscations to deliver 𝑛 candidate versions for updates. Since the
number of versions 𝑛 is exponential in the number of atomic obfuscations 𝑚, we need to
carefully select the 𝑚 atomic obfuscation to keep, i.e. only the relevant ones.

When two atomic obfuscations are just small variations of the same transformation algorithm,
or when they are two different algorithms that emit very similar obfuscated code (for example
an atomic obfuscation only targeting and rewriting exception handling code may have little
effect on an original application with few exception code blocks), it does not make sense to
consider both of them for diversity. Including one of the two similar variants is enough, and the
other can be considered redundant: we propose to apply a preliminary filtering to drop some
of the 𝑚 atomic obfuscations from the search space, when they are not promising as a
diversifier component for the application. When two atomic obfuscations 𝑎 and 𝑏 are very
similar to each other, we call 𝑎 and 𝑏 twin obfuscations.

Our approach to detect twin obfuscations and filter them out is as follows:

• We consider only the atomic obfuscations, i.e. each version is obtained by applying
only an atomic obfuscation from the catalogue: in this way, we only obtain 𝑚 versions;

• We compute the pairwise similarity of these 𝑚 versions. Similarity values are stored in
a similarity matrix of size 𝑚	×	𝑚. A value in the similarity matrix in the 𝑖-th row and 𝑗-th
column represents the similarity between version 𝑖 and version 𝑗;
For each atomic obfuscation 𝑎, the 𝑎-th row in the similarity matrix represents the
signature vector 𝑋,. The signature vector contains the similarity values between 𝑎 and
all the other 𝑚 − 1 obfuscated versions. The 𝑏-th element of this vector, namely 𝑋,(𝑏),
represents the similarity between code obfuscated with 𝑎 and code obfuscated with 𝑏.

• Two atomic obfuscations are twins when their signature vectors are very similar, i.e.
the two transformations generate code with the same values of similarity when
compared with the same alternative versions. We compute the twin value 𝑡,,3 be- tween
atomic obfuscation 𝑎 and 𝑏 as the square of the distance between their signa- ture
vectors 𝑋, and 𝑋3 with the sum of squared residuals:

𝑡,,3 = 𝑋, 𝑖 − 𝑋3(𝑖) 4

567..9,5:,,5:3

• When all the pairwise twin values 𝑡;,< are available (one for each obfuscation pair

(𝑥, 𝑦)), we sort them in ascending order to detect the most likely twins;
• We exclude the twins by excluding the atomic obfuscations with lowest twin values. Let

us say that 𝑡,,3 is the smallest value among all the twin values (first value in the sorted
set). At this stage, we can exclude either 𝑎 or 𝑏. To decide which one to exclude, we
consider the next twin value 𝑡;,< (in the sorted twin values in ascending order). There
could be three cases:

o (𝑥 = 𝑎) ∨ (𝑦 = 𝑎): we make the decision to exclude 𝑎;
o (𝑥 = 𝑏) ∨ (𝑦 = 𝑏): we make the decision to exclude 𝑏;
o (𝑥	 ≠ 	𝑎) ∧ (𝑦	 ≠ 	𝑎) ∧ (𝑥	 ≠ 	𝑏) ∧ (𝑦	 ≠ 	𝑏): we make no decision at this point and

we iterate. We consider the next twin value 𝑡B,C in the sorted list, and we
compare 𝑎 and 𝑏 with 𝑤 and 𝑧.

There are multiple strategies to decide when to stop excluding twin obfuscations. A possible
strategy is to set a threshold and exclude atomic obfuscations whose twin values are below
the threshold. Alternatively, we can set a target size 𝑚F,; for the number of atomic
obfuscations and stop filtering when this target is met, i.e. when 𝑚 ≤ 𝑚F,;.

In this work, we opted for the second strategy. We set the upper limit to the number of versions
𝑚𝑛F,;	to 500. Therefore, the number of atomic obfuscations 𝑚 is approximately 9 (2G 	=

D3.08 Renewability Report

ASPIRE D3.08 PUBLIC Page 9 of 16

	512). Eventually, the number of pairwise similarity values 𝑘 to measure is 130,816, in fact the
distinct pairs of 𝑛 versions are 𝑘 = 9(9J7)

4
. The number of atomic obfuscations 𝑚 can be actually

larger, because some combinations cause errors in the obfuscation tool or simply do not work.
Thus more atomic obfuscations are required to meet the target number of versions 𝑛.

