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Executive Summary 
This deliverable reports the final progress made Task 2.5 of WP2 Offline Software 
Protections, whose goal is to improve the tamper-resistance of the protected binary with 
offline techniques. The design and implementation of the Anti-Debugging technique, which 
was integrated in the ASPIRE Compiler Tool Chain (ACTC) was modified to account for 
some requirements from the Use Cases in which it was used. The Offline Code Guards 
technique was implemented and integrated in the ACTC according to the design of 
Deliverable D2.08. Anti-Callback checks have been integrated in the ACTC as well. No 
significant updates were done to the Control Flow Tagging protection. Finally, the design of 
the Diversified Cryptography is presented in this document. 
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Section 1 Introduction  
Section Authors:  

Bart Coppens (UGent) 

This deliverable reports the final progress made Task 2.5 of WP2 Offline Software 
Protections. The goal of WP2 is to provide the offline software protections for the ASPIRE 
project. The specific goal of Task 2.5 is to improve the tamper-resistance of the resulting 
protected binary with offline techniques. For each of these offline tamper-resistance 
techniques, the final progress is reported in this deliverable. Furthermore, this report also 
discussed progress from protection techniques that were not strictly contained in Task T2.5, 
such as multi-threaded cryptography, which belong to other tasks in WP2. This is because 
there have been further developments on them in their respective tasks, and because this 
deliverable is the last deliverable for WP2 in which we can report on these activities. 

Some of the updates described in this deliverable have already been used in the 
experiments with the industrial tiger teams (Task T4.4). In particular, the anti-debugging 
component, offline code guards, and anti-callback checks that are described here, are all 
used in both NAGRA’s as in SFNT’s tiger team experiments, which means that their 
effectiveness will be evaluated. Furthermore, as some of the updates described here needed 
to be integrated in the ASPIRE Compiler Tool Chain (ACTC), there have also been 
interactions with Task 5.1 of WP5 in which the ACTC is developed and maintained. 

The remainder of this document is structured as follows. Section 2 describes the final version 
of the anti-debugging component. The implementation of the offline code guards is described 
in Section 3. In Section 4, we describe the final integration of the anti-callback checks. 
Section 5 describes how no significant updates were made to the Control Flow Tagging 
technique. Finally, we report on ASPIRE's cryptography-related protections other than white-
box cryptography in Section 6 with diversified cryptography, as foreseen in the updated DoW 
as a replacement for some of the white-box cryptography research foreseen in the original 
project DoW.   

Finally, this deliverable D2.10 of type report also documents the tool support that has been 
developed up until M30 for the project in WP2, and that is delivered as the confidential 
prototype Deliverable D2.09. 
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Section 2 Anti-Debugging 
Section Authors:  

Bart Coppens (UGent), Bert Abrath (UGent) 

In M24 we delivered the previous version our anti-debugging component, which we 
described in detail in D2.08, Section 6.4. Since then, we made several changes and 
improvements to the design and implementation of the anti-debugging protection: switching 
of the roles of the forked and forking process, better support for emulating memory accesses, 
and better support for multi-threaded processes. All of these changes and improvements 
were guided by the integration testing and debugging of the protection techniques on the 
NAGRA Use Case. The anti-debugging component has been integrated in the ACTC as part 
of the Diablo binary rewriter in BLP04. This integration is described in more detail in Section 
4.3 of Deliverable D5.08. The version as described in this section was integrated in the 
ACTC in M29. 

2.1 Switching the roles of forked and forking process 
First and foremost, we modified the relationship between the protected process and the mini-
debugger. Previously, the protected process would fork, with the parent becoming the mini-
debugger that protects the child. This is shown in Figure 1, which first shows the parent 
process calling fork(). The forked child process then blocks the execution until a debugger 
attaches using the PTRACE_TRACEME ptrace-call. In our case this is the parent process 
that just called fork. However, this scheme has the slight disadvantage that executing such a 
protected program under a debugger with its default options, will result in the anti-debugger 
succeeding in attaching to the child process. This is because the debugger will only be 
attached to the parent process, which serves as a debugger. While this still prevents an 
attacker from attaching to the protected child process, the fact that attackers will initially be 
able to run the protected program under a debugger despite anti-debugging measures is 
somewhat suboptimal. Furthermore, the external environment can try to communicate with 
the process using its process id; sending signals to this process. These signals now arrive in 
the debugger, who would then have to forward these signals to the debuggee. 

