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Executive Summary 
This deliverable reports the year two RTD progress in WP3 on the topic of online protection 
techniques. Six major sections report on the progress of the three tasks in WP3. 
First, Task 3.1 (Client-Server Code and Data Splitting) is reported. UEL has developed the 
ASPIRE Client-side Communication Logic (ACCL) and the ASPIRE Server-side 
Communication Logic (ASCL), with the new feature of bidirectional communication based on 
Websocket protocol, and the related network APIs that will be used by all the online 
techniques developed in WP3, such as the different remote attestation techniques of Task 
3.2, and the renewability techniques of Task 3.3 that will be developed in the third year of the 
project. 
UEL and UGent have integrated the Code Mobility framework in the ACTC and 
accomplished a performance analysis of the framework in different network settings and 
configurations, which is reported in this deliverable; the overall Code Mobility framework  has 
been described in a paper titled "Software Protection with Code Mobility", published in the 
ACM Proceedings of the Second Workshop on Moving Target Defense [Cab15], co-located 
with the 22nd ACM Conference on Computer and Communications Security (CCS-2015).   
FBK has performed an empirical assessment to estimate the preliminary impact of applying 
Client/Server Code Splitting on two case study applications: the simple License Checker and 
the Diamante license-checker use case in ASPIRE. 
Second, Task 3.2 (Remote attestation) is reported: POLITO reports on the detailed Remote 
Attestation framework architecture, with an additional analysis of the composability of remote 
attestation with the other ASPIRE protections. POLITO and UGent developed the static 
remote attestation framework based on binary diversification and the dynamic remote 
attestation based on invariant monitoring. 
NAGRA describes its Anti-Cloning protection implementation, the server-side policy and the 
composability issues. 
Third, Task 3.3 (Renewability) is reported; UEL designed the overall architecture for 
renewability in time and space (software diversity) that will rely on Code Mobility extensions, 
planned for the 3rd year of the project, and reported in deliverable D1.04-v2 (Reference 
architecture). Here we report on the process and decisions made in the consortium to agree 
on the common architecture and the decision on which protections can be made renewable 
in time.  
UEL and FBK report on their work aiming at maximizing diversity among different diversified 
copies using a search-based approach on a set of versions generated on a cluster of 
machines. Different heuristics have been tested and initial results are reported. 
UGent reports on its initial work on the new feedback-driven diversification, and their new 
crash-reporting framework for diversified binaries: dBp (delta Breakpad). It is the first 
practical solution to the problem of crash reporting for applications with fine-grained layout 
diversification. UGent's approach allows embedding a small amount of encrypted information 
in a diversified application that, when sent to a bug crash collector together with a crash 
report, supports the reconstruction of an accurate, human-readable stack trace without 
requiring any persistent storage of data about the diversified application on a server.     
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Section 1 Introduction 
Section Author:  

Paolo Falcarin (UEL) 

 

The goal of this deliverable (see GA Annex II DoW part A) is to document the updates and 
the tool support for the online protection techniques delivered in ASPIRE’s Work Package 3, 
namely: Code Mobility, Client/Server Code Splitting, Remote Attestation, Anti-Cloning and 
Renewability.  

The remainder of this text report first discusses in detail the ASPIRE Client Server 
Architecture, with more details on the ASPIRE Client-side Communication Logic (ACCL) and 
the ASPIRE Server-side Communication Logic (ASCL) and the implemented APIs, on which 
the online protection techniques rely for their network communications. 

Some of the online protection techniques are integrated into the ASPIRE Compiler Tool 
Chain (ACTC), such as Code Mobility and Client/Server Code Splitting. Other techniques 
such as Remote attestation and anti-cloning will be integrated by M30, while all the diversity 
and renewability techniques will be integrated by the end of the project at M36. 

Section 2 introduces the new version of the ASPIRE Client/Server Communication logic, 
allowing server-initiated transactions. Section 3 reports the updates on Code Mobility, while 
Section 4 on Client/Server Code Splitting. Section 5 details the design and initial 
implementation of Remote attestation, while section 6 describes the detailed design of anti-
cloning. Finally, Section 7 introduces the extended architecture and plan for renewability, and 
the initial works on software diversity (renewability in space). 
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Section 2 The ASPIRE Client-Server Architecture 
Section authors: 

Paolo Falcarin, Alessandro Cabutto (UEL) 

This section reports on the updates on the ASPIRE Client-Server Architecture and include 
the final WebSocket protocol design, which was drafted in the first version of D1.04 
document (reference architecture) and finalized in D1.04 v 2.0 (M24).  

2.1 The ASPIRE Client/Server Communication Logic (ACCL/ASCL) 
Major updates to the ASPIRE Client-Server Architecture occurred to the WebSocket Protocol 
which has been extended to better support Remote Attestation and Client-Server Code 
Splitting techniques. The first one explicitly needs server-initiated communication while the 
latter needs low latency communication between client and server. WebSocket protocol can 
fit both those requirements. 

An implementation for Android and Linux of the Client/Server Communication Logic has been 
delivered for use in the ASPIRE Build Virtual Machine by all partners. 

In D1.04 is reported the overall design and in this document more details about the 
communication are given. 

2.1.1 Bidirectional communication 
The WebSocket protocol has been extended so that it can provide full bidirectional 
communication. By design WebSocket has a non-blocking behaviour and data delivery is 
managed by callbacks invoked by a service handler that runs in a separate thread. Therefor 
data flow has to be managed by the ACCL and ASCL components using synchronization 
primitives. 

The WebSocket channel is initially opened from the client-side when a specific handler 
(callback function) for incoming data is set. The callback is implemented inside the protection 
technique code and is in charge for incoming payload managing. On the server-side a similar 
scenario is set up inside the ASCL component. The channel initialization event is signalled 
by the ASCL to the protection backend via a named pipe. 

The five different messages that can be sent over the pipe are described in the following 
sections. Messages respect the format described in Table 1. 

 

4 bytes 4 bytes N bytes 

Message ID Payload Size PAYLOAD 

Table 1 - Messages format 

where 

• Message ID is the identifier of the current message 
• Payload size indicates the size of the payload in bytes 
• Payload is a buffer containing the original payload 

 

Possible values for Message ID are: 
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Message ID Message 

0 Channel initialization 

1 Payload ‘send’ received 

2 Payload ‘exchange received 

3 Connection closed 

 

The ASCL never inspects incoming payloads content, its only duty is to deliver them to the 
service backend. 

 

Channel initialization 
This message is sent to the protection backend service to allow it to initialize internal 
structures. In this phase the protection backend should prepare for the eventual arrival of 
payloads coming from the client. The Application ID is passed as payload in this case and 
will be used to manage data sending to the client. 

 

Payload ‘send’ received from client 
This message is sent when an acclWebSocketSend operation is initiated on the client side. 
The operation terminates when the full payload is sent. No answer is expected from the 
backend service. 

 

Payload ‘exchange’ received from client 
This message is sent when an acclWebSocketExchange operation is initiated on the client 
side. A response respecting the response format described in Section 0 is expected from the 
service backend. As soon as the response is received the ASPIRE Portal packages and 
sends the content to the client. 

 

Connection closed 
This message is sent to the service backend when the connection is terminated by the client 
(acclWebSocketShutdown has been called on the client side) or lost. 

 

Response format 
Responses coming from the service backend follow the subsequent format: 

4 bytes N bytes 

Response size RESPONSE 

where  

• Response size is the length in bytes of RESPONSE 
• RESPONSE is the buffer containing the response to be sent to the client 
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Server initiated communication 
A service backend can send data to the client only after a channel initialization has been 
received. In that case the Application ID has to be used to identify the recipient of the 
payload. 

4 bytes 4 bytes N bytes 

Communication Type Payload Size PAYLOAD 

 

where: 

• Communication Type can be 0 in case of ‘send’ communication or ‘1’ in case of 
‘exchange’ communication 

• Payload size is the length in bytes of the payload buffer 
• PAYLOAD is the buffer containing data to be sent to the client. 
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Section 3 Code Mobility 
Section authors: 

Paolo Falcarin, Alessandro Cabutto (UEL), Bjorn De Sutter, Bart Coppens (UGent), Andreas Weber 
(SFNT) 

This section reports the work of Task 3.1 on Code Mobility: its minor implementation 
changes, and experimental performance analysis. 

The results of this work has been reported in a paper titled "Software Protection with Code 
Mobility", published in ACM Proceedings of the Second Workshop on Moving Target 
Defense [Cab15], co-located with the 22nd ACM Conference on Computer and 
Communications Security.   

3.1  Architecture 
The architecture presented in the last report (D3.02) is still valid and probably will be stable 
until the end of the project. 

3.2  Code Mobility Components 
The design and implementation of Code Mobility components did not receive significant 
updates after the previous report.  

3.2.1 Downloader  
While targeting Android ARM it came out that the posix_memalign syscall is not available 
on all Android versions. Android NDK revision 10d solved this bug but in general we cannot 
rely on the presence of this function. 

Since page aligned memory allocation is needed by Code Mobility the memalign syscall is 
now used instead. This is a minor difference between Linux and Android platforms. 

3.3  Performance analysis 
Our performance analysis was carried out on three case studies written in the C and C++ 
languages, taken from the SPEC CPU 2006 benchmark suite, namely libquantum, namd and 
milc. Tests were performed on a SABRE Lite i.MX6 board with a Quad-Core ARM Cortex A9 
processor at 1 GHz clock speed, with 1 GByte of 64-bit wide DDR3 at 532 MHz. 

To evaluate the steady-state overhead of the mobile code transformations, i.e., the 
performance overhead on an application in which all executed mobile code blocks have 
already been downloaded, we used a customized version of Diablo. It transforms the 
applications by applying the GMRT indirection (see D3.02 Section 3.2.1) and by making all 
mobile code offset-independent as described in D3.02 Section 3, but it actually skips the 
mobile code blocks dumping operation (it leaves them in the binary).  

To evaluate the latency that the downloading of the blocks might incur, we tested four 
different network scenarios: localhost, LAN, WiFi, and 3G. In the localhost scenario, all 
components were configured such that the client and the Code Mobility Server reside on the 
same test machine: all communications took place locally, in order to exclude influence of 
network transmission delays and to collect a reference baseline for the other configurations. 

In the LAN configuration, we tested the code on a 100 Mbps wired network; in the WiFi 
configuration we tested the code on a 54 Mbps wireless network, while in the 3G scenario we 
tested it on a HSDPA mobile network.  
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We measured the latency, i.e. the time required to establish a new TCP connection, 
whenever a new code block has to be downloaded; then we calculated the blocks download 
time to measure the time needed to download a mobile block on different network 
configurations. For the block download we made an arbitrary function mobile and measured 
the time needed to transfer it from the server to the client.  The chosen function has a code 
footprint of 412 bytes. 

Each experiment was repeated 500 times to collect data and we calculated average value 
and standard deviation of latency and time to download a mobile code block (see Table 2); 
for latency measures we run the code only 100 times. The last column of Table 2 represents 
the total execution time of a mobile version of the libquantum application. In this case we 
made a hot function mobile that represents by itself circa 50% of the executed operations. 

 

  Latency Block download Libquantum 50% mobile 

Localhost 

Average 

Std Dev 

Overhead 

0.12 

0.03 

 

9.36 

6.63 

 

369.37 

66.28 

+1.97% 

LAN 

Average 

Std Dev 

Overhead 

0.32 

0.02 

6.98 

1.46 

370.45 

65.74 

+2,27% 

WiFi 

Average 

Std Dev 

Overhead 

3.43 

2.81 

29.64 

24.49 

401.56 

68.36 

+10,86% 

3G 

Average 

Std Dev 

Overhead 

134.27 

119.58 

228.87 

154.44 

659.54 

173.42 

+82,08% 

Table 2 - Summary of Performance Overhead (in ms) 

 

Since most of the overhead comes from downloading blocks, which happens only once per 
mobile code block in our current implementation, and because our Android boards are 
relatively slow, we used the test SPEC inputs in our experiments. As expected, the worst 
overhead (82%) is found in case of mobile network connection while in a LAN scenario the 
overhead is as low as 2%. 

Table 3 shows the performance once all mobile code blocks have been downloaded, i.e., 
when the redirection via the Binder's GMRT table is applied to all the fragments of an 
application. 

For each benchmark application scenario, the average total execution time and its standard 
deviation are provided, overhead is computed as the increment of execution time with 
respect to the original application, where no functions have been instrumented to become 
mobile. Each row indicates a different experiment with a significant percentage (20%, 50%, 
and 100%) of indirection/mobility, evaluated as the number of instructions executed in mobile 
functions over total number of executed instructions. 
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Execution time Average Std Dev Overhead 

libquantum 
original 

20% 

50% 

100% 

 

362.23 

363.18 

355.73 

394.80 

 

63.11 

67.93 

67.14 

62.06 

 

 

+0.26% 

-1.80% 

+8.99% 

milc 
original 

20% 

50% 

100% 

 

85,697.45 

85,417.24 

85,985.24 

88,557.82 

 

29.98 

46,73 

46.73 

133.17 

 

 

-0,33% 

+0,34% 

+3,34% 

namd 
original 

20% 

50% 

100% 

 

92,729.70 

93,403.56 

94,383.00 

95,503.73 

 

107.89 

124.05 

115.48 

119.98 

 

 

+0.73% 

+1.78% 

+2.99% 

Table 3 - Summary of Computational Overhead (in ms) 

 

In both the 20% and 50% coverage example we can see that the overhead is extremely low 
and sometimes even less than zero, which means that the instrumented version of the 
application can run faster than the original one. This is probably due to the optimizations 
applied to the code by Diablo.  

Only when 100% of the application’s functions are made “mobile” forcing the indirection we 
can see a significant overhead occur. 

3.4  Planning 
M26  
The Code Mobility framework will be updated to provide support for moving data structures 
(UEL-UGent). This update is necessary to implement renewability of other techniques such 
as NAGRA’s WBC and SFNT’s Soft VM. An update on the server side logic will be released 
in order to allow server initiated mobile code blocks expiration, deletion and update (UEL-
UGent).  

M27 
Server-side support for renewability (UEL+ALL) will be released. This is update is needed by 
all RA techniques. 
M26 –M28 
Once code mobility will be able to support data transfer WBC tables and VM’s bytecode can 
be made mobile, therefore: 

Renewable WBC library with code mobility should be ready for M28 (NAGRA-UEL-UGent) 
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Mobile bytecode with code mobility should be ready for M28 (SFNT-UEL-UGent) 

M27-M30 
Once Code Mobility on server-side will be able to keep track of code versions of different 
clients running then it can be used by RA techniques. 
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Section 4 Client/Server Code Splitting 
Section Authors:  

Mariano Ceccato, Andrea Avancini (FBK) 

The client/server code splitting protection (task 3.1) aims at increasing the security of 
applications by moving sensitive, attackable portions of the program code from an untrusted 
client C to a trusted server S, in order to prevent attacks from malicious users. 

This Section reports updates on client/server code splitting. We progressed with the 
implementation of the protection, to produce tool SLP06 in the ACTC, beyond what was 
reported in M12. Moreover, we conducted an empirical assessment to verify the correctness 
of what implemented and to estimate the preliminary impact of applying client/server code 
splitting on the performance of two case study applications.  

The implementation does not differ from what was presented in the previous deliverables, 
and so a brief recap will just be given. Instead, the experimentation will be discussed here. 

The section is structured as follows: Section 4.1 briefly recaps client/server code splitting, 
focusing on the structure of the tool we implemented, with details on annotations, on barrier 
slice computation and on client and server generation. Section 4.2 presents our experimental 
framework, by introducing the research questions we posed, the metrics we measured and 
the case study applications we used. Section 4.3 describes the experimental procedure we 
adopted, Section 4.4 focuses on the results we obtained, Section 4.5 describes the current 
status of the tool, and Section 4.7 closes this part of the document with the work plan for the 
next months of the project. 

4.1 Client-server Code Splitting 
Client/server code splitting [ZHA03] is a protection technique conceived within the ASPIRE 
project. With this protection, parts of an application are moved on a secure server, where 
they can run in a trusted environment. The parts to move are those that are considered 
sensitive, attackable, to ensure that malicious users cannot tamper with the application to 
alter its intended behaviour.  

The technique applies barrier slicing [KRI03] to identify the portions of the application to 
move, and a set of source code transformations to generate the new, protected client 
application and a new corresponding server part. Communication capabilities are included in 
client and server to exchange data when required. The protected client and the server will 
then execute the portions of code identified by barrier slicing in a synchronous way to 
preserve the original functionalities of the application.  

The next paragraphs will give a brief recap on the tool we developed. Further details about 
the protection can be found in deliverables D3.01 (Preliminary Online Protections Report – 
M12) and D3.02 (Preliminary Online Protections Support – M18). 

Structure of the tool: the tool we implemented for client/server code splitting works by 
combining GrammaTech CodeSurfer [GCS], to analyse the pre-processed code of the 
application to protect and to identify those portions of the code that require to be moved on 
the secure server, and the TXL transformation framework [TXL], to apply precise code 
transformation patterns to generate the new protected client application and the 
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corresponding server-side code.  

The input of the tool is the pre-processed code of the application to protect while, as 
mentioned earlier, the generated outputs are the client protected by client/server code 
splitting and the server-side code that runs in synchronous with the protected client.  

The client/server code splitting step is integrated in the source level part of the ASPIRE 
Compiler Tool Chain (ACTC) as SLP06 component. 

Annotations for client/server code splitting: client/server code splitting is driven by code 
annotations to apply its protection. Annotations and their syntax for client/server code 
splitting are described in Section 4.8 of deliverable D5.01 (Framework Architecture, Tool 
Flow, and APIs – M9). Briefly, a splitting annotation specifies:  

• a slicing criterion C, in form of set of statements and a list of sensitive variables; 
• a set of barrier statements B, to block the propagation of data and control 

dependencies while calculating the barrier slice.  
We call a splitting annotation expressed in this form an annotation configuration. 

In this context, a sensitive variable is a program variable that influence critical parts of the 
program and thus more prone to be attacked by a malicious user. 

