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Executive Summary 

This deliverable reports the year two RTD progress in WP2 on the topic of offline protection 
techniques. Five major sections report on the progress of the five tasks in WP2. 

First, the progress with respect to dynamic forms of data obfuscation of Task T2.1 is 
reported. In these forms, the constants used as mask or modulus in data obfuscations 
cannot be recovered by attackers deploying only static attacks. FBK has studied a number of 
alternative methods to obfuscate the constants, i.e., to generate them dynamically during the 
program's execution, incl. alias-based opaque predicates, graph enumeration, conjectures, 
and the 3SAT problem. The latter was initially considered as a potential approach to 
generate code that is hard to analyse statically, but it was found not to scale well: the run-
time overhead becomes too big for significant level of protections. So a novel obfuscation 
scheme based on the NP-complete n-clique problem is proposed, that builds on a reduction 
of a 3SAT problem to an n-clique problem to generate hard to analyse code. 

Second, the progress with respect to white-box cryptography in Task T2.2 is documented. 
The focus is on the development of NAGRA's White-Box Tool for ASPIRE, and the 
implementation of two extensions as foreseen in the DoW: time-limited white-box 
implementations that provide security only for a limited amount of time but that come with 
acceptable run-time overhead (unlike the provably secure versions developed earlier); 
dynamic-key white-box AES, in which a server generates obfuscated keys to be sent to the 
client rather than embedding a fixed key into the client. 

Third, SFNT reports what additional background they have contributed to the project for Task 
T2.3 on the subject of client-server code splitting, thus showing that the goals of that task 
have been reached.  

Fourth, the progress regarding native code obfuscation in Task T2.4 is discussed. UGent 
reports improvements in the way opaque predicates, branch functions and control flow 
flattening are applied based on profile information instead of purely stochastically, which 
results in significantly reduced execution times. Furthermore, they report extensive 
debugging and intermediate representation bookkeeping functionality to make the binary 
code obfuscations composible with other protections deployed in the binary-level part of the 
ACTC. UGent also reports on a new approach to obfuscate control flow by means of 
externally defined data structures and APIs that allow more stealthy protection. GTO reports 
the architecture of an algorithm-specific multithreaded AES-based cryptographic technique 
that can be used to hide master keys embedded in client applications behind complex 
multithreaded computations. This performance of this technique is also evaluated. 

Finally, four techniques are discussed from Task T2.5 in the domain of anti-tampering. 
UGent presents the first results and implementation effort of a so-called self-debugging anti-
debugging technique, in which an application is split over a debuggee and a debugger 
process to prevent the attachment of an attacker debugger. UGent also reports the initial 
results obtained for simple call-back checks that can prevent call-backs from attacker-
injected code. GTO briefly discusses the first results obtained for control-flow tagging, a code 
execution integrity verification check, and finally, UGent briefly discusses the first results 
obtained with respect to offline code guards, which reuses the guards also used in remote 
attestation (WP3, Task 3.2).  
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Section 1 Introduction 

This deliverable reports the progress made in the five tasks of WP2 Offline Software 
Protections. Sections 2 to 6 are devoted to tasks T2.1 to T2.5.  

Tasks T2.1 to T2.4 are supposed to end in M24 according to the DoW. This means that the 
basic research into the different techniques, and the (isolated) tool support development 
need to be finished. As foreseen in the DoW, a minimal amount of activity is still to be 
expected in year 3, however, as the techniques are further integrated into the ASPIRE 
Compiler Tool Chain, as they are deployed on the project use cases, and as they will be 
driven by the ASPIRE Decision Support System in year 3.  

This deliverable D2.08 of type report also documents the tool support that has been 
developed in year 2 of the project in WP2, and that is delivered as prototype deliverable 
D2.07. 
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Section 2 Task T2.1: Data Obfuscation 

Section Authors: Roberto Tiella, Mariano Ceccato 

2.1 Introduction 

At the end of the first year of the ASPIRE project, the output of task T2.1 (described in 
deliverable D2.01 “Early White-Box Cryptography and Data Obfuscation Report”) consisted 
of the implementation of four algorithms for data obfuscation taken from the state of the art. 
They are:  

• XOR Masking;  

• Variable Merging;  

• Residue Number Coding (RNC); and  

• Convert Static to Procedural Data.  

The objective of the second year of the project is to extend (a subset of) these algorithms 
towards stronger variants. 

