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Executive Summary 

This document presents the first results obtained for the ASPIRE online protections that aim 
to improve the resilience of traditional offline protections, such as information hiding, 
obfuscation, anti-tampering. 
In the ASPIRE vision, online protection techniques can prevent (static) code analysis by 
means of two protection techniques: client/server code splitting, and code mobility. 
Client/server code splitting removes code from the deployed software program, and lets it run 
a trusted server. Code mobility allows installing sensitive parts of a program at run time by 
downloading binary code blocks from a trusted server. 
Other online protections aim at detecting the attack as soon as it is enacted. These include 
remote attestation and anti-cloning. Implicit remote attestation (IRA) (implicit, because of 
limited use of local attestators in the client code) collects relevant run-time data on the client 
program execution to be sent to a remote verifier for tamper detection. Anti-cloning aims at 
preventing the attacker from run multiple copies of the same program, by 'locking' the 
software with a remote server. 
The four online protections introduced in this document are still in design or prototyping stage 
and plans of future developments are also discussed. 

The preliminary architecture of the code mobility protection assumes that only whole 
procedures can become mobile, and that downloaded mobile code blocks are allocated 
dynamically, at addresses determined at run time. Control transfers into and out of mobile 
code blocks will be rewritten in a Diablo tool to overcome the issue that even relative 
addresses are not known until code has been downloaded from the server. For that, we 
designed a Binder and Downloader component. The invocation of the Binder is designed 
around the necessary data structures, including look-up tables, to avoid unnecessary 
overhead once mobile code is downloaded. We also designed an extension to the offline 
SoftVM-based protection to allow bytecode to become mobile. The next steps regarding 
code mobility are the implementation of the first prototype tool support.  

For client-server code splitting, we will rely on the barrier slicing technique. A source-level 
tool flow has been designed to implement barrier slicing. The requirements with respect to 
control flow and data flow analyses have been identified, together with the required source-
to-source code transformations. Those include the removal of sensitive variable definitions 
and uses, and transformations of the barrier variable operations. At the current point in time, 
the tool prototype is working but it is not yet integrated into the ASPIRE Compiler Tool Chain. 

As the work on IRA and anti-cloning techniques started very recently, i.e., in M10, only 
preliminary design aspects have been researched so far.  
The important research issues to solve to make IRA usable in practice is identifying a set of 
properties/peculiarities the remote IRA Verifier can observe to establish the client-side 
application integrity. Currently, we have identified two approaches (decision on usability still 
pending): CFG-based IRA and remotely watched invariants monitoring that we will research. 
With respect to IRA, we refined the remote attestation reference architecture of deliverable 
D1.04. The detailed design and implementation of this technique is planned at a later phase 
in the project. 
For anti-cloning, this deliverable describes the overall architecture and the related code 
annotations. The detailed design and implementation of this technique is planned at a later 
phase in the project. 
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Section 1 Introduction 
Section Author:  

Paolo Falcarin (UEL) 

 

The analysis of binary code is a common step of Man-At-The-End attacks to identify code 
sections crucial to implement attacks, such as identifying private key hidden in the code, 
identifying sensitive algorithms or tamper with the code to disable protections (e.g. license 
checks or DRM) embedded in binary code or use the software in an unauthorized manner. 

The main objective of WP3 is to realize a paradigm shift in software protection by designing 
and developing network-based protections to enforce software protection. 

The goal of Task 3.1 in the ASPIRE project is to provide effective techniques to prevent code 
analysis and tampering by removing code from the deployed software program, and let it run 
a trusted server or installing it at run-time by downloading binary code blocks from a trusted 
server. 

The goal of Task 3.2 in the ASPIRE project is to develop effective techniques to prevent and 
detect tampering by collecting relevant run-time data on program execution, to be analysed 
server-side to detect malicious behaviour. 

This deliverable presents the initial outcome of these two tasks to implement solutions for 
code mobility and client-server code splitting (Task 3.1, started at M7), as well as for remote 
attestation and anti-cloning (Task 3.2, started at M10). 

This document is the first deliverable of WP3 about online protections. The presented 
working prototypes will be further improved and extended during the development of the 
project. Moreover, they will be integrated in the ASPIRE Compiler Tool Chain and integrated 
with the other protection strategies that will be delivered by ASPIRE. 

Deliverable D3.02 (M18) will provide preliminary working prototypes and support of online 
protections, and in Deliverable D3.03 (M24) will provide Client-server code splitting and code 
mobility support and the status of online protections will be described in D3.04 (M24), the 
Intermediate Online Protections report.  

Later (M30), D3.05 and D3.06 will provide information about the other techniques, while 
D3.07 and D3.08 (M33) will describe the renewability features added to the online 
protections as a result of Task 3.3 (to be started at M19).  

Finally D3.09 (M36) will describe ASPIRE online protections, their integration with the 
toolchain and how they will be applied to the case studies. 

1.1 Document Structure  
Preliminary architectures and designs of working prototypes for code mobility (Section 2) and 
client-server code splitting (Section 3) are presented, while more recently started work on 
(implicit) remote attestation (Section 4) and anti-cloning (Section 5) are briefly introduced at 
architecture and design level. 

1.2 Related Work  
One of the main goals of software protection is to prevent code from being observed and 
analysed, and then eventually illicitly modified and tampered with. 
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To protect against code analysis, developers usually try to make reverse-engineering harder, 
by applying different obfuscating transformations [Col09]; attackers can use binary code 
inspection tools like IDA Pro [IDA] and binary instrumentation tools [Mad05] to extract run-
time information such as execution traces and memory dumps.  

To protect against illicit modifications, anti-tampering approaches are utilized to detect when 
code has been tampered with and to react by stopping or delaying program execution. 
Tamper-resistant software typically uses built-in integrity checks to detect code tampering by 
guarding the code being executed [Cha02] or by checking that the flow of control through the 
program confirms to the expected flow [Che02].  

However, when these techniques are used to protect standalone applications, their security 
is limited, because the expected checksum values and the reaction mechanism is hard-
coded in the application itself, where it can be analysed and altered. 

Online protections techniques aim at extending state-of-the-art static protection techniques 
(described in more detail in the project deliverable of WP2) with network-based protections.  

To protect against code analysis, the online protection client-server code splitting removes 
sensitive code from the binary code and executes it on a trusted server, while the code 
mobility framework delivers such binary code to the client at run-time.  

To protect against illicit modifications, online protections such as implicit remote attestation 
and anti-cloning are going to be developed in the project. 

Remote attestation is static when the identity and authenticity proof are computed on static 
properties, such as program binaries or a priori knowledge of the allocated memory pages, 
while it is dynamic if the properties used to check the authenticity depend on the program’s 
execution.  

Remote attestation can be based on client-side computations, e.g., by checking the 
execution traces [Mon99] or by verifying assertions [Cec07]. The Tisa system [Raj08] checks 
a set of properties on execution traces specified in terms of linear temporal logic 
expressions. Dymo [Gil11] tracks the run-time integrity by means of cryptographic hashes 
over executable regions in the process' address space, also detecting library additions. 
ReDAS [Kil09] automatically extracts and checks a set of monitoring properties, the 
invariants, from the application; a modification of dynamic objects would change the related 
invariants thus providing evidence of integrity violation.  

Previous works proposed to dynamically replace the code fragments that generate the 
attestations [Fal06, Sca08]. With the Integrity Verification Proxy [Sch12b], a client-side 
service mediates connections with the server and locally implements some functionalities of 
the remote verifier, thus eliminating the need for continuous remote attestation.  

Static remote attestation is considerably weaker than dynamic attestation, as the former 
cannot protect from cloning attacks based on the simultaneous execution of a correct version 
of the program along with a tampered one [Few08,vOo05].  