Computation of the barrier slice: we implemented a custom backward slicing algorithm 
(barrier slicing), which runs on top of the CodeSurfer framework. The code in input is 
analysed by CodeSurfer to extract the system dependence graph (SDG) of the program to 
protect. Then, the slicing algorithm queries this data structure to calculate the portion of the 
code that must be move to the secure server, the barrier slice, with respect of the current 
annotation configuration and the code to protect.  

As already mentioned, a barrier slice is based on the concept of backward slice. The 
backward slice s on a criterion C includes all the statements that directly or indirectly hold 
data or control dependencies on the sensitive variables at the statements in C. A barrier 
slice, instead, can be calculated by stopping the computation of a backward slice whenever 
the set of barrier statements B is reached. 

The size of the code to move, in terms of number of statements, can vary according to 
several factors, like the distance between criterion and barriers, the data dependencies in the 
code, and the peculiarity of the source code itself. 

Generation of client-side and server-side code: for the client side, code transformations 
remove any definition or use of a sensitive variable to protect. Synchronization and 
communication primitives are added to the code in order to communicate with the sliced 
code that runs on the server. At the server side, the sliced code is also modified to support 
communication and synchronization. 

4.2 Experimental Framework 
This section describes the experimental framework we built to support the analysis we 
conducted on protecting applications with client/server code splitting. We applied the 
protection to two case studies, to generate the corresponding protected applications and the 
server-side code. Then, we ran the applications to extract performance and communication 
metrics that help us answering the research questions we formulated.  

Research questions: the goal of applying client/server code splitting is to reduce the attack 
surface of a program that can potentially be targeted by attackers. This, however, introduces 
modifications in the protected application that can have an impact on the overall 
performance, namely on execution time and memory occupation. The purpose of our 
empirical investigation is to answer the following research questions: 
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RQ1: What is the execution time overhead caused by client/server code splitting? 

RQ2: What is the memory overhead caused by client/server code splitting? 

Metrics: since client/server code splitting produces two distinct software artefacts as output, 
the protected client and its corresponding server-side code that communicate through the 
network, we distinguish between metrics that are related to the client and metrics that are 
related to the server. 

More precisely, in order to answer the research questions presented above we measured the 
following metrics: 

• Client 
o Execution time of the program; 
o Memory occupied by the program during its lifetime;  

• Server 
o Execution time of the server; 
o Memory occupied by the server; 

• Generic metrics 
o Number of sensitive variables to protect;  
o Total number of statements that compose the barrier slice, i.e. the number of 

statements that are moved on the secure server; 
o Total number of exchanged messages between client and server; 

We used the Linux utility time to measure execution time and memory for both client and 
server programs. This command runs another program, and displays information about the 
resources, like memory and time, consumed by that program. 

Information related to the number of sensitive variables to protect are extracted directly by 
the tool when splitting annotations are found in the code. The total number of statements in 
the barrier slice is calculated by a custom shell script after the computation of the slice itself. 

The client generated by client/server code splitting is equipped with a communication library1, 
to exchange values and to synchronize the execution of the sliced code on the server. 
Communication works in both directions, since server-side code also requires values coming 
from the client to keep the execution of the slice synchronized. For the experimental analysis, 
the communication library was instrumented to collect communication-related metrics 
(number of messages exchanged). With the instrumented version of the communication 
library, any execution of the protected application generates a log file that can be parsed to 
extract the metrics. 

Subject applications: as case studies for the experimental analysis, we use a small license 
checker C application called License Checker and the program TCAS from the Software-
artefact Infrastructure Repository (SIR, http://sir.unl.edu/portal/index.php). 

The case study applications are listed in Table 4 and briefly described in the following 
paragraphs. 

Application LOCS # of functions 

License Checker 101 2 

TCAS 173 9 

Table 4 - Subject applications used in the experiment 

                                                
1 A custom communication library was used for the experiment. However, the tool is supported by the 
ASPIRE client/server communication logic 
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We selected applications that come with available test cases. Tests are fundamental to 
ensure that our protection, when applied, does not alter the correct behaviour of the 
applications. 

License Checker: License Checker is a C program that checks if the license of a software 
component is still valid compared with the current date.  

We can identify two sensitive variables an attacker can tamper with:  

• The variable that holds the license emission date; 
• The variable that holds the current date. 

A malicious user might tamper with these two variables by, e.g., adding a value to the 
variable that stores the current date to fool the license check algorithm and to illegally 
validate his/her license, which would have been expired under normal circumstances. This 
kind of attack can be mitigated by applying client/server code splitting. 

TCAS: TCAS (traffic collision avoidance system), is a C program used for the purpose of 
aircraft collision detection that verifies statuses of planes according to several parameters 
that can be passed as input.  
Also in this case, several variables can be identified as sensitive (for example, variables that 
hold values on the plane status), which can be protected by client/server code splitting. 

4.3 Experimental Procedure 
Configuration extraction for License and TCAS applications: In order to apply 
client/server code splitting, the code of the application to protect must be annotated with 
splitting annotations, as described in Section 4.1. 
To test our tool in a more extensive way, we also implemented a configurator extractor, a 
CodeSurfer script written in Scheme that uses heuristics to automatically extract and define a 
set of configurations of barriers and slicing criteria, to be used with License Checker and the 
TCAS program. The source code of the two applications was subject to configuration 
extraction, in order to extract as many annotation configurations as possible. Here, the focus 
is not on the security of the application: in fact, some of the configurations we extracted can 
be trivial from the security point of view. Nevertheless, they are useful for estimating the 
possible performance degradation introduced in the case studies by client/server code 
splitting.  

The computation of the configurations is performed by the Scheme script we developed on 
top of CodeSurfer. The script exhaustively extracts all the possible configurations, i.e. valid 
combinations of barriers and criteria, for each method/function that appears in the code.  
Each configuration is then converted into code annotations that are added to the source by 
means of a python script. Then, each splitting configuration produces a copy of the original 
application with the annotations included. 

By means of configuration extraction, we generated 27 valid annotation configurations for 
License Checker, and 9 for TCAS. 

Input values/scenarios: we defined different execution scenarios for the case studies. For 
License Checker and TCAS, they correspond to test cases available for the two applications. 

For License Checker, we selected 2 scenarios, corresponding to licenses emitted on different 
dates. In one scenario, the emitted license was valid, while in the other the license was 
expired. For TCAS, we randomly selected 2 different test cases among the ones provided 
with the application.  

For both License Checker and TCAS, we added an artificial loop of 1000 executions of the 
main function, to avoid that constant setup time required to start a process dominates the 
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actual execution time. With this modification, execution time can be measured in a more 
precise way. 

For each annotation configuration, the protected application is executed along with the 
secure server, once per scenario. To make sure client/server code splitting preserves the 
original semantics of the programs under analysis, the output produced by the protected 
application is compared with the output of the original application. Eventually, we measured 
execution time and memory consumption on the protected client and on the server. During 
executions, communication-related metrics were also collected. 

The experiment has been conducted on a Desktop machine equipped with Intel Xeon 3.3 
GHz CPU (4 cores), 16 GB of memory, running Red Hat 6.5 64 bit. Both client and server 
executables were executed on the same machine. 

4.4 Experimental Results 
The Section reports the results obtained from the experimental validation of the client/server 
code splitting approach on the three case study applications presented earlier in the 
document. In particular, Section 4.4.1 presents the experimental results we obtained on the 
License Checker and on TCAS for execution time and memory overhead. 

4.4.1 License Checker and TCAS 
Execution time: The diagram in Figure 1 shows the client execution time for License 
Checker, when more and more messages need to be exchanged between client and the 
corresponding server. Execution time is on displayed on the y axis, expressed in seconds, 
while the amount of messages is displayed on the x axis.  

As can be seen in the graph, execution time seems to show a linear trend. To verify the 
statistical significance of the observed trend we used the Pearson correlation test. The 
Pearson’s correlation test computes the correlation coefficient ρ, a measure of the strength of 
the linear relationship between two variables. It ranges from -1 to +1, where the extremes 
indicate perfect (positive or negative) correlation and 0 means no correlation. Statistical 
significance is assumed when this test reports a p-value is <0.05 (we assume significance at 
a 95% confidence level, α=0.05). 

For the case of Figure 1 we have a correlation coefficient ρ equals to 0.97, with a p-value < 
0.01, which means that we have a statistical significant case. Then, we can say that, if the 
number of messages to exchange with the server increases, the execution of the protected 
application slows down. 

The Pearson’s correlation is computed between dependent and independent variables. We 
can identify the following independent variables: 

• the number of sensitive variables that are protected by applying client/server code 
splitting; 

• the total number of statements moved from client to server, which roughly 
corresponds to the size of the barrier slice that is computed by the protection; 

• the total number of messages client and server need to exchange to execute 
correctly and to keep the execution synchronized. 

Dependent variables, instead, are: 

• execution time (client); 
• execution time (server). 

 

We computed Pearson’s correlation for each couple of dependent variable/independent 
variable, for License Checker and TCAS. 
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Figure 1 - Client execution time vs total messages exchanged (License Checker) 

 

All the results can be found in Table 5. The case studies, License Checker and TCAS for both 
client and server programs, are reported on rows, while columns show: 

• the Pearson correlation between the number of sensitive variables (independent 
variable) and execution time (dependent variable), with the p-value and the slope m 
of the interpolating line (column Variables); 

• the Pearson correlation between the number of statements moved on the server 
(independent variable) and execution time (dependent variable), again with p-value 
and the slope m (column Statements);  

• the Pearson’s correlation between the number of exchanged messages (independent 
variable) and execution time (dependent variable), with p-value and the slope m 
(column Messages). 

As mentioned earlier in the Section, the number of total messages the client application and 
the secure server exchange slow down the execution of the protected program. This trend is 
visible on both License Checker and TCAS, for client and server (see Figure 2 for TCAS at 
client-side). In case of License Checker, we can say that degradation is 0.148 second per 
each message exchanged (client), and 0.148 seconds for the server. For TCAS, degradation 
can be measured in 0.178 seconds per message in case of the client, and 0.178 seconds in 
case of the server.  

For the License Checker, the number of the statements moved on the secure server and the 
number of the sensitive variables has also an impact on the execution time. Performance 
degradation can be estimated in 0.504 seconds per each sensitive variable (client), and 
0.502 seconds (server). We have a degradation of 0.074 seconds per each additional 
statement at the client side, and 0.075 seconds at the server side.  

TCAS does not show any statistically significant correlation between the number of sensitive 
variables and execution time, nor between the number of statements and the execution time. 

Memory overhead: Figure 3 shows the server memory overhead for License Checker when 
more and more messages are exchanged by client and server (memory consumption is 
displayed on the y axis, while the messages are on the x axis). Memory overhead, similarly 
to what observed in case of execution time, seems to follow a linear trend in the number of 
messages exchanged. Also for the memory, we used the Pearson correlation test to verify 
the statistical significance of the observed trend. 
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Figure 2 - Client execution time vs total messages exchanged (TCAS) 

 

 Variables Statements Messages 

SUT  ρ p-value m ρ p-value m ρ p-value m 

License 
Checker 

Client 0.81 <0.01 0.504 0.73 <0.01 0.074 0.97 <0.01 0.148 

 Server 0.80 <0.01 0.502 0.73 <0.01 0.075 0.97 <0.01 0.148 

TCAS Client 0.40 0.10  0.01 0.96  0.97 <0.01 0.178 

 Server 0.40 0.10  0.01 0.96  0.97 <0.01 0.178 

Table 5 - Pearson's correlation between variables/statements/messages and execution time 

 
While the independent variables remain the same as in the case of the execution time, the 
dependent variables are: 

• memory consumption (client); 
• memory consumption (server). 

Again, we computed the Pearson’s correlation for each possible couple of dependent 
variable/independent variable.  

For the case of Figure 3, we have a correlation coefficient ρ equals to 0.97, with a p-value < 
0.01, which means that there is a statistically significant correlation between the total amount 
of exchanged messages (the independent variable) and the amount of memory consumed by 
the protected program at the server side (the dependent variable). 

Table 6 reports the full results we obtained for memory overhead. The case studies, License 
Checker and TCAS, for both client and server programs, are reported on rows, while 
columns show: 

• the Pearson’s correlation between the number of sensitive variables (independent 
variable) and memory overhead (dependent variable), with the p-value and the slope 
m of the interpolating line (column Variables); 
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• the Pearson’s correlation between the number of statements moved on the server 
(independent variable) and memory overhead (dependent variable), again with p-
value and the slope m (column Statements);  

• the Pearson’s correlation between the number of exchanged messages (independent 
variable) and memory overhead (dependent variable), with p-value and the slope m 
(column Messages). 

For License Checker, we have statistically significant correlation in all the cases. However, a 
relevant memory overhead can be observed only at the server side. It consists of 3.9 MB per 
each additional sensitive variable, of 735 KB per each additional statement, and 1.2 MB per 
each additional message. 

 
Figure 3 - Server memory overhead vs number of messages (License Checker) 

At the client side, even if all the cases are statistically significant, we have a smaller memory 
overhead with respect to the server side. If execution time on client and server showed 
similar, almost equal, degradation, the memory overhead differs, in some cases, of three 
orders of magnitude. Figure 4 shows the memory overhead at the client side, when the 
number of statements that must be moved on the server increases. As can be seen, the 
graph in the Figure still shows a linear trend, but the slope of the interpolating line is visually 
less steep than it was in the other case. This suggests that increments in terms of memory 
overhead per each additional message are small. In fact, the memory overhead at the client 
side resulted to be quite small, 6 KB (1.2 MB at the server side) per each additional 
message. Also for the other metrics, the memory overhead at the client side reaches a 
maximum of 17 KB (3.9 MB at the server side) for each sensitive variable and 4 KB (735 KB 
at the server side) per each additional statement. 

For TCAS, we identified only two statistically significant cases, between statements and 
memory at the client side, and between messages and memory at the server side. In both 
the cases, the overhead is negligible: 300 B maximum for each additional message at the 
server side, while degradation is practically 0 for each additional statement at the client side. 
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Figure 4 - Client memory overhead vs number of statements moved on the server (License Checker) 

 
 Variables Statements Messages 

SUT  ρ p-value m ρ p-value m ρ p-value m 

License 
Checker 

Client 0.42 <0.01 17 0.60 <0.01 4 0.56 <0.01 6 

 Server 0.75 <0.01 3902 0.86 <0.01 735 0.97 <0.01 1235 

TCAS Client -0.12 0.64  0.51 0.03 ~0 0.19 0.46  

 Server 0.46 0.05  0.02 0.94  0.99 <0.01 0.3 

Table 6 - Pearson's correlation between variables/statements/messages and memory 

4.5 Early experimentation on Diamante 
We also conducted a preliminary experiment on the Diamante use case from SFNT (x86 
version), taken from Work Package 6, with the goal of verifying if client/server code splitting 
can be applied on a large and complex application. In fact, the main Diamante source file 
consists of more than 1000 lines of C code, 10 times bigger than License Checker and 
TCAS, the case studies we used for the experiments presented earlier in the document. 
In order to make client/server code splitting applicable on Diamante, we manually defined 11 
annotation configurations. These annotations are intended for testing the client/server code 
splitting tool only, rather than representing a real effort to define annotations that are 
meaningful in terms of an asset security point of view. However, we followed SFNT 
guidelines about critical assets in Diamante to write the annotations, when possible. 
For each annotation configuration, we applied our tool to produce the protected client-side 
application and the secure server. Then, the application is executed along with the secure 
server to check for potential issues introduced by the protection. 
The results of the experiment are still being processed and evaluated.  

 

4.6 State of the tool 
• Implementation of the tool: the current version of the tool is 1.1.0. 
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• Stand-alone testing of the tool: the client/server code splitting tool was exhaustively 
tested on two C applications, License Checker and TCAS (Section 4.4.1). Tests on 
the ASPIRE use cases are still ongoing.  

• Integration of the tool: the tool is integrated in the source level part of the ASPIRE 
Compiler Tool Chain (ACTC) as SLP06 component. Integration was tested on 
examples provided with the ACTC. 

• Technical details of the tool: they are listed in Table 7. For each 
component/technology used to develop the tool (first column), a brief description is 
given in the second column (Description/Role). The third column (Lines of code) 
shows the number of lines of code developed for a specific component/technology. 
 

Component/Technology Description/Role Lines of code 

Shell scripts Internal orchestration/coordination 

invocation of CodeSurfer and TXL programs 

606 

CodeSurfer programs Perform extraction of information from the 
source code of the program to protect 

Written on top of CodeSurfer 

Programming language: Scheme 

3406 

Communication libraries Allow communication between client and 
server components 

Programming language: C 

861 

TXL programs Perform source code transformation 

Programming language: TXL 

8375 

Python scripts Perform conversion of Pragmas 

Programming language: Python 

110 

Table 7 - List of components/technologies used in the client/server code splitting tool 

4.7 Plan 
At M24, the client/server code splitting tool is integrated in the ACTC. 

The tool has been implemented and performance has been assessed on License Checker 
and TCAS. We started to evaluate the performance on SafeNet Diamante application. 
Further tests on the SafeNet use case are ongoing. Similarly, we will conduct the 
performance evaluation the ASPIRE use cases. 

Outcome of the tests we want to conduct is fundamental for the activities we planned for the 
3rd year of the project. In particular, we will focus on: 

• Continuously improving the performance of the client/server code splitting tool, 
when applied; 

• Studying the performances of the industrial case studies when client/server code 
splitting is applied. 
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Section 5 Remote Attestation 
Section Authors:  

Cataldo Basile, Alessio Viticchié (POLITO), Bart Coppens (UGent), Jerome D’Annoville (GTO) 

This section covers the work performed in task T3.2. It describes: 

• the updates to the remote attestation reference architecture compared to deliverable 
D3.02, which has been extended to support multiple clients, running multiple 
attestators of one or more attestation type; 

• the updates to the static remote attestation, also presented in deliverable D3.02 
which has been improved to supported diversified version of the static remote 
attestator for renewability purposes; 

• the current status of the dynamic remote attestation development, that is first 
presented here; 

• the current status of reaction mechanisms implementation, compared to deliverable 
D3.02, which has been detailed both for client and server components; 

• updates to the delay data structures, which are now integrated in Diablo; 
• the integration of the remote attestation protection technique into the ACTC. 