Furthermore, this scheme requires the usage of the PTRACE_TRACEME ptrace-call. This 
syscall has had additional security constraints imposed in more recent versions of Linux and 
Android. These constraints would disallow custom applications to execute this call at all, 
breaking any anti-debugging component implemented in this way. Of course, the 
PTRACE_TRACEME system call is used for a reason: it allows the child of a debugger to 
cleanly signal to its parent debugger process that it is ready to be debugged. 

To solve these issues, we reversed the role of parent and child process: this is shown in 
Figure 2. Now the parent process forks off the mini-debugger as a child. Of course, now we 
can no longer use the PTRACE_TRACEME call. The debugger calls PTRACE_ATTACH on 
the child, but in without care this child could already be executing arbitrary protected code. 
Our solution is to have the parent/debuggee process wait in a loop after forking. The loop 
condition depends on the value of a global variable; the location of which is known by the 
child/debugger process. Once the debugger is initialized, it attaches to the parent process, 
and overwrites terminates the loop in the parent process by overwriting this global variable. 
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Figure 1 Old scheme: parent debugs child 

 
Figure 2 New scheme: child debugs parent 

2.2 Improved support for memory accesses 
We had to improve the support for handling memory accesses as the code written for this by 
our master thesis student did not suffice for our purposes. The mini-debugger used to do all 
read/write memory accesses to the protected process using /proc/<pid>/mem interface. 
However, write access is not supported on all kernels through this interface. In particular, 
Linux kernels such as those that are run Android 4.3 do not support this. 

To solve this issue, these accesses now happen using the ptrace interface. More specifically, 
we now use PTRACE_POKEDATA). Read accesses however still go through the 
/proc/<pid>/mem interface. 

2.3 Improved support for multithreading 
As both of the libraries that are protected for the NAGRA use case are loaded into 
multithreaded programs, this use case provided a good stress-test for the multi-threading 
support available in our mini-debugger. However, we noticed that we required much more 
robust support for multithreading than was provided in the master’s thesis student’s 
implementation. In effect, we had to write all threading-related code related code from the 
ground up to provide robust multi-threading support for the anti-debugging technique. 

In particular, we now support the following correctly: 

• The mini-debugger now attaches to all threads of the protected process after the fork, 
and now correctly attaches to any threads created after attaching the debugger, and 
also detaches from threads that terminate.  

• Furthermore, we now also support that the protected module is unloaded from the 
process even though the process itself is not terminating. This can happen because 
in the NAGRA use case, the protected library is not only loaded, but is sometimes 
unloaded from the application (using the dlclose function call). The mini-debugger 
now detaches from all running threads, shuts itself down, and lets the process 
continue on its own (without the protected module). The case where the library is then 
re-loaded in the application is also handled well now. 

• Finally, we had to fix several problems involving subtle race conditions that occur due 
to the combination of multi-threading and signal handling. 
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Section 3 Offline Code Guards 
Section Authors:  

Bert Abrath (UGent), Bart Coppens (UGent) 

For this Deliverable, we took the design from M24, which is described in detail in Section 6.4 
of Deliverable D2.08, and implemented it. However, while we previously wrote in Deliverable 
D2.08 that we would re-use significant portions of the Remote Attestation code base to 
implement offline code guards, we were not able to re-use as much code as indicated. In 
particular, we re-use both the code that generates and parses the Area Data Structure (ADS) 
from Remote Attestation (RA). However, we did not re-use the functionality to attest and 
verify code regions. The code we implemented to attest and verify code regions for code 
guards is significantly less complex than the code for RA. 

The anti-debugging component has been integrated in the ACTC as part of the Diablo binary 
rewriter in BLP04, and as a separate source-rewriting tool SLP08. Their integration in the 
ACTC is described in more detail in Sections 3.2 and 4.4 of Deliverable D5.08. The initial 
integration of the Offline Code Guards in the ACTC was performed in M28; however 
significant fixes were still made after this integration. The implementation as described in this 
section was shared with all partners in M29. 

Our work on implementing code guards is split in two parts: the code required for performing 
and verifying the local attestations, and the code required for performing local reactions 
based on the results of these local attestations. 

3.1 Attesting and verifying code regions 
The flow to rewrite the binary to insert the code guards is as follows: 

1. Invocations of the code guard attestation and verification functionality itself are 
inserted through a small source code rewriting tool. The current implementation is 
limited to one verifier per attestator; however, this is not a fundamental limitation. 

2. We have separate source code that computes hashes over a region, which is 
compiled and linked with the protected program by the ACTC. As the interface that 
was provided by the hashing algorithms written for RA proved to be too cumbersome 
to integrate in code guards, we wrote these ourselves. 
For each of the attestators, we inject a separate instance of this source code file, 
each with unique names for both the function calls as well as the global variables 
used. These variables will contain a flag indicating if tampering was detected, the 
correct hash values, etc. 