2.1.1 Data Obfuscations 

In this subsection, we recall some concepts from D2.01 for the reader’s sake. The reader is 
suggested to refer to D2.01 in case further details are needed. 

A data obfuscation transformation is a program transformation aimed at hiding variables’ 
values. A data obfuscation transformation is characterised by a function )(ve  (called 
encoding function in what follows) that describes how the transformation acts on the values 
assumed by obfuscated variables. In the following two subsections we present two examples 
of data obfuscation, namely XOR Masking and RNC Encoding. 

2.1.1.1 XOR Masking  

A XOR Masking transformation is characterised by the following encoding function: 

pvve ⊕=)(  

Where ⊕ is the bit-wise XOR operator and p is a fixed parameter called the mask. 

2.1.1.2 RNC Encoding 

Given a set of n integers },...,,{ 21 nmmm pairwise mutually prime (two numbers are mutually 
prime if their only common divisor is 1), RNC encoding function is defined as: 

)mod,...,mod,mod()( 21 nmvmvmvve =  

The function )(ve  is guaranteed invertible under the assumptions and the original value v
can be decoded back from an n-tuple ),...,,( 21 nyyy  by means of the extended Euclid 

greatest common divisor algorithm. Integers },...,,{ 21 nmmm are called the modules in what 
follows. 

2.2 Threat Model 

The motivation to elaborate an extension to the previous work is that state-of-the-art data 
obfuscations are vulnerable to attacks based on static analysis. In fact, masks used in XOR 
Masking and modules used in Residue Number Coding, for example, are static constants 
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that, once identified in the static code, can be used to decode (i.e., obtain the clear value) of 
obfuscated variables. 

A way to turn these obfuscation schemes more reliable is to make it harder to detect 
these constants by static analysis.  

Dynamic analysis would be probably always an issue for data obfuscation, because the 
clear values can be intercepted at run time after decoding. Other protections are required to 
avoid run-time monitoring, such as anti-debugging. 

We assume the subsequent attack model:  

• The attacker adopts static analysis, i.e., they have full access to the compiled code 
and can run state-of-the-art analysis tools and algorithm on it;  

• The attacker can run the code (or part of it), but they cannot perform dynamic analysis 
on it, e.g., a debugger cannot be attached to the code.  

2.3 Possible Extensions 

This section collects the results of discussions and of brainstorming sessions, towards the 
definition of the novel extension. 

2.3.1 Convert Static to Procedural Data 

The first extension consists of removing the plain constant used in the data obfuscation 
(mask or module) and replacing it with a procedure to compute it on demand at run time, for 
example by resorting to a Mealy Machine as described by C. Collberg and J. Nagra [Col09]. 
In this way, a simple search in the code binaries would not succeed. However, the procedure 
should not be trivial, otherwise an attacker could figure out its behaviour and forecast the 
result.  

Moreover, advanced static analysis can break non-trivial obfuscations, when the analysis 
is able to statically figure out the outcome of non-trivial procedures to compute the constant. 
An example of such powerful static analysis is symbolic execution. Therefore, the 
obfuscation should be designed to be strong against advanced static analyses, for example 
by requiring the analysis to solve intractable problems to break the obfuscation. 

  The obfuscation should be designed such that, to break it, a static analysis tool should solve 
a problem known to be intractable.    

Moreover, if the attacker figures out that the output of this procedure does not depend on 
the program input (or on random values computed at run time), the attacker could run this 
procedure once and then reuse the result to break the obfuscation. 

  The procedure to compute the constant should depend on program input (including random 
values computed at run time).    

2.3.2 Opaque Constant based on 3SAT Problem 

The work by Moser et al. [Mos07] describes how to turn static constants into opaque 
constants, i.e. constant values that are difficult to guess statically. In their approach, to detect 
the value of the constant, an attacker would need to solve the satisfiability problem for a 
Boolean formula in 3 variables (3SAT), a problem that is known to be NP-complete.  

They use opaque constants (i) to hide absolute and relative jumps/calls to make the 
control flow graph very hard to recover; (ii) to hide the address of program variables, and in 
particular the import table in dynamic library headers; and (iii) hide variable usage by 
breaking def-use chains. 

Moser et al. [Mos07] used this obfuscation to make known malware stealth to commercial 
malware detectors and to advanced semantic-based malware detectors that still resort to 
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static analysis. They claim for the need of more advanced malware detection based on 
dynamic analysis. 