However, the dynamic techniques in literature usually check dynamic properties against pre-
computed checksums: they do not monitor the “current” execution of the program because 
they do not detect which part of the program is being executed. That makes them weak. 

In the ASPIRE protection consisting of implicit remote attestation, a remote server will 
monitor the execution of a client by keeping track, through frequent communication, of 
dynamic properties of the client's internal state. Authenticity verdicts will then be based on 
that state instead of the attestation  proofs easily computed by local code guards.  

Several online protections use dynamic code replacement to periodically replace the copy of 
the program running on the untrusted machine with the goal of limiting the amount of time 
that the attacker has to reverse engineer the application. The replacement may be 
implemented for the functional part of the program, and/or for the protection techniques used 
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to protect it [Jak01]. Collberg et al [Col08,Col12] and Falcarin et al [Fal11] propose the 
continuous replacement of Java and binary code respectively, in which the remote trusted 
entity frequently sends a set of new code fragments to the untrusted machine.  

Some research prototypes implemented dynamic replacement of protection code using code 
mobility features offered by dynamic aspect-oriented platforms [Fal06] or by ad-hoc JVM 
extensions [Sca08], and the time interval for replacement can vary in order to avoid that 
attackers exploit the replacement rate.   
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Section 2 Code Mobility 
Section authors: 

Paolo Falcarin, Alessandro Cabutto (UEL), Bjorn De Sutter, Bart Coppens (UGent), Andreas Weber 
(SFNT) 

2.1 Introduction 
Code Mobility is an online technique that aims to overcome the drawbacks of local protection 
techniques by introducing a client – server architecture. Its reference architecture is fully 
described in deliverable D1.04 Section 3.4 and is summarized in Figure 1.  

 
Figure 1 - Code Mobility Reference Architecture 

In Figure 1 (on the right) two components are highlighted in the Application Logic: the 
Downloader and Binder. The Binder and Downloader components will be compiled from 
separate source code files, and then linked into the application. This is very similar to the 
way the SoftVM code is linked into an application, as presented in deliverable D5.01 Section 
9.4.  

Besides the insertion of the Downloaded and Binder, the application code itself also needs to 
be transformed. Wherever code in the original application directly transfers control to some 
mobile code fragment, such transfers need to be redirected via the Binder (and possibly the 
downloader) to ensure that the mobile code is downloaded and bound before it is actually 
executed. Moreover, because the mobile code fragments are stored in locations determined 
at run time rather than at link time, many occurrences of PC-relative address computations 
need to be adapted as well. All of this rewriting will be performed in a binary-level rewriting 
step in the ASPIRE Compiler Tool Chain (ACTC), similar to the SoftVM integration step 
BLP03 presented in D5.01 Section 9.4. 

2.1.1 Basic components 

2.1.1.1 Code Mobility Server Component 
The Code Mobility Server is a server-side component able to serve code blocks (kept in its 
local storage) on demand to remote clients. It runs on a trusted node so that it is assumable 
that it cannot be tampered with.  
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2.1.1.2 Downloader Component 
The Downloader is a client-side component able to fetch binary code blocks from the trusted 
server as required by the application control flow at run time. This component relies on the 
ASPIRE Communication Logic.  

2.1.1.3 Binder Component 
The client-side Binder component is in charge of invoke the Downloader when required. The 
Binder is invoked by the application when the control flow reaches a mobile code block. If 
that block has not been downloaded from the server yet, the Binder asks the Downloader to 
retrieve the requested missing code block. The Downloader queries the Code Mobility server 
in order to obtain such a block and finally the Code Mobility Server sends the proper block 
back to the Downloader. At a conceptual level, this process was already presented in 
deliverable D1.04 Section 3.4.3.2. 

After the fetch process the Binder places the block in memory and makes sure that the just 
downloaded block will not be downloaded again, reducing the overhead effort introduced by 
the protection technique. 

Eventually the Binder redirects the control to the entry point of the downloaded code, where 
the application can continue normally. 

2.2 Design refinement 
Since the initial reference architecture for Code Mobility was designed (as documented in 
deliverable D1.04), this design has been refined. The refined design presented below is the 
result of a collaborative analysis and feasibility study building on UEL’s background in Code 
Mobility (an existing Windows x86 mobile code prototype was partially ported to Linux as a 
proof of concept) and on UGent’s ARM architecture and binary transformation expertise.  

2.2.1 Assumptions 

Since the Code mobility Reference architecture was first presented in D1.04, a number of 
design options have been revised. The overall architecture has not changed, but the 
placement and forms of mobile code blocks has been redesigned.  

First of all, mobile code blocks coming from the Mobility Server will not be placed in a 
statically known location in the binary, but will instead be placed in dynamically allocated 
memory. So the location of what we called Mobile Code Space in deliverable D1.04 will not 
be fixed. This implies that the mobile code needs to be position-independent code (PIC) that 
can be relocated dynamically, and independently from the non-mobile code part of the binary 
or library. Thus, indirections need to be inserted in the transformed code to deal with these 
variable code locations, both in the static, non-mobile parts of the client application and in the 
mobile code. Fortunately, only local code transformations are required for this: instructions 
will be replaced with small code snippets that can deal with the a priori unknown addresses 
at which the code has been loaded. 

Secondly, for sake of simplicity, we will initially only consider entire procedures to become 
mobile code. This offers the advantage that the mobile code blocks have one entry point 
only, i.e., the entry point of the procedure. This significantly simplifies the implementation of 
the Binder and its bookkeeping data structures. In the remainder of this document, we can 
therefore use the term mobile procedures. In a later phase, it is possible that we also 
transform code regions that do not necessarily coincide with procedure boundaries. 

2.2.2 Non-Mobile Client Application Code 

In the original client application, procedure calls to mobile procedures need to be 
transformed such that 
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1. upon the first execution of a call to a mobile procedure, the Binder and Downloader 
components are properly invoked in order to obtain the code from the server; 

2. upon subsequent calls to the same mobile procedure, the control is immediately 
transferred to the already downloaded mobile code. By avoiding going through the 
Binder again, the performance overhead of mobile code can be limited.   

This principle is illustrated in Figure 2, Figure 3, and Figure 5. 

 

 
 Figure 2 - Call to procedure f in the original control flow 

 Figure 2 shows the original control flow without mobile code. Procedure f is selected to 
become mobile. In the transformed program, shown in Figure 3, Diablo inserted a look-up 
table with procedure pointers. Look-up table accesses are depicted with dashed arrows 
whereas control flow transfers are depicted with regular arrows. 

 
Figure 3 - Calling function f (passing through Code Mobility) 

A:
...
call'f

f:

B:
….

A:
...
call'table[idx]

stub'ptr

stub

...

...

...

table:

Binder
6 ' invoke'Downloader
6 ' update'program'base'address
6 ' overwrite'stub'ptr

updates

f:'
downloaded
mobile'code

B:
….

accesses
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The pointers in the look-up table either point to stubs that invoke the Binder to start the 
mobile code downloading process, or they point directly to the already downloaded code. All 
calls to mobile functions are transformed into a code snippet consisting of a table lookup and 
an execution control redirection to the address loaded from the table.  

Initially, when the called mobile function f() has not yet been downloaded and bound, the 
address in the look-up table is that of a stub that invokes the Binder. This process is shown 
in Figure 3. This stub calls into the Binder, providing as argument the index at which this stub 
is installed in the look-up table. This index is then used as an identifier of the mobile function 
to be downloaded. The Downloader component is then invoked to retrieve the mobile (PIC) 
version of the function's code body from the Code Mobility Server, and stores this code body 
in a dynamically allocated buffer.  