 

Finally, this section presents the planning for the next months. 

 

5.1 Remote attestation architecture and workflow 
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Figure 5 - Remote attestation reference architecture with a single client. 

Figure 5 presents the M24 remote attestation reference architecture. Compared to the 
architecture in the deliverable D3.02, there are two major changes, all in the server side part. 

Change 1: The reference architecture shows details about the server-side communication 
logic. As described in D1.04 v2.0, these are the communications to be executed: 

• the RA Manager sends a client Attestator an attestation request; 
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• the client Attestator sends an attestation response to the Verifier; 
• the Reaction Manager sends reaction reports that are written into the Delay Data 

Structure. 
On one hand, the RA Manager and the Reaction Manager use the ACCL WebSocket 
Protocol. This component must initiate a communication with the clients they have to attest 
and to which they have to notify reactions. On the other hand, the Verifier, which only 
receives attestation responses and does not need to initiate a communication, can use the 
ACCL Simple Protocol if this can improve performances. 

Change 2: The RA Manager and the Reaction Manager now have a direct communication.  

As will be explained later in Section 5.1.2, the RA Manager exposes an API that can be used 
by the Reaction Manager to adapt the attestation frequency in case of suspicious clients (that 
may be already been compromised). 

			Client	
			Application	1

Application	server
AS
PI
RE

	P
or
ta
l	+
	A
SC
L-
W
S AC

CL

Remote	attestation

Reaction	
Manager

Verifier

RA	
Manager

			Client	
				Application	2AC
CL

			Client	
			Application	NAC

CL

 
Figure 6 - Remote attestation reference architecture with multiple clients. 

Figure 6 shows the remote attestation reference architecture when multiple clients are 
connected to the main server. No changes are required to the server side architecture, as the 
ASCL already contains the features to support multiple clients. However, as it will be evident 
later in this document, the server-side components have been designed to maintain state 
information for all the clients that need to be protected with RA. 
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5.1.1 Verifier 
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Figure 7 - Architecture of the Verifier. 

Figure 7 shows the architecture of the Verifier, which is composed of an Attestation Response 
Dispatcher and several Actual Verifiers (Actual Verifier 1 to Actual Verifier n). Several Actual 
Verifiers are needed because we support more than one client, and each client may have 
been protected with different RA techniques. More precisely, one client may have been 
protected with zero or more attestation techniques, and several clients may use the same 
attestation technique. Therefore, the Attestation Response Dispatcher forwards attestation 
responses to the proper Actual Verifier. 

5.1.1.1 Attestation Response Dispatcher 
This element dispatches the attestation responses received from the client Attestators and 
routes them to the right Actual Verifier. The Attestation Response Dispatcher receives the 
attestation responses from the ASCL. Then, it deduces the association between the client 
and the Actual Verifier to use by reading information from the ASPIRE DB. When a client is 
not associated to one and only one Actual Verifier, it is able to determine the Actual Verifier 
to which the response needs to be sent by analysing the information in the attestation 
response. Then, it instantiates the proper Actual Verifier and passes it the request. 

IdentifyClient

ReadResponseData
ReadDataFromDB

Start

LaunchActualVerifier

CreateActualVerifierProcess
PassResponseToVerifier

Terminate  
Figure 8 - Attestation Response Dispatcher workflow (as a Finite State Machine). 

Referring to Figure 8 the dispatcher works as follows: 

• It receives an attestation response by the ASCL (ReadResponseData); 
• It receives client identification (clientID) data by the ASCL (ReadResponseData); 
• It reads client information from the ASPIRE DB to determine the actual verifier to use 

(ReadDataFromDB); 
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• If the Actual Verifier is not univocally determined, it unpacks the response, reads 
attestation response data, to univocally determine the Actual Verifier 
(ReadDataFromResponse); 

• It launches the Actual Verifier process as an independent process 
(CreateActualVerifierProcess); 

• It passes the attestation data to the Actual Verifier (PassResponseToVerifier); 
• It terminates its execution. 

5.1.1.2 Actual Verifier 
The Actual Verifier is a component that is able to emit a verdict on the correctness of an 
attestation response received from a client. Each Actual Verifier reads attestation request 
information from the DB in order to get the original information sent by the RA Manager and 
to estimate the delay between when the attestation is sent and the response received. Each 
Actual Verifier uses one or more ad hoc tables in the DB to store technique-specific 
information. The verifier, in order to achieve its goal, exploit two kinds of data from DB: 

• the information about the request made by the manager; 
• the pre-computed attestation data. 

The former is used to deduce the nonce and the prepared data relative to the request made 
and sent by the RA Manager. The latter one is combined with the application id and the 
nonce to produce the expected attestation response to be compared with the returned one. 
For example the static RA Actual Verifier uses two DB tables, namely ra_request and 
ra_prepared_data, whose structures are reported in Table 8 and Table 9. 

 

Table 8 - Structure of ra_prepared_data table. 

Column name MySQL type C type Description 

id bigint uint64_t Record id and primary key 

application_id bigint uint64_t Id of ra_application record the 
current record is associated 

nonce tinyblob uint8_t * Nonce value 

data longblob  uint8_t * Attestation data generated by the 
nonce value 

Table 9 - Structure of ra_request table. 

Column name MySQL type C type Description 

id bigint uint64_t Record id and primary key 

prepared_data_id bigint uint64_t Id of ra_prepared_data record 
that contains the prepared data 
used for the request  

product_id bigint uint64_t Id of the ra_product record for 
which the request was generated 

send_time timestamp time_t The time when the request was 
sent 
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response_time int uint32_t Number of seconds between when 
the request was sent and the 
response received 

status bigint uint64_t Id of ra_status record that 
describes the request current state 

validity_time smallint uint16_t Maximum response_time for a 
response to be valid 

It is worth noting that for performance optimization and scalability purposes, the proposed 
architecture allows the use of more than one Actual Verifier for the same type of remote 
attestation. 

 

Start

GetAttestationResponse
CheckResponseValidity

ReadDataFromDB
CompareExpectedData
WriteResultInDB Terminate  

Figure 9 - Actual Verifier workflow (as a Finite State Machine). 

 

The Actual Verifier is launched by the dispatcher. Referring to Figure 9: 

• It reads an attestation response passed from Attestation Response Dispatcher 
(GetAttestationResponse); 

• It performs the attestation response verification, that is, it compares data received in 
the attestation response with the expected values (CompareExpectedData), 
calculated with or without pre-computed data taken from the DB (ReadDataFromDB); 

• It writes the verification result into the DB (WriteResultInDB); 
• It terminates its execution. 
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5.1.2 RA Manager 
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Figure 10 - Architecture of the RA Manager. 

The RA Manager is the server side-remote attestation component in charge of sending the 
attestation requests to clients.  
Therefore, the RA Manager uses one RA Manager Master, which is able to manage 
connection and disconnection of clients, and several RA Manager Slaves, which actually 
generate and send attestation requests to the clients they were/are assigned to by the RA 
Manager Master. 

5.1.2.1 RA Manager Master 
The RA Manager Master is the component invoked by the ASCL WebSocket Protocol when 
a client connects to the ASPIRE Portal or when one of the connected clients performs the 
shutdown. When a client connects, the RA Manager Master reads from the ASPIRE DB 
information about the attestation frequency and the RA protection techniques the client 
implements. Based on this information, it estimates the effort required to attest the client and 
assigns the client to the proper RA Manager Slave. After having passed the responsibility of 
the client to one of the RA Manager Slaves, the RA Manager Master will ignore all other 
communications from the client until the client performs the ACCL WebSocket Protocol 
Connection Closed function. When a shutdown is caught, the RA Manager Master notifies 
the proper RA Manager Slave that it must stop to serve the client. 

Theoretically, RA Manager Slaves can be instantiated when needed by the RA Manager, i.e., 
when the resources needed to process a newly connected client are not enough. This 
architecture is therefore prone to scale well also in the cloud. However, in the current 
implementation, which is based on a single server, the RA Manager Master initiates all the 
RA Manager Slaves when it starts. The number of the initiated RA Manager Slaves depends 
on the number of cores/threads available at the server CPU. 
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Figure 11 - RA Manager Master workflow description (as a Finite State Machine). 

Figure 11 shows the workflow of the RA Manager Master, which is composed of the following 
operations: 

• Start  
• Creates and initiate RA Manager Slaves as threads (CreateRAMSlaves); 
• Wait for an event thrown by ASCL-WS, infinite loop (WaitEvent) 

o If event = clientConnected: process and assign new client to slave 
(ProcessNewClient) 

§ Get attestation frequency and RA technique the client uses 
(ReadInfoFromDB); 

§ Select the RAM Slave which the client must be assigned to 
(AssignRAMSlave); 

§ Record client RAM Slave association in its internal states 
(UpdateDataStructures); 

o If event = clientDisconnected: signal proper slave to not serve the client 
anymore (ProcessClientShotdown) 

§ Notify shutdown to the proper client (SignalRAMSlave); 
§ Remove the entry associated to client from the internal state 

(UpdateDataStructures); 
• Return to WaitEvent state; 

5.1.2.2 RA Manager Slave 
The RA Manager Slave is the component that actually prepares and sends attestation 
requests. It manages a set of clients. The clients to manage are decided by the RA Manager 
Master that assigns them when they connect to the ASPIRE portal. The RA Manager Master 
also calls the ASCL WebSocket Channel Initialization function.  

This components sleeps until a new attestation need to be prepared and sent or a new client 
is assigned by the RA Manager Master. 

The next attestations to send are stored in a queue, which is ordered based on the time 
when the RA Manager Slave needs to start preparing them. If the RA Manager Slave wakes 
up because there is a new attestation to process, it reads the information on the next client to 
attest from the queue, complements this information with data taken from the DB, prepares 
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the attestation request and sends it. The operation that the RA Manager Slave will actually 
perform depends on the protection technique. Then, before going to sleep, the RA Manager 
Slave establishes the new time when the client will be attested and inserts this info in the 
queue.  

More in detail, the queue contains a set of queue elements. Queue elements hold two data: 
the client c to attest and relative time t. That is, it stores the number of seconds t to wait 
before attesting the client c. This interval (t) is intended as the number of seconds to wait 
after the element before client c in the queue is attested. Each client appears in the queue 
just once. 

Hence, each element in the queue specifies how much time the RA Manager Slave has to 
sleep after its predecessor is served. 

Moreover, the first queue element represents the next client to be attested and holds the 
information about the time that the RA Manager Slave has to sleep before sending a request 
to that client. 

This way, when the RA Manager Slave sleep is interrupted because of a new client 
connection, it can correctly update the queue by comparing the time slept and the time it 
should have slept.  

Figure 12 shows an example of the status of the queue in a generic moment during the RA 
Manager Slave execution. Assume the RA Manager Slave began its sleep at t=x. Then, it is 
supposed to sleep 3 seconds as specified by the first element in the queue. When that sleep 
ends, at x+3s, App3 is served. After that, App3 is scheduled again. Suppose that App3 
needs to be attested again after 5 seconds. Then the updated form of the queue is the one 
presented in the figure at t=x+3s. Notice that the queue keeps its consistency, i.e., App3 is 
served at t=x+3s, App1 is served at t=x+7s and App2 is served at t=x+9s. 

App1 4	s App2 2	sApp3 3	s

App3 1	s App2 1	sApp1 4	s

t	=	x

t	=	x	+	3s  
Figure 12 - Example of the client attestation scheduling. 

 

Every client is associated to an attestation frequency value. This value is intended as the 
average time between two attestations. Attestations must not be sent at fixed schedule, as 
an attacker can restore a correct copy of the application, serve the attestation, and restart the 
tampered version of the application. Therefore, the RA Manager Slave randomly selects the 
time to the next attestation so that the average time between two attestations is close to the 
frequency value. The frequency value can be changed, directly in the DB, by the RA 
Manager or the Reaction Manager. 

Attestation requests are atomic operations that cannot be interrupted when a new client 
connects. The new client will be served after the attestation request is sent. 

When the RA Manager Slave receives a new client to process from the RA Manager Master, 
it verifies whether the client needs to be attested at start-up. In this case, it prepares and 
sends a new attestation. If the client does not need to be attested at start-up, it reads 
frequency information from the DB, defines the time when the client will be attested and 
insert in the attestation queue this information. 
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[yes]  
Figure 13 - RA Manager Slave workflow description (as a Finite State Machine). 

Figure 13 shows the workflow of the RA Manager Slave, which is composed of the following 
operations: 

• Start, launched by master; 
• Waits to be assigned to a client (WaitFirstClientAssigned); 
• When the first client connects, if it needs to be attested at startup  

o Attest the client (ServeClient) 
§ prepare the attestation request (GenerateAttestationRequest); 
§ send the attestation request (SendAttestationRequest); 

o Schedule the time when to attest the client (ScheduleClient)  
• Enter the main loop, that is, sleep until the first client has to be served or new client is 

assigned (SleepAndWaitEvent); 
o if event = newClientAssigned 

§ if it needs to be attested at startup, attest the client (ServeClient) 
o if event = timeElapsed 

§ attest the client (ServeClient); 
o Schedule the time when to attest the client (ScheduleClient)  

5.1.3 Attestator and application logic 
The Attestator actually performs the attestation operations required by the technique it 
implements. There are no changes to this component in the reference architecture. However, 
since the last deliverable we have a more precise definition of the ASCL_WS, so we report in 
this section the interactions with this communication component. 
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Attestator
Start

ApplicationFunctionalExecution

ConnectToManager

WaitForAttestationRequest

Attest

ExtractAttestationData
SendAttestationResponse

NotifyShutDownToManager

Termnate  
Figure 14 - Client application workflow description. 

Figure 14 presents the workflow performed by the Attestator within the application. The 
workflow splits in three phases: 

1) Start 
• The application is launched by the user. This starts  

o the application logic (ApplicationFunctionalExecution) and  
o the Attestator (Attestator); 

2) Attestator execution 
• The Attestator connects to the ASPIRE portal via the ACCL WebSocket Protocol 

(ConnectToManager) 
• Main loop, wait for incoming attestation requests (WaitForAttestationRequest) 

o Parse the Attestation request (ExtractAttestationData); 
o Prepare attestation response and send data to server via the ACCL 

(Attest). 
3) Terminate 

• when the application is closed (e.g., by the user) 
o The Attestator interrupts any operation and sends shutdown via the ACCL 

WebSocket Protocol (NotifyShutDownManager); 
o The ApplicationFunctionalExecution state terminates. 

5.1.4 ASPIRE Database 
No changes to the ASPIRE DB have been made compared to D3.02. 

We only agreed that, to ease development and integration, individual techniques may use 
different tables, as was foreseen but not explicitly state in D3.02. Therefore, we have a set of 
global RA tables (used by the RA Manager, Reaction Manager, and all the Actual Verifiers) 
and one or more RA-specific tables per RA technique. All these tables (global and RA-
specific) need to be created in the DB when the server is instantiated. 

5.1.5 Delay data structures 
One of the main concerns for any code integrity protection is to hide the link between the 
detection of an integrity violation and the reaction. If an attacker tries to tamper with the code, 
and the program fails as a consequence, it should be hard for the attacker to trace the 
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symptom (abortion, crash, ...) back to the cause (failed integrity check), such that he cannot 
easily work around the failed attestation.  

In this context, delay data structures are data structures used to keep track of failed checks 
in a covert manner until a reaction is triggered sometime later in the program execution. To 
improve the stealth of the delay mechanism implemented with these data structures, their 
definition should not be hardcoded in a tool chain, as it would be all too easy for attackers to 
learn to recognize them.  

Consequently, we aim to implement tool chain support for what we call flexible delay data 
structures. Flexible in this context means that users of a software protection tool chain should 
be able to supply any suitable data structure they have defined themselves. By choosing new 
data structures every time they protect a program, the users can prevent that attackers 
attack their program on the basis of knowledge learned from the protected programs of other 
users.  

In this completely novel approach, the user of the protection tool should provide the data 
structures and an API to access them, with implementations of the corresponding API 
functions. The tool chain itself should then be able to integrate the data structures and the 
API functions into the program to be protected, and inject the necessary operations as 
defined in the API to store (following a performed check) and retrieve (to decide (with some 
delay) on a reaction) predicates in the data structure.   

Even better, it should be possible for the user to instruct the protection tool to use data 
structures that are already available in the original program itself. If the API functions are 
then invoked as part of the original program and as part of the protection, it will be much 
harder for an attacker to identify the (newly inserted) invocations to the data structures as 
part of a protection scheme. In essence, the code then used for the protection has semantic 
relevance in the original program, and can hence not easily be omitted from the program by 
an attacker with advanced skills and tools such as the ones by Debray et al. described in the 
updated Section 4.4.4.2 of deliverable D1.02 v2.0.   

To provide the necessary tool support for integrating this protection in the ACTC, UGent 
already implemented an architecture in Diablo (the link-time rewriter used for all binary-level 
protections in the ACTC) that allows users to define custom data structures, define functions 
on those data structures, and define how these interact to define predicates, which can then 
be injected automatically in the binary. These predicates can be used to store information 
about detected tampering.  

First, we researched and specified a meta-API that allows users to define a set of functions 
that change and query these data structures, and to define the properties that the arguments 
to these functions must take to store true or false predicates in the structures. By allowing the 
user to choose, with a large degree of freedom, how true and false are stored in the data 
structures and how those properties are encoded in the invocations of the functions that 
store the predicates and that retrieve them, we aim to further improve the stealth and non-
learnability. Obviously, if the inputs and outputs of the API functions would be simple boolean 
values, it would be all to obvious what their purpose is in the protected program.   