3. Our binary rewriter tool Diablo extracts the annotations that describe which code 
regions need to be attested in the same way as we do for RA, re-using that code. 

4. Throughout the program, Diablo inserts calls to the tamper response mechanisms, 
the design and implementation of which is explained in more detail in the next 
section. These calls depend on the variable that stores whether or not tampering was 
detected. 

5. After the final layout of the binary has been determined, Diablo computes the correct 
hash values and inserts these in the corresponding variables. 

While our current implementation only supports a single non-randomized correct hash value 
per attestation region, our design is flexible enough so that we can easily extend the 
implementation with nonces. Rather than storing a single value per attestator, we store an 
array of nonces to be used in each attestation, and also store the corresponding hash 
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values. The code to compute and verify the hashes can then iterate over consecutive values 
of nonces. 

3.2 Offline tamper responses 
As the tamper responses or reaction mechanisms for call stack checks had not been 
implemented yet, we could not reuse these. Therefore a small framework and a number of 
reaction mechanisms were designed during the implementation of code guards. The verifiers 
are also more complex as described in Deliverable D2.08. Instead of immediately triggering a 
reaction mechanism when tampering is detected, we just set a flag, which is checked by the 
reaction mechanism invocations that have been inserted throughout the protected program 
by Diablo. This ensures that the reaction to a tampering will be triggered separately from 
detecting the tampering. This way, it will be harder for a potential attacker to connect his 
tampering and the reaction to it. 

The reaction mechanisms are implemented in C, in separate reaction mechanisms source 
files. Each of these files contains a number of reaction mechanisms, shared data structures, 
and a degradation function that - once called - causes the reaction mechanisms to trigger 
later on in the future. Figure 3 shows an example of such a mechanisms file that uses 
mutexes in its reaction mechanism. It defines an initialization function that initializes 2 
mutexes, and lets both variable x and variable y point to the same mutex. 

Each mechanisms file defines one or multiple reaction mechanisms that can be called safely 
as long as tampering was not detected. With this in mind, Diablo inserts invocations to the 
reaction mechanisms all throughout the program, on suitable locations. In the case of Figure 
3, the reaction function locks mutex pointer x, does a computation, and then unlocks mutex 
pointer y. As both pointers were initialized to point to the same mutex, this function can be 
called safely. 

Once tampering is detected, the degradation function is invoked, which will cause 
subsequent calls to the reaction functions to fail. In our example, it lets mutex pointer x point 
to the second mutex; which will cause a deadlock. 

pthread_mutex_t mutex_1, mutex_2, *x, *y; 

INIT_REACTION() { 

  pthread_mutex_init(&mutex_1, NULL); 

  pthread_mutex_init(&mutex_2, NULL); 

  x = y = &mutex_1; 

} 

START_DEGRADATION(original) { 

  x = &mutex_2; 

} 

void DIABLO_REACTION_G(int x) 

{ 

  pthread_mutex_lock(x); 

   …  

  pthread_mutex_unlock(y); 

} 

Figure 3 Example reaction mechanisms file 
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Reaction mechanisms will thus be invoked continuously during the execution of the program, 
but only after the verifier detects tampering and sets in motion the degradation will the 
mechanisms corrupt the program during their invocation. 

We also support more low-level reaction mechanisms, where the degradation function can 
corrupt register values that are used by the program. 

 



 

D2.10 - Anti-Tampering Report   

ASPIRE D2.10 PUBLIC Page 7 of 14 

Section 4 Anti-Callback Checks 
Section: Authors:  

Bart Coppens (UGent) 

Already for Deliverable D2.08 in M24 we started the implementation of lightweight anti-
callback checks. These are small stack checks that verify that internal functions are not 
invoked from outside the library. These are injected by the binary rewriter component BLP04 
when protecting dynamically linked libraries. These checks inspect the return address of the 
last call and check whether or not it comes from inside the code segment of the protected 
library itself, or from the outside. 

Since M24, we have debugged the implementation of the anti-callback checks that was 
described in D2.08, and have integrated this protection technique into the ACTC by M30 as 
part of the Diablo binary rewriter tool in BLP04. The integration itself is discussed in Section 
4.1 of Deliverable  D5.08. 

One of the issues we had to address was the incompatibility of anti-callback checks and 
some of the other protection techniques. In particular, we had to resolve an incompatibility 
with the code mobility protection technique. In this technique, executable code is downloaded 
from a remote server; a new page is allocated to store this code in, and finally this code is 
executed. However, this allocated page is not located in the code segment of the protected 
library, but is located in the heap. Thus, mobile code calling into internal functions protected 
with anti-callback checks would trip these checks. 