The filtering strategy is required to keep the number of versions to generate and the number
similarity values to measure limited to a tractable size.

4.2.2 Validity of the Normalized Compression Distance
We adopted NCD calculation as distance metrics as described in [Cil05] and firstly we chose
gzip as compressor but then we realized that we were using NCD outside its validity domain.
This particular issue was introduced by our particular compressor choice, in fact for historical
reasons (mainly for 16-bits systems compatibility) the gzip’s deflate algorithm uses a very small
"history buffer" (i.e. the portion of data considered to detect redundancy and apply
compression) of 32kB. Therefor, according to [Ceb05], the maximum input file size using NCD
with gzip as compressor is 32kB; applying it to bigger files results in distance values close to
1 (maximum distance) even when comparing very similar files. This and other common pitfalls
using the NCD distance metrics are explained and benchmarked in details in [Ceb05].

Since our candidate’s size is generally between 5 and 20MB we analysed the source code of
gzip investigating the effort required to modify its standard implementation to increase the
history buffer. This goal seemed to hard to obtain in the short term and so we decided to look
for a compressor replacement; we firstly evaluated bzip2 but its history buffer is 900kB, still not
enough for our purposes. We eventually found a compression program called rzip [rzip] that
was specifically designed by its author to overcome the history buffer issue; its actual limit is
about 900MB.

Figure 1 Interval of validity of the Normalized Compression Distance

After this we proved its validity when used as NCD compression function and so we ran a
sanity check using the technique proposed by [Ceb05]: we studied the idempotency property
of NCD based on rzip that requires 𝑁𝐶𝐷(𝑥, 𝑥) = 0. We took a large text file and we truncated
it to have a shorter file 𝑥. Then we plot 𝑁𝐶𝐷(𝑥, 𝑥) for increasing size of 𝑥, from 0 to 1GB with
steps of 16MB. This experiment eventually showed that the idempotency property (0 distance
between 𝑥 and 𝑥) is satisfied when the size of files is lower than 448MB and NCD values are
not reliable for larger files (as shown in Figure 1).

D3.08 Renewability Report

ASPIRE D3.08 PUBLIC Page 10 of 16

4.3 Experimental results
4.3.1 Distribution of similarity
First of all, we examine the distribution of the values of similarity. Figure 2 shows the histogram
of Similarity for Skype. The histogram contains all the versions, after filtering twin obfuscations,
for approximately 130,000 pairs.

As we can see, values of similarity are clustered in two groups. A first group that contains quite
dissimilar pairs is centered in 0.4, ranging mostly in the interval [0.1, 0.5]. The second group
contains quite similar pairs and it is centered in 0.8. Diversified updates would be selected
among versions whose similarity falls in the first group.

Figure 2 Histogram of Similarity for Skype

4.3.2 Effectiveness of Filtering
Table 1 shows which atomic obfuscations remain after applying filtering, more precisely, which
atomic obfuscations are combined to diversify the code. A check mark shows when an atomic
obfuscation (column) passes filtering and so it is used to generate candidate diversified
versions for a case study (row). The last row summarizes on how many apps each obfuscation
has been applied. As we can see, the set of obfuscations that passes filtering is quite different
among different apps. Some obfuscations are applied to most of the case studies (two
obfuscations are applied to all 10 apps, an obfuscation to 9 apps and four obfuscations are
applied to 8 apps), while others are used less frequently (one obfuscation is applied on 2 apps
and two obfuscations are applied to 3 apps).

This suggests that the filtering step is quite app dependent, because the effectiveness of
atomic obfuscation transformations in diversifying the code indeed depends on the code to
transform. Thus, there is no universal rule on what atomic obfuscations to adopt in general
when diversifying the code. The filtering step shall be repeated for each app that we want to
diversify.

It should be noted that this filtering step is fully automatic, based on the algorithm presented in
Section 4.2.1.

Due to the fact that the obfuscation tool Zelix KlassMaster (that we do not control) fails to
generate certain configurations, the number N of the atomic obfuscations required to reach
𝑛F,; combinations is different for different case study apps.