The flexible delay data structures and functions defined for these can be defined with an 
XML file. For example, a set of functions on a linked list can be defined as follows: 

<datastructure> 
  <name> Linked list </name> 
  <struct> struct linkedList </struct> 
  <file> objectfile </file> 
  <init> 
    <function> 
      <name> initLinkedList </name> 
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      <parameters> </parameters> 
      <return> struct linkedList * </return> 
    </function> 
  </init> 
  <predicate id=”1”><name>RA_failed</name></predicate> 
  <predicate id=”2”><name>code_guard_failed</name></predicate> 
  <transformations> 
    <function> 
    <name> setTampered </name> 
    <parameters> 
      <parameter> 
        <name> var1 </name> 
        <datatype> struct linkedList * </datatype> 
      </parameter> 
      <parameter> 
        <name> var2 </name> 
        <datatype> int </datatype> 
      </parameter> 
    </parameters> 
    <return> void </return> 
    </function> 
  </transformations> 
</datastructure> 

This defines a data structure struct linkedlist, to which Diablo can initialize a pointer 
with the function initLinkedList. Furthermore, Diablo now has knowledge that there are 
two predicates defined on this data structure: RA_failed and code_guard_failed, and that 
there is a function setTampered, which transforms the data structure. 

In order to provide maximum flexibility for the users of the ASPIRE tool chain in specifying 
the effects the defined functions, the semantics of the functions is described in a Domain 
Specific Language. For example, a user can specify the semantics of setTampered as 
follows: 
setTampered var1 var2 
| var2 > 0 => RA_failed=T 
| var2 < 0 => code_guard_failed=T 
| var2 == 0 => code_guard_failed=T && RA_failed=T 

This specifies how the effect of calling setTampered depends on the integer value of its 
second argument: if it is larger than zero, RA_failed is set to true and the value of 
code_guard_failed is kept unchanged. If the second argument is equal to zero, both 
predicates are set to true. Diablo can then automatically inject code to set the correct 
arguments, depending on the situation. 

Diablo will also link in the API functions if they are not yet present in the program itself.  

At the start of the development of the necessary Diablo support for these flexible data 
structures, in Q4 2014, the anti-tampering techniques in ASPIRE were not mature enough 
yet for integration in the ACTC, so UGent decided to research the use of the data structures 
in another protection scenario, in which it could pursue the research independently of the 
other ASPIRE partners. This other scenario consists of opaque predicates, as documented in 
Section 5.1.2 of deliverable D2.08. 
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In year 3, the current framework for defining data structures and predicates thereon will be 
used to support delay data structures as follows: we will store the result of a (failed) anti-
tampering check in one of the predicates that we associate with a delay data structure. We 
will define a data structure with the following properties: 

• a predicate with associated query and setter functions; 
• a function that changes the state of the predicate, while keeping the value of the 

predicate. 

An example of such a data structure can be a vector; a predicate defined on it can be 
whether the length of that vector is odd or even. Increasing or decreasing the length of the 
vector by 2 keeps the value of this predicate unchanged. 

Our plan is then to support delay data structures with this frameworks by letting Diablo do the 
following: 

• Inject such a data structure in the binary. 
• Choose a value for a predicate defined on this data structure that will correspond to 

‘no tampering detected’, and inject code that initializes the data structure to this value 
when the protected program is loaded. 

• Insert calls to the function that updates the state but keeps the predicate value 
throughout the program. Updating the state throughout the program means that a 
reverse engineer cannot simply ignore this data structure, but instead has to analyse 
its use globally, thus increasing the complexity of an attack.  

• On the locations where anti-tampering verifications occur, use the results of these 
verifications to set the value of the predicate: if the check failed, the predicate is 
updated to the value that corresponds to ‘tampering detected’; otherwise the 
predicate value is not modified. 

• Insert calls that query the predicate throughout the program. Furthermore, code is 
injected to compares the resulting Boolean value to the ‘no tampering detected’ 
value. Program execution will continue in the correct way if this query returns the 
correct value. Otherwise, control can redirected to the Reaction Manager, which can 
trigger a number of different reactions.  

What remains is then defining a relevant data structure and the appropriate functions that are 
relevant for (at least) one of the use cases; and extending Diablo to also inject calls 
throughout the program that do not update the predicate, and to integrate this with the anti-
tampering code. This can then be easily integrated with the Reaction Manager by having it 
query the predicate.  

5.2 Reaction  
The Reaction service is the part of the Remote Attestation mechanism that triggers the action 
to be done when verdicts made by the Verifier need a reaction to be set. This Reaction 
Service is depicted in Figure 6 by the Reaction Manager. The Reaction Manager itself is 
made of several components described in this section. The novelty brought by the Reaction 
Manager is that based of verdicts some rules enable to graduate the reaction according to 
the configuration made for an application. Actions set by the Reaction Manager range from a 
notification to the Application Server to sabotage notification to the appropriate component 
on the device. 

The Reaction mechanism is used jointly with the Remote Attestation Manager. The Verifier 
component of the Remote Attestation Manager sets attestations results in the ASPIRE DB. 
The purpose of the Reaction Manager is to query those results and based on rules and 
policies to send reaction notifications. Figure 15 shows the main components on the server 
side and on the client side. 
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Figure 15 – Reference architecture of the Reaction Mechanism  

The Reaction Manager itself is made of several components to decouple the database 
queries, the reaction logics and the notifications. The component on the server side that 
handles the communication with the various devices is shared with the Remote Attestation 
manager. 

5.2.1 Server-side component 
The role of the Reaction Manager is to trigger reaction actions based on verdicts set by the 
Remote Attestation Verifier component in the ASPIRE DB. Those actions are notifications to 
be sent either to the Application Server or to Client Applications and possibly to the RA 
Manager. As shown in Figure 16, the Reaction Manager unit is made of four components: 
the Reaction Issuer, the Reaction Manager Engine, the Notification Dispatcher and the 
Common Clients Notifier.  

The role of these four components of the Reaction Manager is described below.  
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Figure 16 – Reaction Manager 
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5.2.1.1 Reaction Issuer 
The Verifier component of the Remote Attestation writes the results of the verifications in the 
ASPIRE DB. The Reaction Issuer has rules to decide if a reaction has to be set for an 
occurrence of application on a device based on the history of the verifications. 

In case a reaction is required then a Reaction Event is created and put in the Reaction 
Events Queue. This queue is processed by the Reaction Manager Engine. 

5.2.1.2 Reaction Manager Engine 
The Reaction Manager Engine processes the Reaction Events created by the Reaction 
Issuer in the Reaction Events Queue. It contains the various reaction strategy logics and 
based on these policies and the Reaction Event created by the Reaction Manager it creates 
Notification Events in a Notification Events Queue. 

A notification can be a reaction decision to be sent to the client or a decision to suspend a 
delayed destruction previously notified. For the same reaction the Reaction Strategy may 
decide to put several Notifications in the queue: one reaction Notification to be sent to the 
client and a Notification to the RA Manager to increase or decrease the frequency of 
attestation. 

5.2.1.3 Notifications Dispatcher 
The Notifications Dispatcher processes the Notification Queue. Based on the type of 
Notifications it may notify the Application Server, notify the Remote Attestation Manager or 
notify the Common Clients Notifier. The purpose of this component is to decouple the 
reaction logic and the notifications processing. 

5.2.1.4 Common Clients Notifier 
The Reaction Manager needs a protocol to communicate with its client side. In an ideal world 
the reaction mechanism would rely on opaque data structures that would be conveyed by the 
Application Server to the client application on an answer to a client request through the 
application protocol. Such a design would avoid a dedicated Reaction Client component 
waiting for possible reaction requests sent be the reaction mechanism. Unfortunately, such 
design is much too invasive for the application, so a dedicate channel has to be provided.  

The Common Clients Notifier maintains the connections with all the client applications to 
allow notifications to be sent to clients. When notified by the Notification Dispatcher, the 
Common Clients Notifier sends the notification to the Reaction Manager Proxy located on the 
client side. Like in other components of the server the ASCL WebSocket library is used to 
enable this feature. This component is shared with the RA Manager.  

5.2.2 Client-side components 
On the client side a component needs to set the connection with the Reaction Manager 
located on the server and to get the reaction notification if it is sent by the Reaction Manager. 
The reaction notification must be stored under a Boolean form in a data structure to enable 
reaction to be triggered. 

This data structure is the Delayed Data Structure (DDS) described in Section 5.1.5 and that 
is depicted as the Remote Attestation reference architecture of Figure 5. A reaction 
component such as the Software Time Bombs is the Reaction Enforcement Unit in the figure. 
A component needs to handle the communication with the Reaction Manager. This 
component is the Reaction Waiting Unit in Figure 17. 

The challenge with this architecture is to find a way to implement the Reaction Waiting Unit in 
such a way that it cannot be removed by the attacker. Indeed this component is not required 
to enable the application to work as it should. It is even exactly the contrary: the Reaction 
Waiting Unit is there to convey the data that will provoke a failure in the application. 
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Figure 17 – Reaction components on the application client side 

 

5.2.2.1 Reaction Waiting Unit 
The WebSocket protocol enables the Reaction Manager to notify the Reaction Waiting Unit 
out of a dedicated request sent by the client. Still, it supposes an initial handshake at the 
initiative of the Reaction Waiting Unit to set the bi-directional communication.  

The Reaction Waiting Unit cannot run in the main thread as it handles the communication 
with the server. It must run in a separate thread.  

The only way to avoid this thread to be stopped by the attacker would be to hide its inherent 
protection nature into a useful service server like a synchronized time service or something 
similar that has some importance for the application. This service would be attached in some 
way with the client application to prevent its removal.  

The real mandatory feature implemented by the Reaction Waiting Unit is to set the DDS 
when the Reaction Manager sends a notification. 

5.2.2.2 Reaction Enforcement Units 
Reaction Enforcement Units are the implementation of the reaction mechanism inside the 
application. Reaction Enforcement Units would actually start their action based on a query on 
a predicate in Delayed Data Structures. An example of a reaction is described in the next 
section. 

5.2.2.3 A Reaction Enforcement Unit implementation: Software Time Bombs 
Software Time Bombs is a Reaction Enforcement Unit. It is a client side technique that 
enables to sabotage the application with a time delay to prevent the attacker to relate  the 
application degradation effect to the reaction cause. 

In case of attack detection or because of an abnormal behaviour detected in the application a 
reaction mechanism is required to stop the execution. If the application is stopped right after 
the detection, there is a high probability that the attacker will make the connection between 
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the detection mechanism and the reaction mechanism. To mitigate the capacity of the 
attacker to locate and to neutralize the reaction phase it must be de-synchronized from the 
detection phase. The Software Time Bomb tries to address this issue by proposing a reaction 
mechanism that will cause a delayed crash of the application when it is triggered. 

The logic of the Software Time Bomb can be depicted with the following pseudo-code. The 
predicate is there to illustrate the logic but it is not part of the reaction mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This protection will not work if it is implemented as-is in source code because of the overflow 
protection of the C language. Therefore, the implementation of the Software Time Bomb 
should be done at a lower level.  

The favourite way in ASPIRE to implement such mechanism is through the Diablo framework 
because it operates at binary level and exposes adequate functions to manipulate the code. 
Before implementing the Reaction Mechanism with Diablo a technical study has been done 
and is reported in this section. 

In a first step the Software Time Bomb has been prototyped using gcc inline assembly. This 
feature enables to: 

• insert the Software Time Bomb reaction mechanism directly in the C source code, 
• prevent the optimizer phases of the compiler to modify the Software Time Bomb logic, 
• explicitly set the registers used by the assembly sequence. No need to take register 

saves/restores into account, 
• use an lvalue in the C  code that is defined in the assembly sequence  

 

Some prototyping has been done with code insertion done with scripts, out of the ACTC. In 
the following code the annotation indicates that the loop can be run twice: 

 

 

 

 

int main() { 
 
  structure *critical_pointer; 
  int timebomb = 0; 
 
  /* .... */ 
 
  while (true) { 
 
    if(!predicate) 
      timebomb=1; 
 
    /* ... 
       logic of the application using the structure 
       pointed by critical_pointer 
    */ 
     
    timebomb *=2 
  } 
 
  /* ... */ 
} 

int j = 0 
while (j<3) { 
    #pragma ASPIRE begin protection(bool_assertion,count_pass,max=2) 
    printf("j = %d\n",j); 
    #pragma ASPIRE end 
    j++ 
} 
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Then assembly code has been generated to trigger the Time Bomb: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After this loop, the Time Bomb variable is equal to one. Some other code has to be inserted 
in the code to multiply the Time Bomb variable by a factor to make the degradation effect 
happen sooner. 

These direct replacements have enabled to validate the approach but the assembly code is a 
pattern that can be spot by the attacker. Using Diablo would enable to interlace this reaction 
code with the application to prevent automatic detection. A nice aspect of the assembly in-
lining is the register management done by the compiler while in Diablo some extra store and 
load will be required that can also be spotted by a static analysis of the code by the attacker. 

5.2.3 Plan 
The detail design of the Reaction Server side will be done in Q4, 2015 with a split between 
the generic part and the database queries that depends on Attestations. The implementation 
will be done in Q1, 2016.  

On the client side the Software time Bombs will be implemented in Q1, 2016.  

  

5.3 Static remote attestation 
The static remote attestation technique is defined in D3.02. There are no specific changes to 
the static remote attestation reference architecture compared to the one presented in D3.02, 
it only reflects the changes to the RA Manager and Verifier (general changes that apply to all 
techniques) to support multiple clients, with several attestators. 

int j = 0 
while (j<3) { 
/* ASM TEST bool_assertion,count_pass,max=2 */ 
__asm__ __volatile__         (“ldr  r3, =c2\n   “ 
“ldr    r2, [r3, #0]\n  ” 
“add    r2, r2, #1 \n   ” 
“str    r2, [r3, #0]” 
: : 
:”r2”,”r3”,”memory”) 
__asm__(“cmp r2, #2\n” 
“ldrgt r5, =tb\n” 
“ldrgt r6, [r5, #0]\n” 
“addgt r6, r6, #1\n” 
“strgt r6, [r5, #0]\n” 
“str r2, [r3, #0]” 
: : 
: “r2”,”r3”,”r4”,”r5”,”r6”); 
    printf("j = %d\n",j); 
    j++ 
} 
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5.3.1 Diversification 
Static remote attestation uses three components to actually generate (and verify) attestation. 
These components can be customized. 

Attestation responses are obtained as: 

Hash(nonce || attestation_data || ID) 

attestation_data are obtained by means of a random walk in the code areas to attest. The 
random walk is driven by the nonce, which is random. Currently, we have implemented two 
random walk algorithms: the one presented in the Section 5.3.2 of D3.02, and a new one, 
based on the Goldbach conjecture, which is described below. 
The value of the nonce is used to determine the areas to attest and other parameters passed 
to the random walk. The algorithm that determines how the parts of the nonces are used to 
determine the areas and the parameters values is named nonce interpretation algorithm. 
Nonce interpretation functionality is divided in two libraries, the nonce encoding library and 
the nonce decoding library. Currently, 5 different nonce interpretation algorithm have been 
implemented. Finally, we make available 5 different Hash algorithms: BLAKE2, MD5, SHA1, 
SHA256, SHA512. 
We recall here that information about the code areas to attest is stored in an Area Data 
Structure (ADS). There is one API to read and one API to write ADS data. Therefore, given 
the memory layout of the application to protect, the actual ADS representation to be merged 
with the application depends on the selected ADS API. Currently, only one API is 
implemented. 
Overall, we have 4 hash algorithms, 5 nonce interpretation algorithms, and 2 random walk 
algorithms; therefore, we can generate 40 variants of the remote attestation that can be used 
for diversification purposes. Moreover, since diversified versions have different performance 
and security, the ADSS can choose the diversified version to use when selecting the golden 
combination of protection. 

5.3.1.1 Goldbach random walk 
The random walk version based on the Goldbach conjecture takes its parameter from the 
nonce embedded in the RA request received by the Attestator. The basic parameters for this 
random walk are: 

• the Area index k=nonce[(31-x+1)-31] is interpreted as a x+1 bits integer (from 0 to 
2x); x depends on the number of areas to attest determined by the annotations; 

• the Base b=nonce[0-3] is interpreted as a 32 bit binary integer; 
• The size N of the attested memory area; 

The nonce is a 32 bytes array; buffer[i] refers to the value of the i-th byte.Starting from those 
parameters the Goldbach random walk makes some further preliminary adjustments. It splits 
the memory area to be attested into two sub-buffers called left-buffer and right-buffer. The 
size of the two buffers are determined as the Goldbach partition of the memory area size as 
follows: 

𝑁", 𝑁$ = 𝐺(𝑁) 

Where: 

• 𝑁"	is the left-buffer size; 
• 𝑁$ is the right-buffer size; 
• 𝐺(𝑥) is the Goldbach partition of 𝑥 defined as: 

𝐺:	2ℤ	 → 𝑃×𝑃 

𝐺: 𝑦, 𝑧 ∈ 𝑃, 𝑥 ∈ 2ℤ	 𝑦 + 𝑧 = 𝑥	 ∧ (𝑦, 𝑧) = min{|𝑦 − 𝑧 |} 
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If N is an odd number, i.e., it does not belong to 2ℤ, N-1 is considered as the size of the 
memory area to be attested. 

Then two new base values are computed: 

• left-buffer-base as 𝑏" = 𝑏mod𝑁"  
• right-buffer-base as 𝑏$ = 𝑏mod𝑁$  

The size of the buffer that will contain the final extracted data is B = max{𝑁", 𝑁$} 

Then the random walk is actually performed as follows: 

for (i=0 ; i < B ; i++) 

attestation_data[i] = M[o + bl
i mod Nl]+ M[o + Nl + bri mod Nr] 

The random walk performed in this way extracts at least N-1 bytes from the attested memory 
area and produces a buffer, containing the attestation data, whose size is approximately N/2. 

Notice that also if the memory areas are scrambled and randomized they are treated as 
straightforward arrays of bytes thanks to the API described in Deliverable  

5.3.2 ADS and integration with Diablo 
There are no updates to the ADS creation and change management in Diablo compared to 
D3.02. 

5.3.3 ACTC integration 
The static remote attestation technique is currently being integrated in the ACTC. 

There are two points in the ACTC workflow where operations related to the remote 
attestation are performed. 

1) Source Level. First of all, there is the source level RA component, which consumes static 
RA annotations passed using a JSON file. 