It would be possible to extend the anti-callback checks and integrate them with the code 
mobility’s binder component to allow calls from mobile blocks as well. However, this would 
significantly increase the overhead of these checks, which were explicitly designed to be very 
low-overhead checks. In particular, the authors of the ASPIRE Use Case annotations used 
the anti-callback check annotations extensively as they are supposed to be very low-
overhead.  

Thus, we did not opt for adding explicit support for mobile code to the anti-callback checks. 
Rather, we chose to disable the anti-callback checks on regions with mobile code 
annotations. The reason that we disable the anti-callback checks rather than disable the 
mobile code on regions with a conflict is similar to the reason above for not integrating the 
mobile code’s binder with anti-callback checks: users of the ASPIRE annotations extensively 
added anti-callback check annotations everywhere. In the NAGRA use case in particular, 
anti-callback checks were added to a generic protection profile, meaning that all functions 
were automatically annotated with this protection without the annotator having to give more 
thought to this. This is in stark contrast with the other annotations, such as code mobility: 
these annotations were added explicitly on very specific code regions, most likely because 
they contain assets. Thus, we decided that the more specific, heavy-weight code mobility 
annotation should override the generic anti-callback checks. 

However, we do let the rewriter produce explicit warnings when it disables the anti-callback 
checks, so that users are aware of it and can verify this if necessary. 
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Section 5 Control Flow Tagging  
Section Authors:  

Jerome D'Annoville (GTO) 

No significant work done on this protection for the considered period. Most of the effort has 
been spent on the Reaction mechanism described in the Deliverable D3.06 – Remote 
Attestation and Server Mobile Code Report. The Reaction mechanism was on the critical 
path since it is required to enable an effective protection done by the Remote Attestation 
provided by POLITO.  

A first iteration of Control Flow Tagging (CFT) protection will be implemented before the GTO 
Tiger team experiment in M32. If time is too short then another iteration will be released in 
M33 and will be reported in another deliverable. 
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Section 6 Diversified Cryptography  
Section Authors: Fadela Letourneur, Jerome d'Annoville (GTO) 

6.1 Motivation 
A Gemalto internal research project is currently conducted to provide a software component 
in case a mobile device does not have a hardware secure environment. In that case, this 
software component should be provided to ensure the continuation of service even if less 
secure than the hardware support. The current output of this project is a shared library that 
can be integrated in an Android application. This library will enable the distribution of the 
application on devices independently of the device characteristics at download time. 

As a replacement of a theoretical research task on cryptography in the project it appeared 
that the library implemented in the aforementioned internal project could be customized with 
a reasonable development effort to provide a Cryptographic Library to any Android mobile 
application. Then we proposed a new protection in the project which we call Diversified 
Crypto Library (DCL) that enables to protect credentials of an application with a library 
customized at compile time. 

6.2 Requirements 
The DCL shall be able to hide a key that is embedded at compile time in the library and then 
distributed with the application.  

A derivation function shall be present in the library in addition to encrypting and decrypting 
functions. This extra derivation function enables getting a derived key within the library and 
avoid to expose the master key to the application in the clear. 

Encryption or decryption cryptographic functions shall be available with a key that is kept 
within the library. It must be implemented in such way that an attacker cannot easily retrieve 
the key value.  

6.3 Architecture 
Figure 4 shows all components involved in the protection. The protection is provided by the 
DCL library. The DCL library can be called either by the Native part of the application or by 
the DCL Bootstrap Module. The DCL library contains the Bridge component, the Bootstrap 
component, the Crypto component and the Credential storage component. The Bridge 
component exposes the interface of the Crypto component to the application. Cryptographic 
functions are implemented in the Crypto component and the Credential storage component 
provides internal storage as suggested by its name. 

What has been done for ASPIRE is to implement the Bridge component in the DCL library, to 
provide a new DCL Bootstrap Module and a clean design of the glue code that is put in the 
native part of the application that calls the DCL library. This glue code is inserted in the 
application by the ACTC. The DCL Bootstrap Module has been updated to enable offline 
initialization of the DCL library. 

Inside the DCL library, the Bootstrap component, the Crypto component and the Credential 
storage component have been integrated with minor updates.  
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Figure 4 – DCL Protection Architecture 

6.3.1 DCL Bootstrap Module 
The role of this component is to initialize the DCL library when the application is launched for 
the first time. Initialization means setting the keys that are used by the DCL library. 