In the paper, they describe their algorithm to generate an opaque bit. We could extend 
this approach to generate a sequence of 32 opaque bits that would encode integer values 
used as masks or modules in obfuscations. Indeed, different 3SAT formulas could be used to 
generate the same constant, thus complicating the attacker analysis. 

2.3.3 Opaque Constant based on Collberg’s Opaque Predicates 

Collberg et al. [Col98] propose a technique to forge opaque predicates. The technique 
leverages the hardness (undecidability, in general [Ram94]) of the statically must/may point-
to analysis problem. The very basic idea is to have two pointers running on two disjointed 
components of a dynamic data structure such as a graph. Involved dynamic data structures 
are updated in certain point of program execution, randomly adding new components or 
removing existing components. An articulated example that leverages the idea is sketched in 
the article. The article recommends developers to provide many implementation variants, 
obfuscated, and merged with actual code. 

Leveraging the proposed technique, each bit of the opaque constant is decided based on an 
opaque predicate. 

2.3.4 Graphs Enumeration 

Collberg et al. [Col99] describe watermarking techniques. In their paper, the authors suggest 
to encode constants into data structures by means of enumeration. Graph-based structures 
such as trees and circular lists can be systematically enumerated, actually establishing a link 
from an integer number to the “shape” of an instance of a specific data structure. Algorithms 
to support this protection are presented in Yong He’s Master Thesis [He02], the work by 
Palsberg et al. [Pal00] and more recently by Chron and Nikolopoulos [Chr11]. 

2.3.5 Leveraging Conjectures 

Wang et al. [Wan11] present a technique to obfuscate predicates that trigger malware 
behaviours. The technique aims at preventing to recover which conditions make a predicate 
true by means of an analysis based on symbolic execution. Conditions are defined in terms 
of values assumed by some input variables. They leverage some mathematical conjectures, 
for example the Collatz’s one. Collatz’s conjecture says that the sequence {y

k
} defined by: 

0; 00 >∈ yNy  

⎪⎩

⎪
⎨
⎧

≡

≡+
=+ )2(mod0

2

)2(mod113
1

k
k

kk

k yify
yify

y  

 

eventually reaches 1. The conjecture was proven true for y0≤∼258 by computation but no 
formal proof is available of its validity. 

Figure 1 shows an example based on the Collatz’s conjecture. In the program on the left, 
x=30 triggers the condition x==30 and causes the malware to be executed. In the program in 
the centre of the figure, supposing the conjecture true, the loop is eventually exited. The 
figure on the right depicts how to embed the trigger into the loop: when y reaches value 1 the 
condition is true and the malware is executed. 
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Figure 1 – Using Collatz's conjecture to obfuscate a predicate 

2.4 Our Novel Obfuscation Scheme 

This section illustrates the new obfuscation scheme we devised during the survey of the 
existing literature. 

2.4.1 Obfuscation Scheme Requirements 

The discussion of data obfuscation based on the 3SAT problem [Mos07] highlighted what are 
the requirements for the mathematical problem to be used for our new obfuscation scheme: 

1. Difficult for the attacker to analyse: Undoing obfuscation (i.e., recovering the 
obfuscated constant) should require the attacker to solve a problem Pr, known to be 
NP-complete that requires a non-polynomial time.  

2. Opaqueness of the problem: The solution v is build staring from random/input 
values. It means that, the obfuscation transformation consists of generating an 
instance of the problem Pr, whose solution v depends on and can be built starting from 
any input/random data.  

3. Easy for the defender (at run time): The obfuscated program can compute easily (in 
polynomial time) the obfuscated value. It particular, it is fast to check that a value v is 
the solution of the problem Pr.  

The 3SAT problem satisfies these requirements because it is:  

1. Difficult for the attacker to analyse: Given a formula, it is difficult to understand if it is 
satisfiable (unsatisfiable), and what are the variable values that make it TRUE 
(FALSE);  

2. Opaqueness of the problem: It is easy to construct a (hard to solve) formula that 
always evaluate to TRUE or to FALSE. In this way, the variables to use in the formula 
can trivially depend on random/input values.  

// x given as input 
 
if (x == 30) { 
  some_malware(); 

} 

y = // any integer 
 
while (y>1) { 
  if (y % 2 == 1) { 
    y = 3*y+1; 
  } else { 
    y = y/2; 
  } 
} 

// x given as input 
 
int y = x + 1000; 
 
while (y>1) { 
  if (y % 2 == 1){ 
    y = 3*y+1; 
  } else { 
    y = y/2; 
  } 
 
  if (x-y>28 && x+y<32){ 
    some_malware(); 
    break; 
  } 
} 
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3. Easy for the defender (at run time): Given concrete Boolean values of formula 
variables, the formula evaluation is fast.  