Apart from being a PIC, mobile version of the original procedure body, this mobile code block 
is prepended with a small instruction sequence that ensures that the proper execution 
context is restored before the actual procedure body is executed. More concretely, when the 
original direct call to f() (as in block A in Figure 2) was replaced by a table look-up and an 
indirect call (as in block A in Figure 3) for which registers had to be freed by spilling them 
onto the stack, the registers need to be restored.  

Whenever the mobile code body of f() needs to access non-mobile code or data, or other 
mobile code, for example to access statically allocated data or to invoke a non-mobile 
procedure, the mobile code needs to be able to compute the addresses of that code or data. 
Because the non-mobile client-side code can itself be PIC code that is relocated when it is 
first loaded (e.g., because the protected client-side software is a dynamically linked library 
and because address-space layout randomization is deployed on the client device), the 
mobile code needs to know the starting address at which the non-mobile code and data have 
been loaded to compute the necessary addresses. To this end, a data location is reserved in 
the mobile code block to contain this starting address. When the mobile block has been 
retrieved and stored in memory, the Binder fills in this value. The Downloader also sets the 
permissions of the memory page that contains the buffer to make it executable. The final 
layout of the mobile code block as allocated in memory is shown in Figure 4.  

Finally, the Binder updates the entry in the pointer look-up table by overwriting the address of 
the stub with the address of the downloaded code, after which it redirects the control to this 
code, and normal code continues. 

 

Code%for%
restoring%
registers

Mobile%(PIC)%version%of%the%procedure%body. Program%base%
address

 
Figure 4 - Mobile function code layout 

 

Subsequent calls to the already downloaded procedure f() then proceed as indicated in 
Figure 5. Since the Binder has already updated the pointer in the look-up table at the used 
index to let it point to the downloaded code, the inserted code snippet (in block A in Figure 5) 
now loads this procedure pointer and thus transfers control immediately to the previously 
downloaded mobile code. So for subsequent calls, the overhead is limited to the table look-
up, and the necessary spilling and restoring of registers.  
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A:
...
call'table[idx]

mobile'code'ptr

...

...

...

table:

f:
downloaded
mobile'code

B:
….

 
Figure 5 - Calling function f passing through already downloaded mobile code 

This design in which mobile code is allocated in a dynamically linked Mobile Code Space 
limits the run-time overhead and provides stronger protection than the design as originally 
presented in D1.04 Section 3.4. First of all, the addresses at which the mobile code is 
downloaded will differ from one run of the program to another. This makes all kinds of 
dynamic attacks mode difficult. Secondly, almost all the necessary support is already 
available to support flushing of the Mobile Code Space. To do that, it will suffice to free the 
allocated memory of mobile code blocks, and to restore the addresses in the look-up table to 
their original values, i.e., the stub addresses. Once this is implemented (later in the project), 
it will allow us to (1) make sure that not all mobile code is present at once, (2) to let multiple 
different mobile code blocks occupy the same memory addresses during a single run of a 
program. The fact that addresses in the program's address space then no longer map onto 
instructions in a one-to-one mapping, also complicates many dynamic and hybrid attacks, 
e.g., because many tools such as IDA Pro are engineered around the central notion that 
every code byte and address corresponds to at most one instruction. 

2.2.3 Mobile Code 
Mobile code, i.e., instructions in the body of mobile functions, can refer to addresses in the 
non-mobile part of the application for two reasons: 

1. Control flow is redirected to non-mobile code, such as when non-mobile functions are 
called from within mobile functions 

2. Addresses of non-mobile code or data are computed 

Because the non-mobile code can be loaded at arbitrary addresses, the mobile code needs 
to compute the addresses of the referred memory locations dynamically. We will support this 
by appending a placeholder to the mobile code, in which the Binder will write the address at 
which the client application is loaded. All instructions in the mobile code that refer to or 
compute addresses in the non-mobile code are rewritten to compute the addresses based on 
their offset relative to the start address of the client application, as it is stored in the 
placeholder. 

2.3 Mobile bytecode 
The client-side binary code splitting protection in ASPIRE is an offline software protection 
technique in which binary code is translated to custom bytecode, and a so-called SoftVM is 
linked into the client application to interpret the bytecode. This protection is currently being 
developed by the project partners SFNT and UGent. 
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A possible way to apply Code Mobility to a SoftVM-protected application is to make the 
bytecode mobile. Bytecode is actually produced by a software component called X-
Translator. This component is invoked during BLP02 phase of ACTC to produce BC03: 
bytecode and stubs .o files. See Section 9.3.1 of deliverable D5.01 and Section 3 of 
deliverable D2.03 for further details. 

2.3.1 Required design changes 

Due to its design constraints the bytecode is not relocatable so, even if mobile, the bytecode 
should be executed from a fixed location. 

For that reason, the standard X-Translator component has to be modified so that it can emit 
a sort of placeholder code (filled in by the appropriate quantity of random data) instead of 
actual bytecode. The placeholder will then be linked into the protected application in step 
BLP03 of the SoftVM protection instead of the bytecode (see deliverable D5.01 Section 9.4).  

As shown in Figure 6 the bytecode itself is stored in a repository together with some 
additional information: 

• An application-wise unique randomly generated identifier; 
• The bytecode runtime offset address; 
• The bytecode length. 

The complete repository is marked with a unique application identifier and kept for future use 
(bytecode delivery) by the Code Mobility Server. 

Stubs invoking the SoftVM must then call into the Code Mobility Binder component as shown 
in Figure 7. This Binder component is not the standard one already descripted before but it is 
a specific “SoftVM-aware” version able to retrieve bytecode instead of native code. Moreover 
the downloaded blocks have to be placed in the right fixed position in the code section, 
where they will overwrite the aforementioned placeholder data. After that overwriting took 
place, the control flow can proceed as in the original SoftVM approach. 

 

 
Figure 6 - Bytecode dumping process 
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Figure 7 - Modified stub 

 

2.4 Planning 
The next months will be dedicated to work on the refined design and implementation. Under 
these considerations, we envision the following implementation plan: 

• M18: 
o Complete implementation (still not integrated in the ACTC) 
o Experimentation on simple examples and on the available use cases 

developed by industrial partners (deliverable D3.02);  
• M24:  

o First integration in the ACTC  (D3.03 and D3.04); 
o Improvement of code mobility framework, still not integrated in the tool chain; 
o Integration in the ASPIRE Decision Support System (ADSS); 

• M30: 
o Complete integration in the ACTC (deliverables D3.05 and D3.06). 

STUB

…

Binder_SoftVM(application_uuid, 32_bits_chunk_id)

…

vmExecute (...)

...
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Section 3 Client/Server Code Splitting 
Section Authors:  

Mariano Ceccato, Andrea Avancini (FBK) 

As software developers, one of the most difficult challenges is ensuring that a malicious user 
cannot tamper with our application to alter its regular behavior. Users of applications that run 
on client devices must be considered a primary source of threats, since they could be 
interested in making the program execute in a way that might give them benefits of various 
types. As client users, attackers have full control of the application’s execution environment 
and they have the possibility to use any sort of methods to attack the program, from running 
dynamic or static analysis tools to reverse-engineer the entire application. 

To reduce the attack surface that can be potentially targeted by attackers, this document 
describes how to implement the so-called client/server code splitting [ZHA03] as protection 
technique within the ASPIRE project. The goal of this protection technique is to remove 
portions of the application that are considered unsafe, attackable by a malicious user, and to 
move them on a secure server where they run in a safe, trusted environment. To be 
deployed, this technique requires the identification, by applying barrier slicing, of the part of 
the application that needs to be moved, i.e., split off, as well as the transformation of the 
original code to make the new client and the trusted server communicate for synchronization 
and the exchange of data. 

This section is structured as follows: Section 3.1 introduces the problem of protecting the 
code of an application from malicious users, while client/server code splitting is described in 
Section 3.2. Section 3.3 depicts the design of the protection and some implementation 
details, while Section 3.4 proposes the intended work plan. 