Depending on the annotation, it adds the following information, (in deliverable D3.02 we have 
defined this information static remote attestation descriptor): 

• Hash function to use 
• Nonce encoding API implementation 
• Nonce decoding API implementation 
• ADS API implementation 
• Attestation data preparation code 
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Figure 18. Client-side protection.  

Figure 18 presents the snapshot at M24 of the steps and the components needed to protect 
an application with remote attestation. We assume that the original application source code 
is annotated to indicate the areas to be watched by the remote attestation. It is also assumed 
that the application has AID (Application ID) that allows the ASPIRE portal to identify 
requests from an application running on a remote device2.  

The first step is a selection of the RA object files to be included in order to produce the 
protection required by the annotations. This step is performed by a simple component, the 
RA Attestator Selector.  

The RA Attestator Selector reads the JSON file containing all the annotations and 
determines the object code to select. The annotation provides the names of RA techniques, 
the diversification parameters, and some optional customization parameters. Examples of 
customization parameters are the average time between two attestations. 

Then, starting from the annotation information, the RA Attestator Selector determines the 
proper RA attestators to be used, selects their relative object files among all the pre-compiled 
attestators object files and makes them available to next ACTC steps as a unique object file. 

                                                
2 For more details on the definition and use of the AID see the internal wiki https://aspire-
fp7.eu/wiki/actc-aid.  
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Additionally, the RA Attestator Selector delivers another object file which implements 
functionalities needed by the attestators. C 

 

2) Binary level. In particular, the client-side application that also includes the RA code may 
be rewritten at binary level by the ASPIRE binary compiler. RA code is independent of any 
type of transformations performed at binary level, however, since the transformations 
certainly change the areas to attest, the binary obfuscator (i.e., Diablo) keeps track of the 
changes so that the RA code is able to attest them correctly. 

Therefore, the Diablo-based binary phase described in Section 5.2.2 of deliverable D3.02 is 
executed. When rewriting code according to what requested by annotations of other 
protection techniques, Diablo, has been modified and keeps track of the changes to the 
areas to protect with remote attestation. 

Therefore, Diablo is able to build the ADS, inject it into the application binary and rewrite 
remote attestation code to link it to the ADS. It also outputs to a file the ADS. Both the 
application binaries and the ADS are used by the extractor to fill the ASPIRE database with 
the precomputed attestation data. 

5.3.4 Composability 
Static remote attestation determines whether the application code that is running on the 
client is the same as the one distributed by the application developer or whether it has been 
modified. The areas to attest are annotated. Information about areas to attest is made 
available to the remote attestation technique as a JSON file. 

Attestation responses are obtained as: 

Hash(nonce || attestation_data || ID) 

The attestation_data are obtained by a nonce-driven attestation data generation algorithm 
that takes as input the nonce and the memory area to attest. It is therefore important to 
ensure that the information about the memory areas to attest are maintained up to date when 
the Actual Verifier has to perform the comparison. Memory areas are described in the ADS 
as ordered sequences of memory blocks. 

Therefore, for the sake of composability, other techniques can be divided in techniques that 
may modify memory areas to attest and techniques that do not modify memory areas to 
attest. 

Techniques that do not modify memory areas. Techniques that do not modify memory 
areas to attest are composable with this remote attestation technique, also on the same 
application part/asset.  

Techniques that may modify memory areas. Techniques that may modify memory area 
can be made composable by keeping track of the changes that are performed to memory 
areas to attest. This is what diablo actually does when it applies layout randomization and 
obfuscation prior to ADS generation. For static remote attestation, it is not needed to know 
the transformations applied, it is only important to know the exact location of memory areas, 
so that both the client-side Attestator and the server-side Actual Verifier (and Extractor) read 
the same memory parts when computing the attestation_data content. 

Composability with other local techniques. If another source level technique (executed 
before this remote attestation technique) inserts source code that requires integrity checks 
from this technique, it must  include RA annotations in its source code. The same 
consideration applies to binary level techniques: they have to update the JSON file with the 
annotations concerning memory areas to attest before any binary level transformation is 
applied. 
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Composability with other online techniques. If client-server code splitting is applied to 
some of the fragments that need to be attested, it is important to keep track of the parts of 
those memory areas that remain on the client. If an entire memory area is moved on the 
server, the corresponding annotation must be removed from the JSON file. Renewability is 
much harder to support. Even if it is theoretically possible, it requires a lot of engineering 
effort. Indeed, when a code block is replaced, it is necessary to check if some of the memory 
areas to attest is affected by the change. If so, it is necessary to inform the Verifier of the 
changes in the client binaries so that the attestation_data computed (or pre-computed) on 
the monitored client. Moreover, the DB must store precise info on the code blocks that are 
currently deployed. For preemption, all the version of code blocks should be made available 
to the Extractor to precompute valid (nonce, attestation_data) pairs. 

5.3.5 Legal issues 
We remark here that static remote attestation is compliant with REQ-FSR-003, “Legal 
compliance with respect to privacy regulations for the collection of data shall be respected” 
as it only processes code memory areas, application and client identifiers. 

5.4 Dynamic remote attestation 
We present here the achievements for another remote attestation technique: the invariants 
monitoring remote attestation. This technique is currently in the development phase, 
therefore it is an isolated prototype. It is not integrated in the M24 ACTC architecture. 

Invariants are predicates defined over the application variables. It is assumed that invariants 
remain true during the whole program execution. Invariants are quite difficult to determine, 
unless the programmers explicitly mark them or a formal model of the application is 
available.  

The best way to have a consistent set of invariants is to use likely invariants, which are 
predicates built over execution traces: all the values assumed by the variables in the 
execution traces satisfy the likely invariants.  

Likely invariants may be false, but the probability of false positives is reduced if enough 
traces are collected. Given another set of traces, it is possible to have a different set of likely 
invariants.  

This remote attestation protection is built on the assumption that, if an attacker tampers with 
the application, some of the likely invariants will no longer be satisfied. Therefore, the 
purpose of the Attestator is to collect the variable values to send to the Verifier. The Verifier 
then checks if the likely invariants are satisfied or not. The scenario is made more 
complicated as variables are not always available in memory. Therefore, the RA Manager 
cannot precisely ask for the variables it needs for specific variables and the Verifier must 
progressively collect the variables’ values the Attestator can send and look for the invariants 
that can be evaluated. 

Moreover, recursive and nested functions need to be processed at compile time in order to 
carefully diminish the quantity of data exchanged between the client and the server. Indeed, 
an invariant is valid for a given execution point and does not depend on the functions 
previously called to reach that point. Then, for a recursive function, an invariant can be 
evaluated just on the last function call ignoring the previous ones.  

Following the basic workflow of the general RA architecture, the invariants monitoring RA 
Manager sends the Attestator an attestation request and the Attestator sends the Verifier the 
corresponding attestation response. 

The attestation request contains the following information:  

• Nonce, a random value that adds freshness 
The attestation response contains  
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• A sequence of (variable ID, value) pairs; 
• The hash of the content computed. 

Likely invariants have been used in literature to implement remote attestation techniques. 
More information can be found here [Kil09] [Sad09]. The prototype being developed in 
ASPIRE follows the basic theoretical principles, that is, it assumes that an application is 
tampered if some invariant is no longer satisfied. However, the ASPIRE ambition is to 
automatically protect any application for which a set of invariants is known. 

5.4.1 Determining invariants 
The dynamic remote attestation technique which we are developing is based on likely 
invariants. To deduce a valid set of invariants can be very difficult, so we decided to exploit 
an external tool, namely Daikon [ERN07]. Daikon is a consolidated and tested tool for the 
dynamic extraction of likely invariants from application executable. This tool is able to 
achieve its goal my monitoring the execution of an application and inspecting the values of its 
variables.  

Then, it is been designed a tool able to invoke Daikon and manipulate its output in order to 
obtain a useful and usable representation of invariants and properly store them into the DB. 
This tool is called the Invariants Extractor. Consequently, when an application has to be 
protected with Dynamic RA it is necessary to put it through a training phase. This phase aims 
at extracting as many invariants as possible and makes them available for their evaluation at 
runtime.  

5.4.2 Variables identification 
In order to verify invariants, it is necessary to: 

• identify each variable involved in each invariant; 
• access and extract each variable value involved in each invariant during the 

execution of the application. 

To satisfy the former need, we identify each variable by its name and the name of its scope, 
i.e., the function/method or nothing if a variable is global. Hence, for each application 
protected with Dynamic RA, the ASPIRE DB holds a set of data that specifies the 
identification of all the program variables.  

The latter point has been achieved by performing the following workflow: 

1) The program is compiled with DWARF [DWF] debug symbols. 
2) The binary file is then analysed by parsing the DWARF symbols using the libdwarf 

library [LDW], inside the info section of DWARF, the DW_AT_LOCATION field 
specifies a relative location of the variable at runtime. Each variable can reside in a 
memory location, in a register or its value can be defined as a constant depending on 
the actual execution point. 

3) The library libunwind [LUW] is used to extract information about the program 
execution. It allows deducing the possible call-stack configurations and the 
references to be used as bases for the relative locations obtained in the previous 
point.   

This procedure is performed during a preliminary training phase that allows knowing the 
location of each variable at run time.. After the training phase, the program is re-compiled 
without any debugging symbol, the extracted information is encoded in binary 
form,embedded in the final binary, and accessed through an API. 

Notice that, after the preliminary phase the application can be recompiled without any debug 
symbol, this does not invalidate the data taken. Indeed, the structure of the executable binary 
file is not influenced by the DWARF symbols. 
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5.4.3 Composability 
Invariant monitoring remote attestation determines whether the application that is running on 
the client is the behaving as expected by checking predicates, the invariants, built on the 
application variables.  

Therefore, for the sake of composability, other techniques can be divided in techniques that 
may modify application variables and techniques that do not modify application variables. 

Techniques that do not modify variables. Techniques that do not modify variables are 
composable with this remote attestation technique; even if more techniques on the same 
code fragment. This consideration also applies to techniques that do not modify any of the 
variables that are used in any predicate. However, it would depend on the current 
enforcement of each techniques and it cannot be used to infer general composability 
properties.  

Techniques that may modify variables. Techniques that may modify variables can be 
made composable by keeping track of the changes that apply to variables. Since invariants 
are formulas, if variables are split, transformed, relocated, etc. it is important that the Verifier 
knows the transformation in order to update the invariants formulas. Moreover, the Attestator 
must be informed of the variable IDs. That is, a new set of identifiers must be issued and 
reported in the annotations.  

Composability with other local techniques. If another source level technique (executed 
before this remote attestation technique) inserts source code that requires integrity checks 
from this technique, it must add in the annotation JSON file the variables to monitor and 
invariants formulas. The same consideration applies to binary level techniques: they have to 
update the JSON file with the annotations concerning the variables to monitor and add the 
invariants involving them.  

Composability with other online techniques. If client-server code splitting is applied to 
some of the fragments that include variables to monitor, the server-side component must 
make available to the Verifier the value of these variables to perform the verification of the 
invariants involving them. An API should be provided to ask the variable values. Feasibility 
and opportunity would be verified during Y3. 

Also for invariants monitoring, renewability poses serious integration and engineering issues, 
even if it is theoretically possible to integrate them. Indeed, it is necessary to inform the 
Verifier of the changes to the monitored variables when generating alternative code blocks 
(e.g., by diversifying piece of code) so that the Verifier can update on the fly the invariants 
monitoring them. A simple example of integration between renewability and remote 
attestation will be provided during the third year of the project. However, the engineering 
effort to (1) abstractly model the changes operated to the code when performing 
diversification and (2) translate them into formulas to be composed with the original 
invariants, are probably too demanding for the current resources, but a simple integration of 
these two online techniques will be tried as it would be relevant to prove composability 
properties in ASPIRE. 

5.4.4 Other legal issues 
We remark here that dynamic remote attestation based on likely invariants may violate REQ-
FSR-003, “Legal compliance with respect to privacy regulations for the collection of data 
shall be respected” as it collects data from user variables. However, by proper labelling 
variables (e.g., with annotations) as sensitive, it is possible to exclude them from the 
collection. Moreover, user-related information is usually not useful for calculating invariants 
and it is unlikely that are selected by tools like Daikon. 
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5.5 Plan 
These are the four main activities to be performed in the remote attestation T3.2 in WP3: 

1. Implementation and improvement of the static remote attestation techniques (done); 
2. Design and implementation of the dynamic remote attestation techniques (done); 
3. Development of the tool chain component that automatically protects the application 

with remote attestation and integration into the ACTC (only done for static RA); 
4. Design and implementation of the implicit remote attestation (under development). 

The static remote attestation has been extended to support the diversification need for the 
renewability. Updates are expected on this topic during Y3. Moreover, we will continue the 
strong interaction with the static and remote code guards. 

Dynamic remote attestation design phase has been terminated. During Y3 we will complete 
the implementation of the automated protection technique, the validation of the approach, 
and the integration into the ACTC remote attestation tool chain component. 

Implicit remote attestation is currently in the design phase, issues need to be solved to 
complete it. We will deliver it during Y3. Nevertheless, the architecture and workflow 
proposed in D3.02 are still valid. 
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Section 6 Anti-Cloning 
Section Author: Brecht Wyseur (NAGRA)  

 

6.1 Introduction 
Anti-cloning (AC) is a special-purpose remote attestation technique that aims to allow a 
trusted server to efficiently detect concurrent clones that are connecting to this trusted 
server. This is part of the work envisioned in Task 3.2. as described in the ASPIRE 
Description of Work and has been introduced in the updated ASPIRE Deliverable D1.04 
“Reference Architecture”, Section 4.6. 

We further worked on maturing the idea beyond conception in Year 2. In this section, we 
explain more hands-on details and the implementation phase that we started. Delivery of this 
technique is envisioned early in Year 3 of the ASPIRE project. 

As described in the ASPIRE Reference Architecture, this technique aims to mitigate cloning 
attacks by associating a tag to each application instance and changing this tag regularly 
during the entire lifetime of the application. That means that this tag needs to be persistently 
stored in between different executions. This is achieved by storing the tag value into a 
dedicated file that will be persistently stored along with the application. 

Figure 19 depicts the anti-cloning concept. The original application holds an initial tag value 
“x”, which will evolve over time. It will evolve into the values “y” and subsequently “z” after an 
interaction with the trusted server. The trusted server holds the corresponding value in its 
database and checks that upon each connection, the received tag value is consistent with 
what is stored in its database. If at a certain point in time, a clone is made from the 
application (which necessitates that the dedicated tag file is cloned as well), the tag value will 
be updated by which ever instance (the original or the clone) makes the first interaction with 
the trusted server. The other instance will be de-synchronized upon its next interaction and 
as a result the trusted server can conclude that a cloning event took place. Note that the 
server cannot distinguish between an original application and a clone; this is an inherent 
problem in software-only solutions. 
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Figure 19 - Anti-cloning concept 
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6.2 Design 
6.2.1 Architecture 
A high-level architecture design has been presented before in the ASPIRE Deliverable D1.04 
“Reference Architecture”. For the sake of clarity, we depict the anti-cloning workflow diagram 
again in Figure 20. 
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Figure 20 - anti-cloning workflow diagram 

 

6.2.2 Implementation details 
The main functionality of the anti-cloning technique will be implemented in a dedicated library 
that will be statically linked with the application. This library exposes a simple API comprising 
just the function that invokes the process as presented in Figure 20. The library will be written 
in C, and will invoke the ACCL as described in the updated ASPIRE Reference Architecture. 

The AC feature can be invoked from anywhere in the original application. It has the best 
effect when invoked just prior to the need for fetching some assets from a server; an event 
where the server can verify if the status of the application that is connecting is still OK. These 
events are indicated with the annotations as described in the ASPIRE Deliverable D5.01 
“ASPIRE Framework Architecture Tool Flow and APIs” and updates in the working document 
WD5.02. 

To deploy the AC feature in an application, it suffices to translate the AC annotations into an 
AC function call. Thus, the AC feature will be implemented as a source-to-source step that 
will be integrated into the ACTC. 

6.2.3 Server-side policy 
At server side, the AC decision logic will be implemented as a python script. It will store the 
tuple { application ID, tag } into a database and upon each connection of the application, it 
will verify the consistency of the tag presented by the application with respect to the value 
stored in the database, and if OK, proceed to update the tag to a new random value.  

If the value is not OK, there are many different reactions possible, depending on the 
business value of the application or the risk that a service provider is willing to take. We 
consider complex reaction logics out of scope for ASPIRE and will implement a simple policy. 
Namely, when the value that the application presents to the AC decision logic does not 
correspond to the expected value that is stored in the database, the application ID will just be 
flagged. This signifies that the AC decision logic considers that the application has been 
cloned and thus that there are multiple instances with that identifier. Reaction logic will not be 
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implemented, but instead the AC decision logic will have an interface that allows other 
techniques or the original server to verify if a certain application ID is flagged or not. 

6.3 Composability 
The AC technique operates by verifying the value of the tag that is sent to the server-side 
support and updating this tag regularly. Only the value of the tag is important and therefore 
any further modification of the application that persists in this semantic behavior is OK for 
composability. This in general is any protection technique, since SW protection techniques 
preserve semantical behavior. 

Composing AC with additional techniques to strengthen this may be of interest as follows: 

• To protect the tag value itself while in storage in the tag file. This could be achieved 
by encrypting it at storage-time with a unique application secret, and decrypting it at 
read-time with the same secret. 

• To ensure that the AC manager code itself cannot be lifted or to ensure that the 
application control flow is preserved. This is in particular of interest to prevent a type 
of proxy attacks which attackers may try to build to enable larger-scale exploitability of 
the attacks. 

6.4 Plan 
There are 2 major next steps that are scheduled early Year 3 to finalize the implementation 
of the anti-cloning technique. 

First, there will be a focus on the integration steps, where the source code rewriting 
operations will be written; that is to translate the AC annotation into a AC function call. This 
allows for testing the integration into the ACTC early on. 

Secondly, the AC manager library itself will be implemented. 
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Section 7 Renewability 
This section briefly reports the work of the project consortium in Task 3.3. 