2.4.1.1 Analysis of the 3SAT Approach 

As stated by Moser et al. [Mos07], a static analyser that aims to determine exactly the 
possible values of an opaque constant has to solve an instance of the 3SAT problem. We 
evaluated the approach proposed by Moser et al. [Mos07] using the symbolic executor KLEE 
[Cad08]. KLEE is a symbolic virtual machine built on top of the LLVM [Lat04] compiler 
infrastructure. KLEE is able to run a C program symbolically provided the source code is 
modified to declare variables that have to hold symbolic values. KLEE can be used to 
recover the opaque constant, because KLEE will try to identify the set of input that solve the 
3SAT problem and leak the value of the opaque constant. 

We run KLEE on the code presented by Moser et al. in their paper [Mos07]. For the reader’s 
sake we sketched the code in Figure 2. The original code checks whether a 3SAT formula 
encoded in vectors l1,l2 and l3, is true under the assignment of some random values to 
variables v1,v2,...,vn (only declaration for v1 is shown in the figure. If the formula is true the 

int v1,nv1; 

... 

 

int * l1[17] = { &nv2, ...}; 

int * l2[17] = { &nv3, ... }; 

int * l3[17] = { &nv4, ... }; 

 

void init_klee() { 

 klee_make_symbolic(&v1,sizeof(int),"v1"); 

 klee_assume(v1 == 0 | v1 == 1); 

 nv1=1-v1; 

 ... 

} 

 

void main(...) { 

int res = 1; 

int i; 

  

init_klee(); 

 

for (i=0; i<NC; i++) { 

   if (!*l1[i] && !*l2[i] && !*l3[i]) { 

       res = 0; 

       break; 

   } 

printf (“truth value=%d\n”,sat); 

} 

Figure 2 – 3SAT checking code instrumented to be run using KLEE 
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program will print “truth value=1”, “truth value=0” is printed otherwise. The figure shows the 
code modified to accommodate KLEE’s declarations of symbolic variables. 

As KLEE attempts to cover all paths in the application it tries to find concrete replacements 
for symbolic values that causes the program both to print “truth value=1” and “truth value=0”. 
This is equivalent to solve a 3SAT problem. 

Having fixed the number NVARS of Boolean variables in a 3SAT problem, not all problems 
are equally difficult in terms of required time for finding a solution. Selman et al. [Sel96] have 
shown that if we randomly draw a SAT3 formulas with NCLS clauses and test for its 
satisfiability, setting NCLS to floor(4.3*NVARS) gives a high probability of  choosing a difficult 
3SAT problem. We adopted this finding in this analysis. 

Table 1 reports the user time (UTIME, in seconds, and its standard deviation SD) required by 
KLEE to run on unsatisfiable 3SAT problems with a number of variables NVARS ranging 
from 4 to 20 and floor(4.3*NVARS) clauses. It corresponds to the time required by static 
analysis to break data obfuscation based on 3SAT, as proposed by Moser at al. The boxplot 
in Figure 3 shows time needed to break obfuscation (UTIME) whit an increasing number 
variables in the 3SAT formula (NVARS). 

 
Table 1 – KLEE execution times. 

NVARS	 Runs	 UTIME	 SD	
4	 10	 0.33	 0.02	
8	 10	 1.54	 0.17	

12	 10	 8.68	 1.63	
16	 10	 56.77	 22.9	
20	 10	 513.56	 172.03	
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Figure 3 – KLEE execution time for checking 3SAT problems 

As we can see, even if the 3SAT problem is NP-complete, it can be practically solved in a 
limited amount of time using available static analysis tools (in our case KLEE). A problem 
with 16 variables can be solved in less than one minute, and a problem with 20 variables 
requires less than 7 minutes.  

In the graph shows an evident exponential trend of the time required to break the 3SAT 
obfuscation, so one might think of using an arbitrarily big 3SAT problem to make the attack 
time diverge. However, to keep the obfuscation overhead manageable, in their 
implementation Moser at al. adopted a rather small problem size. In their empirical 
assessment, they considered a 3SAT problem with 20 clauses. It recorded an increased 
program size of 30 times and an execution time of almost five times longer (+471%). 
However, 20 clauses means approximately 5 variables, a size that we could break in less 
than one second. 