3.1 Problem Definition 
An attacker may want to alter a target application by applying several different attacks, with 
the ultimate goal of gaining personal benefits. When the software under attack runs on a 
client machine, the attacker can use every technique and any tool to tamper with the 
application without restriction. 

 

Figure 8 - Running example of C code before and after an attack 

In the running example of Figure 8 we have a piece of C code taken from a non-protected 

 1 year2 = tm.tm_year+1900; 
 2 for (i = ref; i < year1; i++) { 
 3  if (i % 4 == 0) 
 4   dd1 += 1; 
 }  
 5 dd1 = calculate_original(dd1); 
 
 6 dd2 = 0; 
 7 for (i = ref; i < year2; i++) { 
 8  if (i % 4 == 0) 
 9   dd2 += 1; 
 } 
 10 dd2 = calculate_current(dd2); 
 11 if (dd2 - dd1 > 30) 
 12  printf("Fail\n"); 
 else 
 13  printf("Ok\n"); 

 1 year2 = tm.tm_year+1900; 
 2 for (i = ref; i < year1; i++) { 
 3  if (i % 4 == 0) 
 4   dd1 += 1; 
 }  
 5 dd1 = calculate_original(dd1) + CHEAT; 
 
 6 dd2 = 0; 
 7 for (i = ref; i < year2; i++) { 
 8  if (i % 4 == 0) 
 9   dd2 += 1; 
 } 
 10 dd2 = calculate_current(dd2); 
 11 if (dd2 - dd1 > 30) 
 12  printf("Fail\n"); 
 else 
 13  printf("Ok\n"); 
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application that has been chosen as a case study to test the preliminary implementation of 
client/server code splitting. The case study, called license checker, is a small routine devoted 
to check the validity of a software license number in order to activate or deactivate a software 
component. The serial number contains the date corresponding to when the license was 
emitted, and its validity is meant to expire 30 days after the emission. 

Sensitive variables (i.e., the ones that can be attacked) are those that hold the license's 
emission date and the current date. An attacker may want to tamper with these values to 
make an expired license last longer. The code fragment on the left of Figure 8 is the original 
code of this simple license checking algorithm: The purchasing date is calculated and stored 
in variable dd1 at line 5, while the current date, after being computed, is saved in variable 
dd2 at line 10. The two variables are then compared at line 11 to perform the temporal 
check. The attacker could try to tamper with the definition of variable dd1 at line 5 by adding 
a proper value CHEAT to fool the license check algorithm and to illegally validate his/her 
license, which would have been expired under normal circumstances. This tampering is 
shown on the right of Figure 8. We can define those variables that influence the intended 
behavior of an application when they are attacked by malicious users as sensitive, like 
variables dd1 and dd2 in the example. It are then these variables that must be protected. 

3.2 The Protection 
The protection proposed in this section, client/server code splitting, is intended as a means to 
protect software by identifying portions of its code in which sensitive variables reside, by 
slicing these portions away, and by moving them from an untrusted client C to a trusted 
server S, in order to prevent any tampering attack.  

Moving entire functions is not always feasible, either because a function might be larger than 
the portion of code that needs to be transferred, but also because of the side effects that 
might arise. For example, the function to move might need to modify some global variables 
that should remain on the client. This means that also data and control dependencies should 
be carefully taken into account, to ensure that original functionalities are unmodified in the 
new, protected configuration.  

Under these assumptions, program slicing can be considered a suitable approach and, more 
specifically, a barrier slicing [CEC07] algorithm can be applied to limit the portion of code to 
be moved onto the newly created server. Furthermore, moving a portion of the client on the 
server introduces the need for the two new components to communicate, i.e., to exchange 
requested values and to synchronize the execution of the sliced code. Communication works 
in both directions, since the server also requires values from the client to keep the execution 
of the slice synchronized. 

3.2.1 Background 
A barrier slice is based on the concept of (backward) slice [WEI81]. Let C = (x, V ) be a 
slicing criterion, where x is a statement in a program P, usually expressed as the number of 
line of code that identifies the statement in the source, and V is a subset of variables in P. A 
backward slice s on a given criterion, represented by a program variable at a specific 
statement, can be computed as a sub-program P’ which is equivalent to the original program 
P with respect to the criterion. The slice s on criterion C includes all the statements that 
directly or indirectly hold data or control dependencies on the variables in V at statement x. 

A barrier slice [2] is the slice on the program P, where some statements are considered as 
”barriers”: the computation performed at those statements is considered not relevant for the 
slice itself, so the barriers are excluded from the slice and they block the propagation of data 
or control dependencies when the slice is calculated. A barrier slice can be computed by 
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stopping the computation of a regular backward slice whenever one of the barrier statements 
is reached. 

As proposed by Krinke et al. [KRI03], let the SDG of the program P be the system 
dependence graph of P, a representation of the program where nodes represents statements 
and predicates, while edges carry information about control and data dependencies between 
statements. Then, the barrier slice Slice#(C, B) of an SDG G = (N, E) for the slicing criterion 
C ⊆ N with the set of barrier nodes B ⊆ N consists of all nodes on which a node n � C 
(transitively) depends via an inter-procedurally realizable path that does not pass a node of 
B, as follows: 

!"#$%# !,! = !!!!!!!
!!!!!!⟶!∗ !! ∧ !!!!!!
∧ !! = ! !!…!! !!

∧ !∀!1! ≤ !! ≤ !!! ∶ !!! !∉ !
!!}! 

 

Example On the left, Figure 9 contains a simple snippet of C code. It takes two variables, x 
and y, and it performs few mathematical operations. By applying the barrier slicing algorithm 
presented earlier on the code in Figure 9, with variable x at line 6 as slicing criterion C and 
statements at line 1, 4 as set of barriers B, we obtain the barrier slice consisting of the red 
nodes of the SDG of the program depicted on the right of Figure 9. The slice is expressed in 
terms of nodes and edges of an SDG, while red and blue arrows represent data and control 
dependencies respectively. Dependencies with black crosses are those that are not 
traversed because of the presence of the barriers. If we consider the code, the criterion is 
represented by statement x-- (line 6), on variable x, while the barriers are statement x++ at 
line 4 and statement x = 1 at line 1. To calculate the barrier slice, we start from line 6 (the 
statement is included in the slice) and we traverse any control or data dependency that 
reaches the statement in a backward fashion. Since line 5 holds a control dependency on 
statement at line 6, statement while(x > 0) is also added to the slice. From this point, we can 
still traverse other dependencies (for example, x++ at line 4 holds a data dependency on line 
5 and the same does statement at line 1), but since the barrier is reached, dependencies are 
not further propagated through line 4 (and line 1). So eventually, the statements at line 5 and 
6 constitute the resulting slice. 

 

Figure 9 - C code snippet and the SDG with the barrier slice (nodes in red). 

 

 1 x = 1; 
 2 y = 2;  
 3 if( c ) 
 4  x++; 
 5 while (x > 0) { 
 6  x--; 
 7  y += x; 
 8 } 
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3.3 Design 
3.3.1 Client/Server 
We can define the program state of a program P as a map s : Var → Values that associates 
each variable in P with a possible value. Let Non-sensitive ⊆Var be the subset of the 
variables in P that are considered already secure by construction, like those variables that 
are not involved in sensitive computations, while Sensitive = Var\ Non-sensitive is the subset 
of the security critical variables, those variables that can be tampered by an attacker to 
interfere with the normal behavior of P. 

The original application P runs in an untrusted client as depicted in Figure 10, exposing its 
sensitive variables, i.e., the red shape in the figure, to attackers. The green part, the non-
sensitive state, represents the program variables that are insensitive to attackers, since they 
cannot be tampered with or their malicious modifications does not have any role in altering 
the regular behavior of the application. 