Section 7.1 describes the design process of the Renewability Architecture, and the third year 
plan to achieve it (both fully described in the new version of D1.04 - Reference architecture). 

The initial works on software diversity (renewability in space), are reported in the next three 
subsections: Section 7.2 describes the initial experiments to maximize diversity among 
different diversified copies, Section 7.3 describes diversification based on crash reporting, 
and Section 7.4 introduces Feedback-driven diversity. 

7.1 Design of ASPIRE renewability techniques   
Section Author: Paolo Falcarin 

In order to meet the different requirements of the DoW, we have to take into account the 
properties of the available offline and online protections, their technical constraints, and the 
resources of the different partners involved. 

The Code Mobility framework will be extended in the 3rd year of the project to implement the 
renewability framework, by adding new technical features identified during this analysis 
phase. 

Then the consortium has discussed the different requirements of the online protections and 
which can be made renewable, and which additional technical features each protections 
would require to be made renewable. 

For example, Time-limited White Box Crypto can be made renewable, provided that the 
Code Mobility framework will be extended to support Data Mobility, a new technical feature 
which will enable to make data mobile along with code blocks. 

On the other hand, the VM bytecode (now embedded in the binary code) can be considered 
data that could be possibly loaded at run-time from a server. Again, the Data Mobility feature 
would help to realize this scenario as well.  However, making the SoftVM bytecode 
diversified, and then renewable, would require a re-design and a new implementation of the 
current SoftVM: this would require a lot of resources and cannot be achieved in the rest of 
the project. 

Therefore, the Data Mobility extension of the Code Mobility prototype (described in D1.04 v2 
Section 5.2.2.1) will allow SoftVM bytecode mobility and WBC data table run-time 
renewability (D1.04 v2 - Section 5.3).  

Other techniques, such as dynamic remote attestation, delayed tamper response, CFG 
tagging, anti-cloning, and time-bombs cannot be made renewable because of conflicting 
technical constraints, as they all access to the memory, expecting a particular code layout, 
that instead will be dynamically changed by the Code Mobility framework.  

We will try to integrate Code Mobility and static remote attestation in order to make the 
attestors renewable. 

Another effort for the third year of the project will be devoted to the implementation of the 
different server-side components that will manage the diversified code blocks both at server 
and at client side, and their interaction with Diablo (as a diversifier) and the Static Remote 
Attestation service.  

The Renewability Manager component is introduced to manage the different lifecycle of the 
various client applications and to orchestrate the renewability schedule of each mobile block 
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depending on different and configurable renewability strategies described in D1.04 
Reference Architecture v2. 

7.2 Experiments to Maximize Diversity  
Section Authors: Paolo Falcarin, Alessandro Cabutto (UEL), Mariano Ceccato (FBK) 

 

Software Diversity is a protection aiming at reducing the exploitation of reverse engineering 
attacks; instead of delivering the same program to all the users, different versions are 
delivered to different users, so that a successful attack on one code instance cannot be 
easily exploited on a diversified code instance.  

Ideally, all the deployed versions should be "enough" different from one another, such that an 
attack developed on one version cannot easily replayed on another version; the information 
learned from one copy should not be used to implement automated attacks on other 
versions, or at least reducing the success rate on a very limited number of versions.  

In this sub-section, we start tackling the problem of searching for the best subset of 
diversified versions of the same program, which is the subset of versions that are the 
pairwise most different from one another; we resort to different configurable algorithms of 
Java code obfuscation to generate several different versions of the same program. Then, we 
resort to search based heuristics to find an optimal set of different versions, different enough 
to be deployed. 

To compare the code of such versions we used gzip similarity as first and simple metric and 
we are planning to use more appropriate metrics in the last year of the project. However, our 
search-based approach is general and the metric function can be easily replaced by the 
implementation of more advanced code similarity metrics. We started working on Java 
bytecode diversity and we report about the application of hierarchical clustering and hill-
climbing heuristics. 
 

7.2.1 Problem Formulation 
We define the distance between two diversified versions of the code by using a similarity 
metric ranging from 0 to 1, where two identical versions have distance equals to zero and 
two totally different versions have distance equals to 1.  

Assuming that we can generate N diverse versions of the same code, we then need to 
deploy M versions (with M less than N) to M different users at most. We set a constraint that 
the distance (similarity metric) between each couple of chosen versions in the set M must be 
greater than a threshold T. 

We can model the problem with a complete graph of cardinality N where each node is a 
version, and each arc is labelled with the distance between two nodes (versions). 

We extended the tool AntiCopia [Fre07], to perform the similarity analysis (with the NCD 
metric) on different versions of a simple Java application created by setting the parameters of 
Zelix obfuscator [Zel] to different values. The graph distance histogram of Figure 21, centred 
on the original program v0, shows how some diversified versions are still close (similar) to 
the original program while others are more distant (different). It is also visible on the left a 
small cluster of versions that are very similar among each other, but very distant to the 
original program v0. 
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Figure 21 – Distance Histogram of diversified versions 

 

From this observation, we decided to formulate the software diversity problem as a clustering 
problem. 

The objective is to find in the original N-complete graph, where each arc represents the 
similarity between the corresponding nodes (versions), the clusters of versions that are very 
similar among each other. So, after identifying clusters of similar versions, the final set of 
versions to deploy can be selected by taking just one element from each high-similarity 
cluster. In general, if N clusters have been identified and M versions must be deployed, (M / 
N) versions per cluster can be chosen to minimize the pairwise similarity of the versions to be 
deployed. 

Let the distance metric D(v1,v2) approximate the actual similarity between two versions v1 
and v2 assume values in the interval [0,1], and given a partition of all the available versions 
into similarity clusters, we define the intra-similarity Ai of the cluster I as the average similarity 
of all the pairs of elements in the cluster: 

𝐴D =
∑FG,FH		𝐷(𝑣1, 𝑣2)
n(n − 1)/2

 

 

We define the intra-similarity between two clusters Ci and Cj as the average similarity of the 
versions in the two clusters (where v1 belongs to Ci and v2 belongs to Cj): 

𝐸D,N =
∑FG,FH	𝐷(𝑣1, 𝑣2)

𝐶D 𝐶N
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Our objective is to search for a clustering configuration with clusters that contain elements as 
similar as possible (high intra-similarity) and low similarity between elements from different 
clusters (low inter-similarity). Thus we define the overall similarity quality among the clusters 
as the average intra-similarity minus the average of all the inter-similarity (where k is the 
number of clusters in the partition to evaluate): 

𝑆𝑄	 =
1
𝑘

𝐴D

S

DTG

− 	
1

S(SUG)
H

𝐸D,N

S

D,NTG

 

At this stage, the software diversity problem can be expressed as a search problem, aiming 
at finding the clustering partition that maximise the value of SQ. 

7.2.2 Similarity metric 
To detect similarity between two candidates we decided to use the NCD method [Cil05] using 
gzip as compression algorithm applied as follow: 

𝑆D,N =
𝐺 𝑖𝑗 − 𝑚𝑖𝑛 𝐺 𝑖 , 𝐺(𝑗)

max	 𝐺 𝑖 , 𝐺(𝑗)
 

where G(x) denotes the length of the code version x compressed by gzip and G(xy) the 
compression of the concatenation of code versions x and y. 

Similarity values 𝑆D,N obtained by applying the NCD formula on the different N versions are 
stored in an NxN matrix: since 𝑆D,N = 𝑆N,D and 𝑆D,D = 1 we can consider the upper triangular 
matrix and exclude its diagonal, hence the final number of values to be stored is ZUG

H
. In our 

experimental implementation we stored these values in a SQLite database. 

7.2.3 Clustering algorithms 
This subsection will describe the three different heuristics utilized to obtain clusters of similar 
versions; we implemented three different clustering algorithms, namely Hill Climbing, 
Hierarchical Clustering, and Genetic Algorithm. 

7.2.3.1 Hill Climbing 
Hill climbing is one of the most widely used local search algorithm [Min04]. Hill Climbing 
starts from a randomly chosen initial solution in the search space and works to improve the 
solution. The neighbourhood of the current solution are investigated and a new solution is 
taken among those that improve the current solution. This new solution will replace the old 
one and become the new current solution. Again, the neighbourhood of the current solution 
will be explored to find a better one, if an improving solution is found then it will be the current 
solution and so on, the process continue until no improved solution is found for the current 
solution until the search budget finishes. 

This improvement of solutions is linked to the metaphor of the climbing of hills in the 
landscape of a maximizing objective function [Min04]. In this landscape, peaks characterize 
solutions with locally optimal objective values. It is possible to have more than two solutions 
that improve the current solution. Hill Climbing uses different strategies to select one solution 
among neighbours’ solutions that improve the current solution. In a steepest ascent climbing 
strategy, all neighbours are evaluated, with the neighbour offering the greatest improvement 
chosen to replace the current solution. In a random ascent strategy (sometimes referred to 
as first ascent), neighbours are examined at random and then one neighbour that offers an 
improvement is chosen. 

In most cases, Hill climbing generates or finds the neighbour solutions by applying mutation 
or making small change to the current solution, as a result, hill climbing gives fast results. 
However, search could give sub-optimal results, since, hill climbing starts from a random 
position (solution) in the search space and accepts any solution which improves it and this 
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might lead hill climbing to get trapped in local optima and unable to explore other more 
promising areas of the search space. Hill climbing is starting solution (position) dependent in 
the search space, and hence, there are some meta-heuristic search techniques that extend 
it. A common extension to this algorithm is to incorporate a series of restarts involving 
different initial solutions to sample more of the search space and to minimize the problem of 
getting trapped in local optima as much as possible. 

7.2.3.2 Hierarchal Clustering 
Hierarchal Clustering is a greedy algorithm that tries to find a good partition in the search 
space. This algorithm starts from the initial configuration where each candidate is assigned to 
a different cluster. At each step, the inter-similarity between each cluster is computed and the 
two most similar clusters (those with highest inter-similarity) are merged to form a single 
cluster. This process is iterated and at each step the number of clusters decreases by one. 
The iteration terminates when the partition contains only one big cluster where all the 
elements belong to that cluster. During this process the Similarity Quality value is recorded at 
each step; the one with highest SQ represents the final sub-optimal solution. 

7.2.3.3 Genetic algorithm 
Genetic Algorithms are adaptive heuristic search algorithm based on the evolutionary ideas 
of natural selection and genetic recombination, and use historical information to direct the 
search into the region of better performance within the search space. Likewise to the natural 
genetic evolution, GA encodes candidate solution as individual (chromosome); each 
individual has a genetic component or property know as gene that can be mutated or altered 
during the genetic evolution. 

GA evolves a set of candidate solutions rather than just one single solution. Those set of 
solutions will be referred as population. GA generate randomly the initial population, and this 
enables the algorithm to have many starting points, as a result GA samples more of the 
search space than local search algorithms [15]. Sometimes, that initialization may be 
”seeded” in the area where optimal solutions are likely to be found. 

In each generation (iteration), the fitness of every individual in the current population is 
evaluated. Most of the time, the fitness of an individual is the value of the objective function 
in the optimization problem being solved, or the value scaled in some way. These fitness 
values are the main deciding factor for an individual to undergo recombination. 
Recombination is a mechanism of exchange genetic information between individuals to 
“breed” new individuals and possibly mutates them. Based on the fitness value, GA apply 
recombination procedure under some selection strategies such as Roulette wheel selection, 
Tournament selection, Linear Ranking selection, etc., and produce new individuals which will 
become the population of the next generation. This process continues until the termination 
condition is reached or the allocated search budget finished. 

7.2.4 Target of experimentation 
For ease of implementation in our experimentation we decided to target Java applications. 
Nevertheless, the whole approach is valid in general and could be applied to binary 
applications also by selecting a proper similarity metric for binary code. 

Java is a high level programming language and keeps a lot of information from the original 
source code after compilation. Java programs are distributed over the Internet as bytecode 
exposing them to a high risk of reverse engineering attacks. Automatic code obfuscation is 
currently one of the most adopted approaches to protect Java applications from reverse 
engineering attacks [Col97] by reducing code comprehension. 

Obfuscation in this case is a source code protection technique: it generates a semantically 
equivalent program, which is harder for a malicious human being to understand and analyse. 
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7.2.4.1 Obfuscation Tool 
Many open source and commercial obfuscation tools are available. For our experiments we 
selected the Zelix KlassmasterTM [Zel] toolkit because it provides several configurable 
obfuscation techniques. This gives us control on the complexity of the obfuscated output and 
an easy way to produce diversified applications. Analysing the documentation of the Zelix 
toolkit, we identified a total of 13 distinct obfuscation configurations: 

1. deleteSourceFileAttributes 
2. deleteDeprecatedAttributes 
3. deleteAnnotationAttributes 
4. deleteExceptionAttributes 
5. deleteUnknownAttributes 
6. aggressiveMethodRenaming 
7. keepInnerClassInfo 
8. obfuscateFlow 
9. encryptStringLiterals 
10. collapsePackagesWithDefault 
11. lineNumbers 
12. exceptionObfuscation 
13. autoReflectionHandling 

 
Each parameter controls a different obfuscation algorithm and these parameters can assume 
different values. Every combination of those parameters corresponds to a diversified 
obfuscated variant. Among these 13 parameters, 8 parameters support binary value, other 3 
parameters can have 3 possible values each and remaining 2 parameters can have 4 
possible values each. Therefore, we could theoretically generate up to 28*33*44 = 110,592 
distinct obfuscated candidates using this tool. 

However, with 110,592 candidates we have 6,115,239,936 Z∙ ZUG
H

 distinct pairwise 
similarity values to consider. Moreover, some of these parameters do not to bring any benefit 
in terms of diversity, so we decided to exclude four parameters (the ones with less diversity 
impact) from our analysis. Finally, for our study we will have at most 24*33*44 = 34,848 
distinct candidates heading to 607,174,128 pairwise similarity values to consider. 

7.2.4.2 Case studies 
We chose some case studies from very popular (in terms of user installations) Android 
applications coming from the Google Play Store: 

• Google Chrome (a browser) 
• SkypeWifi (an IM application) 
• Opera Mini (a browser) 
• GoTetris (a game) 
• Twitter (a social network) 
• ESFileExplorer (a utility) 
• WordFriends (a game) 
• Contacts (a utility) 

 

For each application the following process has been followed: 

1. APK file download from the application store 
2. Java source code extraction 
3. Source code diversification using Zelix Klassmaster with different obfuscation 

combinations 
4. Similarity Matrix generation by comparing each diversified version  
5. Clustering algorithms execution over the Similarity Matrix 
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7.2.4.3 Experimental Results 
The process described in the last section is extremely time-consuming. We run some 
experiments to benchmark how long it takes to process the similarity matrix using the 
clustering algorithms. The computation has been done on machines equipped by Intel Xeon 
quad-core blades, 8/12 cores, with 20GB of RAM. Our clustering implementation does not 
optimize the amount of used RAM, in fact the whole Similarity Matrix is loaded to allow faster 
and easier clustering operations.   
 
On the average the overall process (diversification, Similarity Matrix generation and 
clustering) lasts one to two months. The expected exponential behaviour of the elaboration 
time is reported in Table 10. We decided to consider acceptable an elaboration time of few 
hours, therefore considering our data from the experimental analysis the maximum number 
of versions to be considered is 2048 and 512 for Agglomerative Clustering and Hill 
Climbing/Genetic Algorithm respectively. 
 

 
Table 10 - Clustering algorithms execution time 

 
Elaboration time [s] 

n. of candidates Agglomerative clustering Hill Climbing Genetic Alg. 

2 0,47 1,48 3,65 

4 0,47 1,49 4,21 

8 0,49 1,71 4,36 

16 0,49 2,29 6,11 

32 0,51 4,36 6,87 

64 0,56 42,56 39,35 

128 0,74 194,29 187,17 

256 1,92 1430,01 929,58 

512 13,91 5535,60 4045,74 

563 18,44 6273,39 4895,41 

614 23,62 7143,16 5621,25 

666 31,33 9171,58 6733,61 

717 39,29 10553,68 8165,70 

768 47,75 9773,24 9932,01 

819 58,10 13002,69 10522,26 

870 70,99 20018,86 12005,55 

922 85,87 13661,24 13930,47 

973 102,10 23333,18 15647,54 

1024 118,64 23920,31 17534,31 

2048 1048,45 174567,59 57993,37 

4096 18813,49 - - 
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7.2.5 Future work 
The experiments on software diversity started earlier than planned, before M18 when task 
3.3 was supposed to start. Some progresses have been made in the second year, but we 
had to prioritize the implementation and integration of Code Mobility and the ACCL 
architecture for all the online protections.   

To optimize the clustering processing time we plan to reduce the search space by excluding 
from the search all the obfuscation configurations that are not effectively contribute to 
maximize similarity. In the next months, we will concentrate on defining and applying a 
strategy to achieve this goal. 
 

7.3 Practically useful Diversification: Crash Reporting 
Section Author: Mohit Mishra, Bjorn De Sutter (UGent) 

 

One of the forms of renewability researched in the ASPIRE project is code diversification in 
space. By giving different users a different binary, attackers cannot easily deploy attacks on 
a wide range of machines. Their potential gains hence diminish, potentially up to the point 
where they will be no longer interested in investing in the identification and engineering of an 
attack. We point the reader to Section 2.2 of D1.02 for a more extensive discussion about the 
economic model behind this reasoning.  

When academics present new code diversification schemes, industrial vendors and 
developers, as well as maintainers of major open source projects, typically welcome the 
protection it provides, but they almost immediately express reluctance because of the 
supposed costs the schemes would impose on the software development, maintenance and 
customer support. Amongst others, they are afraid that the code diversification might 
introduce bugs, and that it would make it very hard to interpret bug reports, e.g., in the form 
of crash reports. 