A key is used in Credential Storage Component of the DCL Library to protect the data when 
they are stored. This key has to be set as part of the initialization of the library. A static key is 
bundled in the DCL library that is diversified with data given by the DCL Bootstrap Module. 
The device fingerprint function uses the following data to make the fingerprint: 

• Android ID (Settings.Secure.ANDROID_ID) 
• RO Serial (ro.serialno) 
• IMEI if it exists 

The provisioning of the DCL library is done after the internal key setting described above. 
The DCL Bootstrap Module passes the credentials to the Bootstrap component of the DCL 
library. These credentials have been previously prepared during the build of the application. 
A symmetric static key is used to encrypt the credentials and the same static key is used by 
the Bootstrap component to retrieve the credentials.  

In a previous release of this component implemented outside of the project it was designed 
as a proxy between the DCL library and a remote initializing server. It is a nice feature when 
the application is finished and validated but is very difficult to use during the debugging and 
validation phases of a project. The offline release of the DCL Bootstrap Module implemented 
for the project enables to protect credentials involved in a cryptographic function in a simple 
way without complex server configuration synchronized with library configuration.  

Note that using the offline implementation still leaves the possibility to use one day an online 
DCL Bootstrap Module. The existing online DCL Bootstrap Module would just need to be 
upgraded to support the interface of the DCL Library. It is not proposed in ASPIRE because 
of the administration complexity of the server that is not adequate for a research project.  

6.3.2 Bridge component 
The Bridge component is the external interface of the DCL library. Functions of this 
components fall into two categories. Functions in the first category are implemented partly in 
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the Bridge component itself. Functions of the second category are fully implemented in the 
Crypto component and the processing done in the Bridge is just to call the adequate function 
in the Crypto component with the required arguments. The functions in the first category are 
listed in the Table 1 – Functions implemented in the Bridge component. 

Table 1 – Functions implemented in the Bridge component. 

Function name Description 

computeHmac keyed-Hash Message Authentication Code 

Pbkdf2 Key derivation, convenient function that calls functions 
in Crypto component 

ComputeHOPT HMAC-Based One-Time Password Algorithm 

CryptDataWithAESKey AES encryption, 

CryptDataWithRSAKey RSA encryption 

The algorithms implemented in the Crypto component that are called by the Bridge 
component are in the Table 2 – Algorithms of the Crypto component called by the Bridge 
component. 

Table 2 – Algorithms of the Crypto component called by the Bridge component. 

Algorithm Comment 

AES (CBC and ECB modes) ENCRYPT & DECRYPT 

RSA ENCRYPT & DECRYPT 

Key Generation AES, RSA 

PBKDF2_SHA1 Key derivation 

PBKDF2_SHA256 Key derivation 

6.3.3 Crypto component 
Most of the Bridge component functions ultimately calls functions of the Crypto component. 
This component contains many cryptographic functions and only a part of the Crypto 
component functions have been made accessible by the application through the Bridge 
component. Giving access to more functions is only a matter of engineering and validation. 
This component has not been implemented for the project. 

6.3.4 Credential storage component 
The Credential storage component stores data under an encrypted format. It uses a 
name/value pair to store/retrieve data to/from the storage area. Each data is encrypted with 
AES-CBC. Authenticity and integrity are achieved with a keyed-hash message authentication 
code (HMAC). This component has not been implemented for the project. 

There can be multiple storages each data protected with this mechanism has their own 
individual keys. The storage key is derived from three parameters: 

• The inode number that is the current node number of the storage file itself. 
• The Device fingerprint as introduced in 6.3.1 
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• The diversified key also introduced in 6.3.1; don’t be confused by the name, the 
storage key used for a data is derived from this common diversified key. 

6.3.5 Glue code  
Some glue code is inserted in the native code of the application based on annotations set in 
the source code. This insertion is done at source level by ACTC. Annotations and ACTC 
support is described in the deliverable D5.08 in the Section 3.6. 
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Section 7 Conclusions 
This deliverable is the final progress report of WP2 on Offline Software Protections. Almost 
all offline protection techniques have been designed, implemented and tested. The only 
remaining protection techniques that have not yet been fully implemented and tested are 
Control Flow Tagging and Diversified Cryptography, which both still require some work. 
However, the plan is to have these tested and integrated in time for the GTO tiger team 
experiments, and their final status will be discussed in future non-WP2 deliverables. 
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Section 8 List of Abbreviations  
 

ACTC  ASPIRE Compiler Tool Chain (ACTC) 

ADS  Area Data Structure 

ASPIRE Advanced Software Protection: Integration, Research and Exploitation 

CFT  Control Flow Tagging 

IMEI  International Mobile Station Equipment Identity 

DCL  Diversified Crypto Library 

RA  Remote Attestation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  