 
Figure 10 - Original application to protect with ASPIRE 

 

 

Figure 11 - New client/server application after splitting 

 

The sensitive state of the application must be protected. By applying client/server code 
splitting, the new application P’ is generated with the creation of a new client C by removing 
the sensitive part of the original client application P and by moving it on a trusted server S as 
shown in Figure 11. In this new architecture, the client still contains the subset of the non-
sensitive variables, while its original sensitive set of variables is moved onto the server to be 
handled in a trusted environment. Any reference to sensitive variables is removed from the 
client.  

Since values of sensitive variables are still required for the computation, a communication 
protocol must be established between client and server to ensure the correct behavior of the 
application. To facilitate this, we introduce a new component, the code splitting manager 
(Figure 12), which is linked into the protected client application and which is responsible for 
managing the coordination required between the new client application and the server on 
which the sliced code is moved, such that both sides’ executions work synchronized. 
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Figure 12 - Architecture for client-server code splitting 

 

The new component exposes an API that will be used by the protection technique. At various 
places in the protected client application, calls to library functions are introduced by the 
protection technique in such a way that the now protected client application operates as 
intended. 

At the server side, a component implements a main thread that manages connections and 
any message from and to connected clients. The sliced code is executed in an auxiliary 
thread that is launched from the main one whenever a client connects. Function calls from 
communication API are also injected into the sliced code at the server side. 

Calls to library functions can be summarized as follows: 

• Client-side: 
o sync() synchronizes with the server by sending the current execution point 

reached. It replaces any definition of sensitive variables in the original code. 
o ask() sends a message to the server, requiring a value that is necessary for 

the progress of the computation in the client. This call replaces uses of 
sensitive variables in the original application. 

o send() forwards data that cannot be moved from the client to the server, when 
the server requires those data for the execution of the sliced code. Possible 
values of this kind are those that come from barriers or other variables that do 
not belong to the slice. 

o waitForValue() waits for a value that must be sent by the server. 
o exit() notifies the server that the client ends its computation. 

• Server-side: 
o checkSync() synchronizes the execution with the client at the server side, like 

the corresponding sync() at client-side. This call anticipates any definition of a 
sensitive variable in the sliced code. 

o waitForValue() waits for a value coming from client, typically values of barrier 
variables or other variables that are not ported on the server; This call 
replaces any use of this kind of variables. 

o sendValue() sends a value to the client. This call replaces any use of a 
sensitive variable in the sliced code. 

A detailed description of the architecture can be found in deliverable D1.04, Section 3.3.3. 

3.3.2 Structure of the Tool 

The tool that implements client/server code splitting works in several steps. Figure 13 shows 
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a high-level view of its structure. It combines Grammatech CodeSurfer [GCS] and the TXL 
transformation framework [TXL] to analyse the source code of the target application, to 
identify the portion of the code that requires to be moved onto the secure server and to apply 
code transformation patterns to generate the new protected application. Input of the tool is 
the resulting pre-processed code after the application of the other source-level protections 
(SCzz in Figure 13), while its outputs are the client protected by client/server code splitting 
(SCzz+1), and the server-side code that will run on the secure server (SCzz+2). In the figure, 
components are numbered zz because the client/server code splitting step is not yet 
integrated in the source level part of the ASPIRE Compiler Tool Chain (ACTC) (see Section 
7 of deliverable D5.01 for further references).  

 

 
Figure 13 - Tool flow for client/server code splitting 

3.3.2.1 Annotations for Client/Serve Code Splitting 
As mentioned in Part 1 and Section 7.01 of deliverable D5.01, the user first has to annotate 
his/her source code. Client/server code splitting annotations specify a slicing criterion C as a 
set of statements and a list of sensitive variables on which to apply the barrier slicing 
algorithm, and a set of barrier statements B that blocks the propagation of the dependencies 
while calculating the slice. 

After their extraction by components of the main ASPIRE tool flow (such as SLP04 in the 
ACTC design presented of D5.01), annotations are manipulated by the client/server code 
splitting tool to derive a set of fact files to be used to apply the protection. 
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For each annotation, criteria are encoded as line numbers corresponding to each statement 
in the code block that is indicated by the annotation itself. Barrier statements are also 
represented as line numbers, while sensitive and barrier variables are reported as specified 
within the annotation, by the use of their identifier in the code plus an integer as index. The 
integer associated with the variable will be used by TXL in the creation of the new client 
application and the server-side code. 

Annotations and their syntax for client/server code splitting are described in Section 4.8 of 
deliverable D5.01. 

3.3.2.2 SLP01 – CodeSurfer Analyzer 
Component SLPzz.01 is implemented by means of GrammaTech CodeSurfer, which 
provides a framework on top of which custom data flow analyses can be implemented. 

Starting from the information extracted from annotations, we implemented a custom 
backward slicing algorithm to precisely calculate the portion of the code that represents the 
barrier slice with respect of the current annotation configuration and the code to protect. 

The code in input is analyzed by CodeSurfer to extract the system dependence graph (SDG) 
of the program to protect. The slicing algorithm queries this data structure to extract the 
barrier slice. The algorithm is implemented in a CodeSurfer script written in the Scheme 
language. 

 

Figure 14 - Pseudo-code of the barrier slicing algorithm 

 

Figure 14 shows the pseudo-code of the barrier slicing algorithm we implemented. It starts by 
taking slicing criterion C and barrier B as parameters and iterates until no valid predecessors 
for the current nodes can be found in the SDG of the program. When this condition is met, 
the slice is returned as a set of nodes of the SDG. The nodes are then converted and stored 
as a list of line numbers indicating all the statements that belong to the slice. It is indicated as 
Dzz.02 (Barrier slice) in Figure 13. 

To apply the code transformation in the following stages correctly, other information needs to 
be retrieved at this stage. In fact, the sliced code requires the careful handling of all those 
pieces of code that reside outside the slice but influence or are influenced by the slice itself. 
We implemented additional CodeSurfer scripts to perform extraction. Data extracted, 
indicated as Dzz.01 (Facts) in Figure 13, are: 

• Definitions (e.g. assignments) of: 
o Sensitive variables that belong to the slicing criterion; 
o Barrier variables that are not in the slice but their value is required for 

computation; 

procedure calculate-slice (criterion C, barrier B) 
  set-of-vertices := vertices-of (C) 
  set-of-barriers := vertices-of (B) 
  slice := vertices-of(C) 
  while not (is-empty(set-of-vertices)) 
 predecessors := predecessors-of-vertices (set-of-vertices, DATA-CONTROL-DEPS) 
 filtered-predecessors := predecessors \ set-of-barriers 
 set-of-vertices := filtered-predecessors 
 slice := slice ∪ filtered-predecessors 
  } 
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o Input variables that cannot be ported to the server; 
• Uses of: 

o Sensitive variables in the portion of code to be sliced; 
o Barrier variables in the portion of code to be sliced; 
o Input variables (like the ones provided by the user or taken from an input file); 
o Any variable that has an inter-procedural dependence with other parts of the 

application that are not in the slice; 
• Def/use chains (i.e., a definition d of a variable x and the set U of uses of that variable 

x reachable from definition d without any other redefinition); 
• Pointers, in order to deal with the presence of aliases; 
• Declarations of: 

o Any user-defined function that is called in the slice; 
o Any variable that is defined in the slice; 
o Any variable that is used in the slice. 

3.3.2.3 SLP02, SLP03 – Client Generation and Server Code Generation 
Figure 15 shows the C code of Figure 8 with the addition of the code annotations introduced 
by the user 

 
Figure 15 - Annotated running example 

According to the annotation syntax, annotations in Figure 15 indicate: 

• At line 1, the presence of a barrier B on variable year2 at line 2;  
• At line 13, variables dd1 and dd2 at lines 14, 15, 16 represent the slicing criterion C 

for calculating the barrier slice. Variables dd1, dd2 are then sensitive variables, so 
any reference to these two variables must be removed from the code of the protected 
application. Statements 14, 15, 16 are also part of the barrier slice, so they are 
extracted and modified accordingly to produce server-side code. 