Table 1 Obfuscation transformations that pass filtering

App Atomic obfuscations

D3.08 Renewability Report

ASPIRE D3.08 PUBLIC Page 11 of 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

airdroid x x x x x x x x x x x x

chrome x x x x x x x x x x

contacts x x x x x x x x x x x

esx-explorer x x x x x x x x x x

facebook x x x x x x x x x x

gotetris x x x x x x x x x x x

opera x x x x x x x x x x

skype x x x x x x x x x x x

twitter x x x x x x x x x x x x x x x

wordfriends x x x x x x x

Total 10 6 9 7 7 2 7 3 3 7 8 8 8 4 8 10

4.3.3 Diversified versions
After filtering twin obfuscations, we applied the three search heuristics to the subject apps, to
see how many diversified versions they are able to identify. Table 2 compares the results of
the three search heuristics on the 10 apps, relevant values are highlighted in boldface. We
observe negative values of similarity quality 𝑆𝑄 when, according to the equation

𝑆𝑄 =
1
𝑛Q

𝐴5 −
1

𝑛Q(𝑛Q − 1)
2

9S

567

𝐸5,U

V

5,U67

the inter-similarity term 𝐸5,U prevails on the intra-similarity term 𝐴5.

Agglomerative Clustering was able to elaborate the most diversified versions for the majority
of the cases (for 6 out of 10 apps), because the corresponding clustering configurations score
the highest values of Similarity Quality. Hill climbing elaborated configurations that were always
more diversified in the other four cases.

Considering the number of clusters, the Genetic Algorithm was able to identify the largest set
of diversified versions in almost all the apps (9 out 10 apps). In two of them, the number of
diversified versions was quite impressive (107 versions for esx-filexplorer and 96 versions for
skype) however the corresponding Similarity Quality was low, but still comparable with the
values obtained with the other two approaches. Hill Climbing elaborated optimal configurations
with many clusters for the remaining app (i.e., opera). Eventually, the greedy algorithm
elaborated large sets of diversified versions for no app.

Table 2 Results of clustering

App
Agglomerative Clustering Hill Climbing Genetic Algorithm

SQ N SQ N SQ N

D3.08 Renewability Report

ASPIRE D3.08 PUBLIC Page 12 of 16

airdroid 0.3533 13 0.3377 24 0.2093 35

chrome 0.4547 10 0.4148 28 0.2332 35

contacts 0.5431 15 0.4786 23 0.2447 34

esx-explorer 0.1637 11 0.3193 27 0.2068 107

facebook -0.5674 14 0.0017 17 -0.1105 27

gotetris 0.3927 12 0.3711 32 -0.0346 34

opera 0.2934 16 0.3854 26 0.2360 41

skype 0.4351 10 0.4287 32 0.2502 96

twitter 0.4337 13 0.4255 24 0.2562 41

wordfriends -0.5792 12 0.0011 10 -0.1991 15

Average 0.1923 13 0.3164 24 0.1292 46

4.4 Conclusion
In this work, we tackle the problem of maximizing software diversity by searching the best
subset of diversified code versions to be deployed in parallel or within an update plan. Many
candidate diversified versions are generated using combinations of off-the-shelf obfuscation
transformations, which can generate a huge number of possible versions; we proposed an
algorithm to reduce the number of versions to generate, by discarding redundant obfuscations
for the particular application code, and then we use clustering to identify the most different
versions to deploy. The empirical assessment shows that our approach works in diversifying
10 popular Android apps.

4.5 Future work
As future work, we intend to investigate alternative metrics to compute similarity in a way that
approximate more appropriately program difference from an attacker point of view. In particular
it would be interesting to prove that a strong correlation does occur between NCD calculation
over javap code (as we did) and NCD calculation over java code and even directly on bytecode.
We are actually trying to produce enough experimental material to submit a paper on this topic
to the 2nd International Workshop on Software Protection (SPRO2016).

D3.08 Renewability Report

ASPIRE D3.08 PUBLIC Page 13 of 16

Section 5 SoftVM Bytecode Diversification
Chapter Authors:

Andreas Weber (SFNT)

5.1 Introduction
The implemented VM-diversity integrates into the ACTC as of D5.08 and extends the work
contributed for WP2, Task 2.3, client-side code splitting (as presented in D2.03 and D2.08) by
turning its LLVM-based VM into a diversifiable design.