Simplistic solutions such as permanently storing debug information for all diversified versions 
are infeasible, because full debug information is many times bigger than the code and data in 
a binary executable, be it an application or a library. So permanently storing it would be very 
space consuming. Moreover, for client-side install-time diversification approaches, e.g., as 
could be implemented in the Android Run-Time (ART) when bytecode is compiled into native 
code upon its installation on an Android device, storing the debug information on a central 
server is totally impractical. The alternative solution of rebuilding a software version and its 
debug information on the fly when a crash report comes in is impractical as well, because it 
requires the precise reproduction of the developer's build environment in the bug tracking & 
crash collection environment. Furthermore, if the diversification also involves private 
encryption keys and seeds, rebuilding a software version might introduce security threats 
when third parties get involved. An additional complication is that debug information is often 
sensitive information that should not easily fall into the hands of attackers. Amongst others it 
allows them to work around the hurdles introduced by diversification. 

To overcome this problem in the context of the ASPIRE project, where diversification plays 
an important role and industrial partners are interested in practically deployable solutions, we 
set out to develop dBp, short for delta Breakpad. It is the first practical solution to the 
problem of crash reporting for applications with fine-grained layout diversification. 

Our approach allows us to embed a small amount of encrypted information in a diversified 
application that, when sent to a bug crash collector together with a crash report, supports the 
reconstruction of an accurate, human-readable stack trace without requiring any persistent 
storage of data about the diversified application on a server. 
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We also developed some minimal adaptations to compilers in order to let them introduce 
enough diversification in the code and stack layout of binaries to raise the bar for code 
injection and code reuse exploits significantly, but without unacceptably inflating the amount 
of information that needs to be embedded in the application and sent to the crash collector. 

With this line of research, we do not solve all problems immediately, and for the time being, 
we are only able to support relatively simple forms of diversification. But we consider it an 
important first step. Moreover, the protection tools used in our research are precisely those 
used to implement the renewability protections in ASPIRE's ACTC, being the compiler 
(LLVM) and the binary rewriter Diablo. 

To optimize the exploitability of the results, we focus on BreakPad, an existing crash 
reporting tool and library developed by Google, and integrated into many real-life software 
products, such as Chrome.  

7.3.1 Approach Overview 
Figure 22 presents an overview of the dBp approach. dBp looks much more complicated 
than Breakpad, as can be expected from an approach that has to handle multiple versions of 
binaries, but in fact it remains very simple. 

. 
Figure 22 - Overview of dBp as an extension of Google Breakpad 
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The big picture is that an end user runs a diversified binary on his system (bottom left the 
figure). When it crashes, the embedded Breakpad client catches the signal received from the 
OS, and writes what is called a minidump to disk before actually halting the binary's 
execution. The minidump file format as developed by Microsoft is similar to core dump files, 
but much smaller, better documented, and less OS-specific. A minidump contains 

• A list of the executable and all shared libraries loaded into the process when the 
dump was created.  

• A list of threads in the process, together with all threads' (complete) stacks and 
processor register contents. Complete stacks are included because the applications 
typically do not contain debug information to analyse the stack.  

• Some more system information, incl. the processor and operating system versions, as 
well as the reason for the crash. 

In dBP, the Breakpad client is adapted to send not only the minidump to a crash collector 
server (bottom right of the figure), but to send a small data section of the binary along with it. 
In a custom symbol patch format, this data section contains all the necessary data for the 
crash collector to interpret the threads' stacks and registers contents in order to produce a 
complete, human-readable stack trace. 

The crash collector server persistently stores debug information of the default version of the 
binary. This debug information is stored in a so-called symbol file, an ASCII text file that is 
both human and machine readable, with lines delimited as appropriate for the host platform. 
Breakpad comes with symbol dumper utilities for the major OSs, which simply extract the 
necessary information from the DWARF or STABS sections in ELF files or from stand-alone 
PDB files). The symbol file contains a list of functions, a mapping between instruction 
addresses and source line numbers, and a description of all stack frames and their uses in 
the binary. 

When receiving a crash report, the server will first apply the symbol patch to the default 
symbol file. The result is a symbol file that corresponds to the diversified binary from which 
the crash report was generated. This symbol file and the minidump are then fed to the 
standard Breakpad minidump processor, which produces a human-readable stack trace, i.e., 
a trace that reports the state of the crashing application in terms of source code line 
numbers. 

The top part of shows the adapted build system. On the right of this part, the standard 
Breakpad symbol dumper flow is shown to generate the symbol file to be stored persistently 
on the crash collector server. In our approach, this symbol file is extracted from the default 
binary. This is a binary generated without diversification, but with some slightly changed 
default compiler settings, to which we will come back in later sections. 

On the left of the shown build system, the diversified binary is generated. Along with the 
diversified binary, some information is produced in a log that describes to some extent the 
randomization that took place. From the diversified binary, a symbol file is extracted, just like 
it was done for the default binary. 

Based on the default symbol file, the diversified symbol file, and the log, a custom symbol 
differ we developed then generates a symbol patch. This is in fact nothing more than a 
compact script to translate the default symbol file into the diversified one. 

This patch is then packed into the diversified binary from which all debug and symbol 
information was stripped as shown on the very left. The stripped, packed binary is then 
distributed to the user, ready to crash.  

Whereas the original breakpad does not require any symbol or debug information to remain 
in the binary distributed to the end user, dBp does require the patch to be packed with the 
binary. As discussed in later sections, the patch does not contain any references to symbols. 
Still, it does leak information regarding the applied diversification, and hence it potentially 
aids attackers in circumventing the diversification. This can easily be solved, however. When 
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a developer or vendor embeds the Breakpad client into the application, he already chooses a 
crash collector, with which we can assume he has a trusted relationship. Using a public key 
encryption scheme, the patch packer can encrypt the packed patch with the public key of the 
crash collector, such that only the collector can decrypt the patch, prior to applying it to the 
default symbol file. 

7.3.2 Currently Supported Code and Stack Layout Diversification 
A key aspect to make the dBp approach practical is to keep the size of the packed patches 
small, while still offering sufficient diversification to actually raise the bar for attackers.  

In this paper, we consider three static forms of layout diversification that have previously 
been presented to mitigate code injection and code reuse attacks to a large degree. They do 
not offer full protection, but they do offer significant protection at an acceptable cost.  

7.3.2.1 Random No-op Insertion and Function Shuffling 
Randomized no-op insertion [Hom13] and function shuffling aim at diversifying offsets within 
binaries' static code sections [Kil06]. Their goal is to prevent the leakage of useful information 
by reducing the amount of deduction an attacker can make about the location in memory of 
one code fragment once he has learned the address of another fragment. Whereas 
randomized no-op insertion typically only randomizes the lower significant bits in the 
displacements between two code fragments, function shuffling, i.e., the reordering of 
functions in the binary, also randomizes the higher bits in the displacements, incl. the sign 
bit. 

At first sight, inserting no-ops and function shuffling seem to introduce no problem for 
generating the symbol patches in our approach. To allow the symbol patcher to patch the line 
number information in the symbol file when no-ops have been inserted, it suffices to store 
where the no-ops were inserted. For function shuffling, it suffices to store the start addresses 
of all functions in the diversified binary, in the order in which they appeared in the default 
binary. 

In practice, this simple solution only holds for small enough binaries on RISC architectures. 
For larger binaries, and for binaries stored on CISC architectures, the insertion of no-ops and 
the shuffling of functions can result in displacements in the diversified binary that become too 
large to be stored within the bytes foreseen for them in the default binary. As a result, 
branches and other instructions that include code offsets (such as PC-relative addresses) as 
part of their instruction encoding can either require more bytes, as happens frequently on the 
x86 architecture, or require multiple instructions instead of one, as can happen on the 
ARMv7 architecture. In the case of x86 code, this is easily solved by recording not only the 
places where no-ops have been inserted, but also the places where instructions require more 
bytes to be encoded. In the case of ARMv7, trampolines (also called veneers) might be 
inserted, and to compute a correct symbol file patch, we also need to keep track of the 
locations where those trampolines have been inserted. 

On architectures like the ARMv7, that lack a so-called global pointer, another secondary 
effect of inserting no-ops is that literal pools get moved around. These pools are small blocks 
of data in the code section that get accessed via PC-relative loads to produce addresses and 
large constants in registers. When the PC-relative offset grows because a no-op is inserted 
in between the load instruction and the accessed literal pool, the offset can become non-
encodable as an immediate operand. Generating correct code is easy in that case: It suffices 
to move the literal pools around in the code section, if necessary splitting them into smaller 
pools, and to insert additional branches in the code to jump over the pools where necessary. 
But of course the resulting changes in the code layout again need to be tracked for correctly 
patching the default symbol file into the diversified one. 

Keeping track of all the locations where secondary effects occur in an existing compiler 
backend, assembler and linker requires quite some engineering, simply because those tools 
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are not designed and engineered to minimize differences between similar code versions. 
Instead they are engineered to optimize code as much as possible or wanted by the 
programmer. 

To avoid this large engineering effort in our research project, we have instead opted to 
perform the no-op insertion and the function shuffling in a post-pass tool in the form of a 
simple link-time rewriter based on the Diablo link-time rewriting framework that has been 
under development for over more than a decade in our research group. Tools based on 
Diablo by default produce as output a mapping between instructions' addresses in the input 
binary and in the output binary, which greatly simplifies the generation of compact symbol file 
patches. 

Fundamentally, however, nothing prevents us of implementing similar tracking in a compiler 
suite like Clang/LLVM. For a real production build system, that would probably be even 
better. 

7.3.2.2 Random Stack Padding 
By inserting randomized amounts of stack padding in functions' stack frames, we randomize 
the displacement in those frames between the location of the stored return addresses and 
the locations of buffers that might be overflown. This makes it harder for an attacker to 
predict where to put the malicious payload in an overflowing buffer, and hence reduces his 
chances of success [For97]. 

Figure 23 compares simplified stack frame layouts in diversified and undiversified binaries. 

 
Figure 23 - Stack frames in original and diversified binaries 

 

It is important to note that changing stack frames in a post-pass tool such as link-time 
rewriter is much harder to do than inserting no-ops or shuffling instructions. The reason is 
that a complete understanding of the stack frame and the assumptions that the compiler has 
relied upon to generate optimized code, is impeded by a lack of precise enough alias 
information. Relying on debugging information is also not guaranteed to be correct, for 
example if the debug information is inaccurate because of extensive optimizations performed 
by the compiler. For this reasons, we decided to implement the random stack padding in the 
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LLVM backend, rather than in a Diablo-based link-time rewriter. So random stack padding 
will be inserted before no-ops are inserted and before functions are shuffled. 

To understand what changes in the code might result from the padding added by a compiler, 
the following observations need to be made.  

• The offsets of memory entries (m-entries) in the local area of the stack frame relative 
to the frame pointer (FP) change because of the inserted padding. 

• The offsets of the m-entries in the local area relative to the stack pointer (SP) do not 
change. 

• In functions that call other functions with a variable number of arguments (a.k.a. 
vararg functions) the offset between m-entries in the local area and the SP is not 
constant because the SP changes during the function's execution. So in those 
functions, compilers tend to use the FP to access local data on the stack. 

• When the offsets encoded as immediate operands in memory accesses change, this 
can cause non-trivial secondary changes in the generated code. This is particularly 
the case when an offset has grown so much as a result of the padding, that it can no 
longer be encoded as an immediate operand in its FP-relative load or store 
instruction. In that case, the address of the accessed entry (or its FP-relative offset) is 
first computed and stored in a register. This increases register pressure, as a result of 
which the compiler will often even schedule the code differently. Moreover, if multiple 
such computations take place in a small code fragment, the compiler might even 
deploy common-subexpression elimination to optimize the computations. On ARMv7, 
such larger side-effects of increased offsets are not rare, because relatively few bits 
are available to encode offsets in memory access instructions, and because of the 
architecture's peculiar way of encoding offsets as 8 consecutive bits that can be 
rotated over a 5-bit amount. It can, by the way, also happen that the diversified binary 
at some point requires fewer instructions than the default binary, e.g., because an 
original offset 0x3ff0 cannot be encoded in an immediate operand, but the bigger 
offset 0x4000 after padding can.  

• In many cases, the compiler can choose between accessing data in the local area via 
the FP or via the SP. Compiler back-ends like LLVM's llc then choose the most 
efficient form, for which they compare the offset to the SP with the offset to the FP. As 
the latter changes when padding is inserted, this optimization frequently introduces 
more differences between default and diversified binaries than strictly necessary. 

• It occurs that function prologues set up the stack frame without performing explicit SP 
increment instructions. In that case, adding stack padding requires inserting such 
instructions, rather than simply adapting their immediate operand. 

• Even if only the immediate operand of a SP increment instruction needs to be 
adapted, this can again result in an operand that can no longer be encoded in a 
single instruction, thus again causing additional instructions to be inserted. However, 
as the prologue code is typically inserted very late in the back end code generation, 
this does typically not result in other instructions being reordered.  

Given these observations, our "implementation" in LLVM 3.6.2 consists of three rather trivial 
patches: 

1. An additional command-line option enables randomized stack padding insertion. The 
range of padding can be specified, as well as a random seed.  

2. In the prologue & epilogue emitter, random padding is inserted in functions that have 
a stack frame, i.e., mostly non-leaf functions. The padding is at least 8 bytes, even for 
the default binary. This reduces the number of cases where additional instructions 
have to be inserted in the prologue of the diversified version compared to the default 
version, as discussed in the last but one bullet above. 

3. In the ARM backend, a one-line patch disables the optimization in which accesses via 
the FP are selected over accesses via the SP depending on the offsets. This patch 
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also reduces the number of changes introduced in the generated code as a side-
effect of the padding insertion. 

Together, these patches implement randomized stack padding, while minimizing the 
collateral damage in the form of secondary changes and side-effects. These patches also in 
no way limit the compiler capability to omit frame pointer when useful. 

The patches cannot prevent that more complex code differences between default and 
diversified binaries will occur, so in general, our symbol differ and symbol patcher need to be 
capable of handling more extensive code differences. This is discussed in more detail in the 
next section. 

7.3.3 Compact Symbol File Patches 
As explained in the previous section, our prototype implementations supports three forms of 
diversification, in two compilation steps: the LLVM backend first applies stack padding, after 
which the Diablo-based link-time rewriter performs no-op insertion followed by function 
shuffling. In this regards, our experimental build system differs somewhat from the idealized 
visualization in Figure 22. Instead, it looks more like the one in Figure 24. 

The figure shows that we actually do not construct one symbol file patch, but two. The first 
covers the distance between the default binary and the one in which LLVM randomly padded 
the stack frames. The second covers the no-op insertion and the function shuffling. On the 
crash collector server, these two patches will be applied one after the other, in the same 
order. 

To ease our research, all unencrypted, uncompressed patch files are simple human-readable 
ASCII text files. With more but relatively simple engineering, smaller patch sizes can be 
obtained. So any sizes we will report are upper bounds on what could be achieved with a 
more mature implementation. 
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Figure 24 - Our prototype build system on top of two diversification tools similar to those in the ACTC 

 

7.3.3.1 Patch file 1: stack padding 
As discussed in Section 7.3.2, the injection of stack padding can cause additional 
instructions to be injected and existing code to be reordered. Because our LLVM patches aim 
at limiting the secondary effects of randomized stack padding, such occurrences are rare. In 
particular the reordering happens very rarely. So it is not problematic if we do not describe 
the necessary patching for those cases in the most compact form. 

To generate the first patch, we developed a custom differ (called differ 1 in Figure 24) that 
diffs the two symbol files obtained from the two outputs of LLVM, i.e. the default one and the 
partially diversified one. Those symbol files contain two parts of interest. 
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Figure 25 - Source line mapping in the symbol file 

 

 
Figure 26 - Stack walking information in the symbol file 

The first part describes the mapping of function symbols (using FUNC m-entries) and the 
mapping of instruction chunks to source code files and line numbers (using m-entries starting 
with the chunk's address). An example is depicted in Figure 25.  Our differ walks over all 
functions in this part of the two symbol files. Per function, it first pair-wise compares all the 
chunk m-entries. It is immediately clear whether or not instructions were added or deleted in 
a function because of the stack padding. If not, no information whatsoever needs to be 
stored for the function. If instructions were only inserted or deleted, a difference shows up in 
the second column. In that case, we record which entry was changed and how much. 
Furthermore, we check that the offsets between the addresses of consecutive m-entries are 
consistent in the two symbol files. If they show differences, we also track that. We need to 
track both the changes in size and in offset because of the potential presence of padding no-
ops and literal pools that the compiler might have inserted in between code fragments.  
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Fig. 3: Our prototype build system on top of two diversification tools.

4.1 Patch file 1: stack padding

As discussed in Section 3, the injection of stack padding can
cause additional instructions to be injected and existing code
to be reordered. Because our LLVM patches aim at limiting
the secundary effects of randomized stack padding, such
occurrences are rare. In particular the reordering happens
very rarely. So it is not problematic if we do not describe
the necessary patching for those cases in the most compact
form.

To generate the first patch, we developed a custom differ
(called differ 1 in Figure 3) that diffs the two symbol files
obtained from the two outputs of LLVM, i.e, the default one
and the partially diversified one. Those symbol files contain
two parts of interest.

The first part describes the mapping of function symbols
(using FUNC entries) and the mapping of instruction chunks

Description:
FUNC address size parameter_size name

address size line filenum

Example excerpt:
FUNC 157c 34 0 google_breakpad::LineReader::PopLine

157c 4 113 4

1580 30 116 4

FUNC 15b0 38 0 sys_close

15b0 4 2979 16

15b4 1c 2979 16

15d0 10 2979 16

15e0 8 2979 16

FUNC 15e8 5c 0 google_breakpad::PageAllocator::FreeAll

15e8 4 142 13

15ec 8 142 13

Fig. 4: Source line mapping in the symbol file
7

Description:
STACK CFI INIT address size reg1: expr1 reg2: expr2 ...

STACK CFI address reg1: expr1 reg2: expr2 ...

Example symbol file excerpts:
STACK CFI INIT 1bdc f0 .cfa: sp 0 + .ra: lr

STACK CFI 1be0 .cfa: sp 8 + .ra: .cfa -4 + ˆ r11: .cfa -8 + ˆ

STACK CFI 1be4 .cfa: r11 4 +

...