Component SLPzz.02 and component SLPzz.03 are responsible for the generation of the 
protected client application and for the generation of the server-side code to run the slice, 
resp. The two components apply on the pre-processed source code that still contains 
annotations in C format, while facts (Dzz.01) and barrier slice (Dzz.02) extracted with 
CodeSurfer are used as input to perform source code transformations. Client generation 
(SLPzz.02) and server code generation (SLPzz.03) are implemented in TXL. They apply 
code transformations to produce the protected client application and the server-side sliced 
code. The following paragraphs report some of the code transformations we have 
implemented. 

 1 _Pragma("ASPIRE begin protection(barrier_slicing, barrier(year2), label(s1))") 
 2 year2 = tm.tm_year+1900; 
 3 _Pragma("ASPIRE end") 
 4 for (i = ref; i < year1; i++) { 
 5  if (i % 4 == 0) 
 6   dd1 += 1; 
 }  
 7 dd1 = calculate_original(dd1); 
 
 8 dd2 = 0; 
 9 for (i = ref; i < year2; i++) { 
 10  if (i % 4 == 0) 
 11   dd2 += 1; 
 } 
 12 dd2 = calculate_current(dd2); 
 13   _Pragma("ASPIRE begin protection(barrier_slicing, criterion(dd1, dd2), label(s1))") 
 14 if (dd2 - dd1 > 30) 
 15  printf("Fail\n"); 
 else 
 16  printf("Ok\n"); 
 17 _Pragma("ASPIRE end") 
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Remove definitions 
Figure 16 shows a portion of code taken from the running example (Figure 15) that must be 
transformed. In fact, we have one of the sensitive variables of the program, dd2, which is 
defined twice, at line 8 and at line 11 respectively.  

By applying TXL transformation routines for client and server we obtain the code shown in 
Figure 17. 

 
Figure 16 - Code containing definitions of sensitive variable dd2 

 

 
Figure 17 - Protected code for the example of Figure 16 

For client-side code, on the left in the figure, calls to function sync()  (lines 8, 11) replace the 
definitions of variable dd2, which disappear from the code of the protected client. In case of 
the server-side code, on the right, calls to function checkSync() are introduced at line 8, 12, 
to anticipate any sensitive variable definition, which are kept in the code. Function sync() and 
checkSync() are intended to synchronize client and server: the former notifies the server 
about the execution point the client has reached (indicated by the integer parameter of the 
function), while the latter checks the execution status at server-side to keep the two 
executions aligned. 
 
Remove uses 

 
Figure 18 - Code containing uses of sensitive variables dd1 and dd2 

 

 
Figure 19 - Protected code for the example in Figure 18 

The annotated code of Figure 18 also needs to be modified by the tool, since it contains 
references to sensitive variables dd1 and dd2, and it is part of the barrier slice. By applying 
code transformation patterns, we obtain the protected code depicted in Figure 19. 

Each occurrence of the sensitive variables dd1 and dd2 are substituted by calls to function 
ask() (Figure 19) which accepts two parameters: an integer label that is used for 
synchronization similarly to what is done with synch(), and the integer associated to the 
variable reference that has to be removed. This information is contained in the fact files 
collected when annotations are extracted. At server side, the sensitive variables are replaced 

 8 dd2 = 0; 
 9 for (i = ref; i < year2; i++) { 
 10  if (i % 4 == 0) 
 11   dd2 += 1; 
 } 

 8 sync (1); 
 9 for (i = ref; i < year2; i++) { 
 10  if (i % 4 == 0) 
 11   sync (2); 
 } 

 8 checkSync (1); 
 9 dd2 = 0; 
 10 for (i = ref; i < year2; i++) { 
 11  if (i % 4 == 0) { 
 12   checkSync (2); 
 13   dd2 += 1; 

} 

 13 _Pragma("ASPIRE begin protection(barrier_slicing, criterion(dd1, dd2), label (s1))") 
 14 if (dd2 - dd1 > 30) 
 15  printf ("Fail\n"); 
 else 
 16  printf ("Ok\n"); 
 17 _Pragma("ASPIRE end") 

 14 if (ask (1, 2) – ask (2, 1) > 30) 
 15  printf ("Fail\n"); 
 else 
 16  printf ("Ok\n"); 
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by calls to function sendValue() (Figure 20), which waits for value requests coming from the 
client and answers with the proper value. 

In both of the cases, annotations are removed from the resulting code. 

 
Figure 20 - Protected code for the example of Figure 18 (server side) 

 

Transformation of barrier variables 
Transformation patterns also apply in case of barrier or other variables. For barrier variables, 
lets consider the fragment of annotated C code of Figure 21. 

 

 
Figure 21 - Annotated code for barrier variables 

The annotation indicates a barrier variable, year2. The statement at line 2 then blocks the 
propagation of the dependencies when the barrier slice is calculated, and it is not included in 
the slice itself. This means the server will require the value of year2 if a use of that variable is 
present in the sliced code.  Our code transformation produces the code of Figure 22. 

 
Figure 22 - Protected code for the example of Figure 21 

 

In case of the protected client (Figure 22, left) a call to function send() is inserted after the 
statement marked as barrier by the annotation. Like ask(), function send() takes two integer 
parameters: one for synchronization and one to indicate which variable needs to be sent to 
the server. The statement annotated as barrier is not part of the slice, so it is not present at 
server side. The server code, anyway, requires the value of the barrier variable year2 to 
execute properly, so a call to function waitForValue() is introduced in place of the original 
statement. This function stops the execution of the sliced code until the required value is 
available. 

Also in this case, annotations are removed from the protected code. 

At the conclusion of the transformation, the modified client (SCzz.02) and server-side code 
(SCzz.03) are generated. Note that the output of the tool is still pre-processed code. 

3.3.3 Current Implementation 
At the current stage of the implementation, the tool prototype is working but it is not yet 
integrated into the ACTC. The responsibility for the orchestration of the various components 
of the tool is on a shell script, which takes the source code to protect as input and applies the 
protection. An execution of the tool generates two new executables, a protected client 
application and a server application equipped with the sliced code. The server application 
intends to simulate the ASPIRE framework until this will be available. 

As a case study for testing the current implementation, we use the simple license checker 
presented earlier. To check the correctness of our tool, we created a regression test suite 
with different annotation configurations. It consists of several different configurations of 

 14 if (sendValue (1, 2) – sendValue (2, 1) > 30) 
 15  printf ("Fail\n"); 
 else 
 16  printf ("Ok\n"); 

 1 _Pragma("ASPIRE begin protection (barrier_slicing, barrier (year2), label (sl1))") 
 2 year2 = tm.tm_year+1900; 
 3 _Pragma("ASPIRE end") 

 1 year2 = tm.tm_year + 1900; 
 2 send (1, 1); 

 1 waitForValue (1, 1); 
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barriers and criteria. For each annotation configuration, the tool produces a protected client 
and a server, which runs the sliced code. The original, non-protected application is run 
several times with different inputs and its output is compared with the output obtained by the 
protected applications. 

3.4 Plan 
Required code transformations, along with a simulator of the communication infrastructure, 
have been implemented and tested on the license checker presented earlier in the 
deliverable, but tests on larger examples are necessary to check the validity of the current 
implementation. 