Protecting native code by translating it into bytecode for an embedded VM is considered an
effective obfuscation technique because it confronts an attacker with code for an unknown
machine. This means an attacker trying to understand the protected code is forced to first
analyze the implementation of the VM and use that knowledge to build an appropriate
disassembler before being able to study the semantics of the bytecode. Unfortunately this
protection scheme is prone to significant learning effects on the attacker's site, as once a
disassembler is available the "unknown machine" property does not apply anymore, which
means analyzing the bytecode is of similar difficulty as analyzing the native code of a maybe
obscure but known CPU architecture.

VM-diversity aims at mitigating this problem by not embedding a fixed VM into the protected
application, but instead generates a different VM for every unique invocation of the protection
tools and embeds this VM together with its specific bytecode into the protected application.
Thereby a "unique invocation" is characterized by the specific ARM code that will get translated
into bytecode (the specific chunks defined in the JSON) and a seed value that initializes a
pseudo random number generator steering all "random" decisions in the diversity process.
Mutating either parameter results in a different VM whose bytecode is not compatible with
other VMs. This means different applications have different VMs, but also a single application
has different VMs when protected multiple times using different seed values. The second
property is especially useful because it does not only slow down an attacker analyzing the
bytecode but also prevents code-lifting between differently protected copies of the same
application.

[Note of the editor: As this report is public, and the specifics of the diversification scheme itself
are to remain confidential, no details of that scheme are discussed here. Instead, this report
only discusses how the delivered implementation was integrated with the rest of the ASPIRE
protections and tools. That integration of SFNT's Background constitutes SFNT's (and
UGent's) Foreground work on this topic.]

5.2 Implementation and integration
SFNT contributes its solution for VM-diversity as background. This solution had been fully
integrated into the XTranslator to be easily usable by the ACTC. From the perspective of the
ACTC protecting a binary with a diversified VM is not much different from protecting the binary
with a pre-written VM.

In both cases Diablo passes the JSON defining the to-be-translated native code chunks to the
XTranslator and receives the necessary assembly gluecode and the final size of the bytecode
images. With this information Diablo finalizes the layout of the shared object's memory image
(linking all additional components and applying its binary transformations) and determines the
addresses of the memory objects the chunks reference. After obtaining this information Diablo
triggers the XTranslator a second time to receive the final bytecode images which now embed

D3.08 Renewability Report

ASPIRE D3.08 PUBLIC Page 14 of 16

the necessary memory offsets, so that the bytecode can interact with its enclosed process
memory.

Protecting with a diversified VM slightly changes this picture as in this case XTranslator's first
phase does not only generate the gluecode and the image sizes, but also the source code of
a diversified VM in C. The VM's instruction set is pseudo-randomly generated from a seed
value and the specific input chunks it should support. This results in a VM that is specific to its
intended code (different JSONs produce different, incompatible VMs) and to the particular
seed value used for VM generation (identical JSONs with different seeds produce different,
incompatible VMs). The generation of the diversified VM's instructions set is completely
deterministic, so that XTranslator's second phase is in fact able to create bytecode images that
match the already generated VM from phase one (assuming an identical seed and identical
code is passed into phase one and phase two).

Integrating VM-diversity into the ACTC boils down to executing an additional build step
between XTranslator's phase one and phase two. This build step takes the generated C source
code of the VM and creates the vm.a archive which is then statically linked into the protected
binary by Diablo.

An XTranslator supporting VM diversification had been delivered to Ghent Aug 19th. Aside
from a small integration hiccup that was addressed by an additional point release, integration
went well and Ghent confirmed successful integration into the ACTC August 24th.

D3.08 Renewability Report

ASPIRE D3.08 PUBLIC Page 15 of 16

Section 6 List of Abbreviations
ACTC ASPIRE Compiler Tool Chain

AID ASPIRE Application ID

ASPIRE Advanced Software Protection: Integration, Research and Exploitation

NCD Normalized Compression Distance

RA Remote Attestation

SQ Similarity Quality

WBC White-Box Cryptography

D3.08 Renewability Report

ASPIRE D3.08 PUBLIC Page 16 of 16

Bibliography
[Cil05] R. Cilibrasi, P.M.B. Vitanyi, Clustering by compression, IEEE Trans. Inform. Theory,
51:12(2005), 1523–1545.

[Ceb05] M. Cebrian, M. Alfonseca, A. Ortega, "Common pitfalls using the normalized
compression distance: what to watch out for in a compressor", Communications in Information
& Systems Vol. 5, No. 4, pp. 367-384, 2005

[rzip] https://en.wikipedia.org/wiki/Rzip