STACK CFI INIT 28a4 f8 .cfa: sp 0 + .ra: lr

STACK CFI 28ac .cfa: sp 20 + .ra: .cfa -4 + ˆ r4: .cfa -20 + ˆ

r5: .cfa -16 + ˆ r6: .cfa -12 + ˆ r7: .cfa -8 + ˆ

STACK CFI 28b4 .cfa: sp 904 +

Corresponding assembler code excerpts:
<function1>:

push {fp, lr}

add fp, sp, #4

sub sp, sp, #16

...

<function2>:

push {r4, r5, r6, r7, lr}

cmp r3, #0

sub sp, sp, #884 ; 0x374

...

Fig. 5: Stack walking information in the symbol file

to source code files and line numbers (using entries starting
with the chunk’s address). An example is depicted in Fig-
ure 4. Our differ walks over all functions in this part of the
two symbol files. Per function, it first pair-wise compares
all the chunk entries. It is immediately clear whether or not
instructions were added or deleted in a function because
of the stack padding. If not, no information whatsoever
needs to be stored for the function. If instructions were only
inserted or deleted, a difference shows up in the second
column. In that case, we record which entry was changed
and how much. Furthermore, we check that the offsets
between the addresses of consecutive entries are consistent
in the two symbol files. If they show differences, we also
track that. We need to track both the changes in size and in
offset because of the potential presence of padding no-ops
and literal pools that the compiler might have inserted in
between code fragments.

When code has been reordered in a relevant manner, i.e.,
in a way that impacts this part of the symbol file, this is
obvious from the third and fourth column in a function’s
entries. In that very rare case, our differ produces a more
verbose diff record that simply states which lines to replace,
insert, and remove to convert the default symbol file entries
into the diversified ones.

All collected information is stored in the symbol patch in
order. To apply the patch, the patcher executed on the crash
collector simply walks through the default symbol file and
updates each entry on the fly, keeping track of the shifts in
absolute addresses.

The second part of the symbol file describes how to walk
the stack. Using post-fix expressions on symbolic register
names (r3,r11,lr,...), this part describes code chunks and
how to compute certain stack-related values when execution
has reached a point in a given chunk. The “registers” of
which the values can be computed are the cannonical frame
address (.cfa), the return address (.ra), and the values of
callee-saved registers in a function’s caller. The two example

excerpts in Figure 5 illustrate in interesting point. The first
three entries relate to function1 that has a FP, and for which
register r11 is reserved on ARMv7. The expression for .cfa
on the first line encodes that on entry to function1, the SP
still points to the start of the function’s stack frame. The
second line clarifies, amongst others, that after the push
instruction, two callee-saved registers can be found on the
stack, and that the SP now points 8 bytes beyond the start
of the frame. The third entry, corresponding to the program
point following the add instruction that sets the FP, indicates
that the start of the frame can be computed by adding 4 to
the FP.

In the example, function2 does not have a FP. As a
consequence, even after the sub instruction that allocates
the local area on the stack, the start of the stack frame has to
be computed by adding 904 to the SP.

When random padding is inserted, the stack part of the
symbol file changes in three ways. First, the addresses and
sizes of the code chunks in the STACK entries can change.
We keep track of those like we did for entries in the line
number part. Overall, such changes are rare.

Secondly, the numeric constants in the post-fix expres-
sions can change. With our implementation of randomized
stack padding as discussed in Section 3, such changes are
limited to STACK entries such as the last one in Figure 5
that define the .cfa in terms of the SP. Such changes are
obviously easy to check. If the .cfa is defined in terms of
the FP, the values do not change as a result of stack padding,
because the padding does not alter the location of the FP in
the stack frame. which is specified by the ARM EABI. Con-
cretely, this means that such changes only occur when the
software was compiled with the -fomit-frame-pointer
option enabled. In that case, all diversified functions with a
local stack area and a fixed SP (i.e., no varargs) will result in
at least one entry in the symbol patch.

4.2 Patch file 2: no-op insertion and function shuffling
As discussed in Section 3.1, no-op insertion only requires us
to track where no-ops, trampolines, literal pools, and jumps
over literal pools have been added or removed from the
code. Function shuffling only requires us to store the starting
addresses of the shuffled instructions. All of this information
is obtained trivially from the instruction address mapping
that Diablo produces.

It is important to realize that the insertion of the men-
tioned instructions and data, as well as the shuffling of
functions only influence the instruction addresses that occur
in the symbol file, not the source line numbers or the
stack properties. Literal pools’ addresses do not occur in
the symbol file. Inserted no-ops and inserted jumps over
(moved) literal pools can be mapped onto the same source
line as the chunk they are added to, so the effect on the
symbol file merely involves increasing the size of a chunk,
and shifting remaining chunks down in the address space.

In dynamically linked binaries or libraries, trampolines
need to be inserted very rarely. If some are needed, they
can most often be inserted right next to the branch or call
instructoin that requires the trampoline. This is the case,
e.g., when the 20 offset bits in a conditional branch do not
suffice to reach the target, but the 24 bits in an unconditional
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When code has been reordered in a relevant manner, i.e., in a way that impacts this part of 
the symbol file, this is obvious from the third and fourth column in a function's entries. In that 
very rare case, our differ produces a more verbose diff record that simply states which lines 
to replace, insert, and remove to convert the default symbol file entries into the diversified 
ones. 

All collected information is stored in the symbol patch in order. To apply the patch, the 
patcher executed on the crash collector simply walks through the default symbol file and 
updates each entry on the fly, keeping track of the shifts in absolute addresses. 

The second part of the symbol file describes how to walk the stack. Using post-fix 
expressions on symbolic register names (r3, r11, lr,...), this part describes code chunks and 
how to compute certain stack-related values when execution has reached a point in a given 
chunk. The "registers'' of which the values can be computed are the canonical frame address 
(.cfa), the return address (.ra), and the values of callee-saved registers in a function's caller. 
The two example excerpts in Figure 26 illustrate an interesting point. The first three entries 
relate to function1 that has a FP, and for which register r11 is reserved on ARMv7. The 
expression for .cfa on the first line encodes that on entry to function1, the SP still points to 
the start of the function's stack frame. The second line clarifies, amongst others, that after the 
push instruction, two callee-saved registers can be found on the stack, and that the SP now 
points 8 bytes beyond the start of the frame. The third entry, corresponding to the program 
point following the add instruction that sets the FP, indicates that the start of the frame can 
be computed by adding 4 to the FP. 

In the example, function2 does not have a FP. As a consequence, even after the sub 
instruction that allocates the local area on the stack, the start of the stack frame has to be 
computed by adding 904 to the SP.  

When random padding is inserted, the stack part of the symbol file changes in three ways. 
First, the addresses and sizes of the code chunks in the STACK entries can change. We 
keep track of those like we did for m-entries in the line number part. Overall, such changes 
are rare. 

Secondly, the numeric constants in the post-fix expressions can change. With our 
implementation of randomized stack padding as discussed in Section 587.3.2, such changes 
are limited to STACK entries such as the last one in Figure 26  that define the .cfa in terms of 
the SP. Such changes are obviously easy to check. If the .cfa is defined in terms of the FP, 
the values do not change as a result of stack padding, because the padding does not alter 
the location of the FP in the stack frame, which is specified by the ARM EABI. Concretely, 
this means that such changes only occur when the software was compiled with the -fomit-
frame-pointer option enabled. In that case, all diversified functions with a local stack area and 
a fixed SP (i.e., no varargs) will result in at least one entry in the symbol patch. 

7.3.3.2 Patch file 2: no-op insertion and function shuffling 
As discussed in Section 7.3.2.1, no-op insertion only requires us to track where no-ops, 
trampolines, literal pools, and jumps over literal pools have been added or removed from the 
code. Function shuffling only requires us to store the starting addresses of the shuffled 
instructions.  All of this information is obtained trivially from the instruction address mapping 
that Diablo produces. 

It is important to realize that the insertion of the mentioned instructions and data, as well as 
the shuffling of functions only influence the instruction addresses that occur in the symbol 
file, not the source line numbers or the stack properties. Literal pools' addresses do not occur 
in the symbol file. Inserted no-ops and inserted jumps over (moved) literal pools can be 
mapped onto the same source line as the chunk they are added to, so the effect on the 
symbol file merely involves increasing the size of a chunk, and shifting remaining chunks 
down in the address space. 
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In dynamically linked binaries or libraries, trampolines need to be inserted very rarely. If 
some are needed, they can most often be inserted right next to the branch or call instruction 
that requires the trampoline. This is the case, e.g., when the 20 offset bits in a conditional 
branch do not suffice to reach the target, but the 24 bits in an unconditional branch do 
suffice. In that case, the trampolines can simply be accounted in the symbol patch as 
increases in the original branch's chunk. In the extremely rare event that a trampoline is 
inserted somewhere else in the binary as a side effect of the no-op insertion, a completely 
new entry needs to be inserted into the default symbol file to translate it into the diversified 
symbol file. 

So in almost all cases, and in fact throughout all of our experiments, only the locations of 
inserted no-ops, moved function entry points and moved data pools needs to be stored to 
enable correct patching. This obviously contributes to the compact encoding of a patch. 

Still such a patch can grow quite big. If no-ops are inserted at a high frequency, listing all of 
them takes considerable space.  To avoid this growth, we will try not to list all locations 
where no-ops were inserted in the diversified binary. Instead, we will store just enough 
information to allow the crash collector to recreate this list. 

To recreate the list, the crash collector needs to be able to replay the randomized no-op 
insertion that was performed on the random stack binary on the very left of Figure 24. To 
replay this, the crash collector needs four pieces of information. 

1. The collector needs to know the seed with which the pseudo-random number 
generator (PRNG) was initialized that controlled the randomized no-op insertion into 
the random stack binary. This seed can be stored in the second symbol file patch, 
such that it will be sent to the crash collector as part of the crash report. 

2. Obviously, the crash collector needs to have the same PRNG. This can be achieved 
by using a custom, deterministic one that can easily be reproduced on the crash 
collector server. 

3. To replay the invocations of the PRNG, the collector also needs to know the list of all 
locations at which the randomized no-op insertion probabilistically decided whether or 
not to insert a no-op by invoking the PRNG. 

4. Finally, to replay those exact decisions, the crash collector needs to know all 
parameters involved in every decision at every location. If, for example, the no-op 
insertion was based on profile information to minimize the run-time overhead, the no-
ops are inserted probabilistically based on the execution counts of program locations. 
In that case the crash collector needs to get the profile information, the threshold 
values used to distinguish hot from cold code, and the probabilities with which no-ops 
were inserted at hot and cold code locations. Like the used PRNG seed, those 
probabilities and the used threshold values can differ from one diversified copy to 
another. So we store those in the second symbol patch in the diversified binary, such 
that   they are sent to the crash collector as part of the crash report. 

As for the profile information, we believe it is realistic to assume that the same profile inputs 
will be used for every diversified instance: Doing otherwise would require too many 
resources to re-perform the profile runs, and too many different inputs.  

Still, we face a problem with respect to the profile information of item 4 above and with 
respect to item 3, the list of all locations where the no-ops were inserted probabilistically: The 
instructions for which that information needs to be available are those of the random patch 
binary, not those of the default binary. And as we already discussed in Section 7.3.2 , the 
randomized stack padding insertion may have significant side-effects in the code, in 
particular in additional instructions being inserted or instructions being removed and in rare 
cases even in reordered code. 

Because the stack padding gets inserted very late during LLVM's backend code generation, 
however, all of those code changes are only local. They are confined to individual basic 
blocks and do not impact the structure of the functions' control flow graphs. So at least the 
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basic block execution counts remain constant for all binaries, only the addresses and sizes of 
basic blocks vary. 

Furthermore, as discussed in the previous section, the crash collector has already used the 
first symbol patch file to translate the addresses of code chunks in the default binary to the 
addresses of the corresponding chunks in the random stack binary.  

This means that almost all information necessary to compute the addresses and execution 
counts of the program points that were considered for inserting no-ops during the no-op 
insertion in the random stack binary can be obtained from the default binary (in what we call 
the no-op opportunity log), symbol patch 1, and the no-op insertion parameters and PRNG 
seed that will already be passed as part of symbol patch 2. 

This information might not be completely accurate because the mapping from code chunks to 
basic blocks is not a perfect one-to-one mapping, and because the precise instruction 
reordering during the randomized stack padding is not reconstructed with symbol patch 1, 
but for almost all functions in all our test programs, it allows a completely accurate prediction 
of the randomized no-op insertion points on the random stack binary, and hence for a perfect 
replay of the no-op insertion.  

To fix the rare cases where the prediction is wrong, it suffices to add a small amount of 
additional information to symbol patch 2. 
 

 
Figure 27 - Our prototype collector 

 

7.3.3.3 Overview: Patch Generation and Symbol File Reconstruction 
Figure 24 and Figure 27 present a complete overview of the patch generation and patch 
consumption. On the right of Figure 24, the "trial'' run of Diablo is shown that mimics the no-
op insertion decision process on the default binary, and produces the no-op opportunity log 
that contains the relevant program points and, if necessary, the relevant basic block 
execution counts. This will be send to the collector server, together with default symbol file. 
For each diversified binary, the first symbol patch is reconstructed by symbol differ 1 as 
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discussed in Section 7.3.3.1, based on the default symbol file and the random stack symbol 
file. 

Symbol differ 2 uses the log of the diversifying Diablo run, symbol patch 1, and the no-
opportunity log to create symbol patch 2. This patch contains 

• the seed and any other parameters fed to Diablo to control the no-op PRNG, item a 
first patch part to correct the predicted list of program points and profile information 
for which the PRNG is invoked, 

• a second patch part to translate changes in symbol file addresses due to function 
shuffling and due to side effects of the no-op insertion and of the shuffling. 

On the crash collection server, the two patches and the minidump are extracted from the 
crash report. Then symbol patcher 1 applies symbol patch 1 to the default symbol file to 
reconstruct the random patch symbol file.  

Symbol patcher 2 then first uses symbol patch 1 to convert the no-op opportunity log of the 
default file to a rough approximation of the list of decision points in the random stack binary. 
Then the patcher applies the first part of symbol patch 2 to reconstruct an accurate list of 
those points and the corresponding profile information. This accurate list, together with the 
PRNG seed and the other parameters in symbol patch 2 then enable symbol patcher 2 to 
replay the whole no-op insertion, with the exception of some rare decisions inside basic 
blocks that cannot be replayed completely accurately as indicated above. 

Next, the patcher uses the second part of symbol patch 2 to correct the rare occasions where 
the replay wrongly predicted the inserted no-ops, to model the side-effects of the no-op 
insertion and the address permutations following from the function shuffling. The result is a 
complete mapping of addresses in the random stack binary to addresses in the fully 
diversified binary.  

Symbol patcher 1 then uses this mapping to convert the already reconstructed random stack 
symbol file into the diversified symbol file matching the diversified binary, as shown to the 
right of Figure 27. 

Finally, the standard Breakpad minidump processor then uses this diversified symbol file and 
the minidump extracted from the crash report to generate the human-readable stack trace. 

7.3.4 Experimental Evaluation 
At the time of writing of this document (Oct 2015), we are still finalizing the full 
implementation. Early experiments indicate that (a) the crash reporting works correctly on 
diversified binaries, (b) the amount of information that needs to be send to the crash report 
server together with the minidump remains in the order of a few kilobytes, even for large 
programs such as the GCC compiler. In later deliverables, more extensive results will be 
presented.  

7.4 Feedback-driven diversification with minimal performance 
overhead  

Section Author: Bjorn De Sutter (UGent) 

As described in the DoW, UGent contributes its background IP regarding binary code 
diversification to the ASPIRE project. By contrast to the previous section, that IP focuses 
mostly on diversification in time: UGent's approach aims for generating one binary for a piece 
of software, such that that binary differs enough from all previously distributed binary 
versions of the same software to fool popular attacker diffing tools such as the combination 
IDA Pro - Bindiff. This approach has been described extensively in a couple of journal papers 
[Cop13a,Cop13b], so we will not discuss them in detail here.  

In order to reuse that IP in the context of the ASPIRE project, however, the existing 
background IP first needs to be ported to ASPIRE's target platform. Whereas the original 
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implementation of UGent's IP targeted Linux/x86, ASPIRE targets Android/ARM for its 
demonstration and validation purposes.  

For this porting effort, UGent has built on its already refactored, ported, and extended binary 
control flow obfuscation background, as described extensively in ASPIRE deliverable D2.06. 
This is possible because the transformations applied to generate diversity overlap to a large 
degree with the obfuscating transformations.  

In addition to the porting, we also created a number of new scripts to automate the iterative 
diversification, i.e., to repeatedly invoke the diversifier and the diffing tool on which feedback 
the next iteration relies.  

7.5 Renewability Plan 
We envision the following implementation plan for the third year of the ASPIRE project: 

• M26: creation of DB for storing different code blocks 

• M27: Extension of the Code Mobility tool to transfer data blocks  

• M28: first implementation of the Renewability Manager 

• M29: testing of the approach with WBC and bytecode VM 

• M30: initial implementation of renewable RA. 

• M30: Complete integration of RA in the ACTC for deliverables D3.05 and D3.06.   

• M33: Integration with Diablo for diversity and Renewability support in ACTC 

• M36: Renewability on use cases (Nagra or SFNT). 



 

D3.04 – Intermediate Online Protections Report   

ASPIRE D3.04 PUBLIC Page 69 of 72 

Section 8 List of Abbreviations 
 

AC  Anti-Cloning 

ACTC   ASPIRE Compiler Tool Chain 

ADSS  ASPIRE Decision Support System 

ASPIRE Advanced Software Protection: Integration, Research and Exploitation 

BCxx  Binary code document nr. xx 

BLCxx  Binary-level configuration file nr. xx 

BLPxx  Binary-level software processing step nr. xx 

Dxx  Datum produced or used by the ASPIRE ACTC identified with nr. xx 

Dx.y  ASPIRE deliverable # y in work package  x, y is a two digit number 

DoW  Description of Work 

IRA  Implicit Remote Attestation 

SCxx  Source code document nr. xx 

SLCxx  Source-level configuration file nr. xx 

SLPxx  Source-level software processing step nr. xx 

SDG  System Dependence Graph 

RA  Remote Attestation 

WP  Work Package 
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