Under these considerations, we envision the following implementation plan: 

• M18: 
o Regression testing and complete implementation (still not integrated in the 

ACTC) 
o Experimentation on simple examples and on the available use cases 

developed by industrial partners in time for deliverable D3.02;  
• M24:  

o First integration in the ACTC for deliverables D3.03 and D3.04; 
o Evolution of client-server slitting to boost performances, still not integrated in 

the tool chain; 
o Integration in the ADSS; 

• M30: 
o Complete integration in the ACTC for deliverables D3.05 and D3.06. 
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Section 4 Implicit Remote Attestation 
Section Authors:  

Cataldo Basile (POLITO) 

Implicit Remote Attestation (IRA) aims at overcoming the current limitations in the Remote 
Attestation (RA) techniques. IRA will be developed in Task T3.2 of WP3, a task that started 
only very recently, at M10. Therefore we will present here the general protection principles, 
preliminary design ideas, and a development plan. No actual results or an IRA 
implementation are available yet. 

The basic RA architecture, characteristics and techniques are presented in deliverable 
D1.04. In Figure 23, we repeat the RA reference architecture.  
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Figure 23 - Remote Attestation, reference architecture. 

Together with the Communication logic, the client side components needed to implement RA 
are the Attestator, the Delay Data Structures, and the Reaction Enforcement Unit. 

The RA objective is to check the integrity of the application to protect by asking the client-
side Attestator to produce an Attestation Report. The Attestation Report is verified at the 
server side by a Verifier. In case of attestation failures, the Reaction Enforcement Unit must 
render the application unusable (according to a strategy defined by the Reaction Manager). 
The Reaction Enforcement Unit is controlled by means of the Delay data structures, a 
software-based covert communication channel between the Reaction Manager and the 
Reaction Enforcement Unit. The Attestator is in charge of collecting and maintaining 
Attestation Data and computing the Attestation Report when the server sends an Attestation 
Request. Depending on the type of technique used (static, dynamic, temporal), the Attestator 
may perform sensitive operations that can be used by the attacker to spot the Attestor code. 
For instance, static techniques make anomalous accesses to code memory pages, dynamic 
techniques read several variables values, and temporal techniques execute heavily 
optimized pieces of code. The knowledge of the Attestator code can be exploited to mount 
several attacks. For instance, an attacker can use it to read and store valid Attestation Data 
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(used with server nonces to compute valid Attestation Reports) or to directly forge fake 
Attestation Reports.  

The same consideration applies to the Reaction Enforcement Unit: it performs operations on 
code sections to render the code unusable, as foreseen by graceful degradation, time 
bombs, etc. An attacker can look for these operations to try to locate and defeat the Reaction 
Enforcement Unit. 

Even if in practice RA works very well and, especially when coupled with renewability, allows 
the achievement of very good protection levels, being able to (theoretically) spot important 
protection components is a weakness that we want to address with IRA. 

IRA will be developed to avoid the presence of Attestator and Reaction Enforcement Unit at 
the client side by exploiting the following ideas: 

• To avoid the presence of the Remote Enforcement Unit, IRA will work with 
applications that are not independent of the server, i.e., IRA does not work with 
stand-alone applications. In case of applications that depend on the server, the 
detection of tampered application instances can be punished in a simple yet effective 
way: disconnecting the client from the server.  

• To avoid the presence of the Attestator, IRA uses a server-side Verifier that is able to 
inspect the executed server-code to obtain the Attestation Data that the (client-side) 
Attestator would have collected after a server request. 

There are two main pre-conditions to use IRA: (1) the application must be composed of a 
client and a server, with the client not executable without interacting with the server, and (2) 
the server-side code must contain enough information to allow the IRA Verifier to reach a 
verdict about the application integrity.  

Since concentrating on natively distributed applications would restrict too much the range of 
applicability of this technique, and, more important, it is not expected that the server-side 
code is in general sufficient to reach the verdict, we will develop an IRA Protection Tool that 
will instrument the application to make IRA possible. The IRA Protection Tool will take as 
input an application's source code (distributed or not) and will produce another application, 
divided in a client and an IRA-ready server, that also contains the code of the IRA Verifier. 
The IRA Protection Tool will not actually split the application, it will output annotations for the 
Client/Server code split service developed in Task T3.1 of WP3. The annotations will indicate 
how to split the application. More details on the IRA Protection Tool design will be presented 
in Section 4.1.  

The important research issues to solve to make IRA usable in practice is identifying a set of 
properties/peculiarities the remote IRA Verifier can observe from within the server-side 
application to establish the client-side application integrity. Research is ongoing to determine 
these properties. Currently, we have identified two approaches (decision on usability still 
pending): CFG-based IRA and remotely watched invariants monitoring. 

CFG-based IRA consists in assigning different paths in the CFG of the application to different 
labels. The set of labels can be populated using application-specific characteristics (e.g., 
high-level purpose or function performed) or using business-related information (e.g., licence 
needed to execute it). A possible application scenario for CFG-based IRA is to protect 
applications that have different license profiles (e.g., a free standard version and a premium 
version that enables several other features) whose executables contain the entire application 
logic. By moving selected parts of labelled paths onto the server, IRA allows monitoring of 
the execution of functions that are not allowed by the licence type, hence separating 
tampered applications from original ones. 

The second approach investigates the possibility of performing invariant monitoring on the 
server-side code. When invariant monitoring is deployed, the Attestator collects and sends 
the server the values of a set of variables that are used to compute the invariants. The list of 
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the variables whose values needs to be collected is requested by the server at every 
Attestation Request. The server may also ask for values of variables that are not actually 
used in invariants to make it harder for the attacker to guess the invariants. However, an 
attacker does not necessarily need to guess the invariants, which can be a very difficult task. 
Alternatively, the attacker can spot the Attestator code, e.g., by means of a dynamic analysis 
tool. He can then inspect the code of an untampered application and save the values of the 
variables sent to the server. After having built a database populated with the saved variables’ 
values, he can modify the Attestator code to send the server the variables values taken from 
the database (instead of reading the variables from the memory). With remotely watched 
invariants monitoring, the application (original or after the instrumentation with the IRA 
Protection Tool) is split into a client and a server such that the variables of the invariants to 
monitor are passed to the server and used in some non-trivial) computation. This obliges the 
attacker to send the server the real variable values, as otherwise it is not guaranteed that the 
program can continue to work correctly. In short, IRA renders the previous attack based on a 
database useless. 

Another research issue to address is how to determine the minimum quantity of information 
to move on the server to (1) allow an IRA verdict, and (2) to make it impossible for an 
attacker to build a fake server. Indeed, if the server-side component performs trivial tasks, an 
attacker could easily implement a fake version of the server, thus avoiding the problem of 
being disconnected. Moving more computations onto the server decreases the overall 
performance of the application, however, due to network latency and potential server 
overloading. This decision is a typical optimization decision that we will leave to the ADSS. 

4.1 Design 
The preliminary IRA Protection Tool is presented in Figure 24.  
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Figure 24 - The architecture of the IRA Protection Tool. 

The IRA Protection Tool includes an IRA Analysis Module that will determine the possibility 
to protect the application with one or more IRA approaches. The IRA Analysis Module is 
based on compiler tools that are used to generate abstract representations of the application, 
and on ASPIRE-developed models that will check the abstract representations and identify 
suitable IRA approaches. The user may constrain the search by limiting the IRA approaches 
to check. The IRA Analysis Module produces a report that includes all the discovered pairs 
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(IRA approach, split points). The IRA approach also implicitly indicates the IRA Verifier to 
deploy on the server. 

Following guidelines in D5.01, the IRA Protection Tool will not pass all the identified 
(approach, split point) pairs to the ADSS. The reason is to make the decision process in the 
ADSS that will select the golden configurations more manageable. Therefore, using 
terminology borrowed from the optimization field, we plan to pass to the ADSS only the 
elements on the Pareto front (or a subset of them). These elements will be passed as 
protection profiles together with the value of all the metrics needed to the ADSS to evaluate 
the impact. This operation is performed by the Split Optimization Module. The union of the 
IRA Analysis Module and the Split Optimization Module will form an Enrichment Module that 
will be used during the ADSS Combination Generation phase.  

Once the ADSS has selected the golden configuration, the Tool Flow Bridge (an ADSS 
component) will instruct the IRA Protection Tool on the selected profile (if any). The actual 
IRA enforcement consists in (1) generating a set of annotation (to be added to the original 
source code) to indicate where to split the application source code, and (2) the source code 
of the IRA Verifier that will be deployed on the server. 

4.2 Plan 
The next 6 months will be devoted to build the theoretical model for IRA enforceability. We 
will perform the following two research-intensive tasks. 

First, we will analyse sample applications (taken from the ASPIRE use cases and from 
repositories of open-source software) to determine properties/peculiarities the remote IRA 
Verifier can watch from within the application server to establish the application integrity. 
Several applications with different characteristics will be analysed by means of static and 
dynamic analysis tools, and other reverse engineering tools (e.g., generators of likely 
invariants). We will also generate and save several abstract representations of the selected 
applications. The aim is to use these abstract representations to identify new remotely 
watchable application properties/peculiarities and to validate the applicability of our ideas on 
CFG-based IRA and remotely watched invariants monitoring. The work will concentrate on 
the abstract representations (rather than on the applications) as our aim is to build the 
theoretical framework, determine the pre-conditions to apply IRA and evaluate the impact of 
alternative splits. We may need to simulate the execution of simplified versions of the 
applications (split in a client and a server) that only convey the aspects that are interesting 
for IRA enforcement. 

Second, we will work on the definition of the optimization problem that will be used to 
determine the minimum portion of code to split. This phase will address the identification of 
the optimization parameters, thresholds, etc. and relations to metrics (described in D4.02). 
This second research effort will be complemented with the definition of criteria to generate 
protection profiles to be used by the ADSS (as explained in deliverable D5.01). 

Moreover, the research will focus on the identification of potential issues and incompatibilities 
with the techniques used in initial ACTC flow as presented in deliverable D5.1. Solutions to 
potential issues will be incorporated in the Preliminary ASPIRE Online Protection Tool Chain 
(in deliverable D5.05). Several techniques may impact this technique. For instance, 
obfuscation and other transformations can change the abstract representations of the 
application and render the IRA deployment impossible. For instance, CFG flattening might 
make the use of CFG-based IRA impossible. Analogously, likely invariants identified on the 
original applications need to be updated after the use of data hiding techniques. Therefore, 
we will investigate the impact of IRA on the order of execution of the ACTC components. 
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Section 5 Anti-Cloning 
Chapter Authors:  

Brecht Wyseur (NAGRA)  

 

5.1 Introduction 
An intrinsic difference between hardware and software is that software can easily be 
replicated. In a white-box attack context, which is the targeted attack context for the ASPIRE 
project, an attacker has full access to the software applications, and can thus clone the 
software to run an identical instance in different, and possibly multiple locations. 

Mitigating such attacks can only be done by ‘locking’ the software with some component that 
cannot be cloned, such as a hardware building block or a remote server. The latter is the 
approach that is conceived in this anti-cloning (AC) technique that we are developing for the 
ASPIRE project. 

The basic idea of this technique is to assign to individual software application instances a 
unique value that is tracked by the ASPIRE server, and to let this value evolve in an 
unpredictable way. While two application instances may be identical at some moment in time 
(i.e., when cloned), once one of them connects to the ASPIRE security server and is forced 
to update its value, the two instances will be desynchronised. 

Attackers that aim to mitigate this technique will need to clone the application again each 
time they wish to request the service, as their instance will be desynchronised once the other 
instance has connected. This is an attack that is hard to scale, and meets the objectives of 
the ASPIRE project, where we aim to discourage attackers, in this case by forcing them to 
make continuous efforts instead of one-time efforts. 

The design and development of this AC technique is part of Task T3.2 of WP3. At this point, 
the technique is only at its conception phase. A detailed architecture design and 
development are scheduled at a later phase in the project as described in the ASPIRE DoW. 
Nevertheless, in this document we already present a preliminary design description. Details 
and progress on the development will be reported in the later deliverables of WP3. 

5.2 Design 
5.2.1 Architecture 

A preliminary design description has been provided in deliverable D1.04 (ASPIRE Reference 
Architecture), in which the client-side components (tag and AC manager) and server-side 
components (the AC decision logic) were introduced. 

The approach described above translates in practice as follows: 

1. From anywhere in the program, the client-side AC manager can be called. That is, 
the AC manager will be invoked via a call to the AC_check_status() function. 

2. Subsequently, the AC manager reads the tag value and communicates this to the 
server-side decision logic. 

3. The server can choose different responses. It can choose to acknowledge reception 
and return control to the original application logic; or it can choose to enforce an 
update of the tag value by providing some such new value. 
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4. In case of a tag update, the local tag will be updated, and the new value will be 
communicated to the server to acknowledge that the update was successful (step 2). 

5. Subsequently the server can decide again to either return control back to the 
application or again enforce an update (step 3), and so forth. 

 

5.2.2 Annotations 

The AC mechanism is integrated in ASPIRE protected applications and invoked by a 
dedicated function call to the AC manager API that is inserted into the application during the 
source-to-source translation. This call to the AC manager initiates a synchronization event 
between the ASPIRE protected application and the ASPIRE security server. This event can 
be invoked at any point in time during the execution of the ASPIRE protected application and 
from any place in the application. When invoked, the AC mechanism does not need any 
parameters; only the hooks from where it will be invoked need to be defined. These have to 
be specified by means of annotations, as also described in deliverable D5.01 Appendix B.13. 

The annotation is defined as 

<PROTECTION_NAME>.::=.anti_cloning.

The ACTC will translate this annotation into a call to AC_check_status(). This function will 
return a status code, which could be used to trigger some client-side response. In general, 
no particular client-side action needs to be taken; it will be the server that will use the AC 
status information to decide whether or not it will grant access to a service request. 
Nevertheless, it one can envision that in subsequent versions of the ACTC, different actions 
are introduced based on the status response, as presented in the code snippet below. 

status.=.AC_check_status().

switch.(.status.).

{.

case.TIMEOUT:.…;.break;.

case.NOT_OK:.…;.break;.

}.

 

5.3 Plan 
The AC technique is part of RTD Task T3.2. The task itself is planned from M10 to M36. 
While the basic conception and high level architecture description have been done (as 
described in this deliverable and the ASPIRE Reference Architecture), the fine-grained 
details of the design and the implementation of this technique are only planned at a later 
stage of the task. Given priorities on other techniques (such as Task T2.2 that terminates 
earlier) and resource planning, NAGRA does not plan to start the implementation of this 
technique in the next 6 months, but rather towards the end of year 2 or beginning of year 3 of 
the ASPIRE project. 
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Section 6 List of Abbreviations 

 

AC  Anti-Cloning 

ACTC   ASPIRE Compiler Tool Chain 

ADSS  ASPIRE Decision Support System 

ASPIRE Advanced Software Protection: Integration, Research and Exploitation 

BCxx  Binary code document nr. xx 

BLCxx  Binary-level configuration file nr. xx 

BLPxx  Binary-level software processing step nr. xx 

Dxx  Datum produced or used by the ASPIRE ACTC identified with nr. xx 

Dx.y  ASPIRE deliverable # y in work package  x, y is a two digit number 

DoW  Description of Work 

IRA  Implicit Remote Attestation 

SCxx  Source code document nr. xx 

SLCxx  Source-level configuration file nr. xx 

SLPxx  Source-level software processing step nr. xx 

SDG  System Dependence Graph 

RA  Remote Attestation 

WP  Work Package 
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