In the following, we will present our approach to a novel data obfuscation scheme that, as the 
3SAT, is still based on a NP-complete problem in order to satisfy the three obfuscation 
requirements (difficult for the attacker, opaqueness of the problem and easy for the 
defender). However, with the complexity comparable to 3SAT, our approach is meant to be 
more robust against static analysis. In particular, our approach is based on the k-clique 
problem. 

2.4.2 Data Obfuscation as a k-clique Problem 

Karp [Kar96] lists 21 NP-complete problems and Garey and Johnson’s book [Gar79] contains 
tens of NP-complete examples from graph theory, sets and partitions, sequencing and 
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scheduling, just to mention some examples. The NP-complete problem we decided to use is 
the k-clique problem:  

  k-clique problem: given a graph G, does it contain a clique of size k?     
A clique of size k is defined as a complete subgraph G’ of G of size k and a graph G is 

said to be complete if every two distinct vertexes in G are connected. 

The k-clique problem is included in Karp’s collection of NP-complete problems and, in the 
same work, the problem is proven to be NP-complete by showing a straightforward reduction 
from SAT. We propose to use the same reduction from SAT to k-clique, described below, to 
construct a k-clique problem starting from an arbitrary SAT problem. The satisfiability of a k-
clique problem constructed in this way depends on the satisfiability of the starting SAT 
problem. 

The proposed obfuscation scheme leverages the k-clique problem intractability in this 
way:  

• We generate a 3SAT unsatisfiable formula f in conjunctive normal form, reusing the 
results by Selman et al. [Sel96] 

• We construct a k-clique problem by reduction from the 3SAT problem: a solution to the 
k-clique problem is a solution to the satisfiability problem on f, so we know that it is NP-
complete;  

• We take a random subset S of k nodes of G. It is fast to compute whether S is a clique. 
This verification takes k(k−1)/2 checks in the worst case, namely when S is actually a 
clique, but on the average case, when S is not a clique, it takes less, because the 
check can stop when the first missing edge is found;  

• By construction, we know that G does not contain cliques of size k (otherwise f would 
be satisfiable). So we know that s is not a clique and the check will return false.  

This approach is used to generate one opaque bit. Therefore, for a 32-bit constant we 
need 32 k-clique problems generated according to the previous algorithm. 

This opaque constant can be used to:  

• Hide a cryptographic key;  

• Generate the module of RNC or the mask for XOR once at program initialization time 
and then keep it in memory; or  

• Generate the module of RNC or the mask for XOR every time it is required, and then 
discard and overwrite the value.  

2.4.3 Reducing 3-SAT to k-clique 

Following the original Karp reduction scheme [Kar96], given the 3-SAT formula in m 
variables mvvv ,...,, 21  consisting in n clauses: 

 ϕ=⋀i=1,...,nαi,1∨αi,2∨αi,3  

with: 

 
or

v
v

k

k
ji

⎩
⎨
⎧

¬
=,α  

it is possible to construct the following graph ),( EVG =Φ , where: 

 V={(i,αi,1),(i,αi,2),(i,αi,3)|i=1,...,n}  

and 
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 ((i1,αi1,j1
),(i2,αi2,j2

))∈E iff i1≠i2 and αi1,j1
∧αi2,j2

 satisfiable.  

It follows by construction that the 3-SAT formula Φ is satisfiable if and only if the graph ΦG  
has a n-clique (n the number of clauses in the formula). A 3SAT formula Φ  in m variables 
and n clauses is mapped in a graph which has 3n nodes and a number of arcs which is 
bounded by 9n2. 

 

2.4.3.1 Example 
The following (satisfiable) logical formula: 

)()()()( 321321321321 vvvvvvvvvvvv ∨∨∧∨¬∨∧¬∨∨¬∧¬∨¬∨¬  

maps to the graph depicted in Figure 4. 

  

 
Figure 4 – A graph derived by reducing a 3SAT problem with 3 variables and 4 clauses. 

  
In the figure, each vertex is labelled following the syntax “<id>:(c, l)” where id is a vertex 
identifier, c is the clause index and l is a positive integer k if the literal v

k
 is present in the 

clause c or –k if the literal v
k
 is present negated in the clause c. 

It can be easily checked from the figure that, among many other solutions, the set of 
nodes {0,3,7,11} forms a 4-clique in the given graph. The clique defines the following 
assignment: 

 

v1=False
v2=False
v3= True

 

It is easy to verify that the above assignments make the formula true. 

2.4.4 Coding the graph 

The graph is coded in the C programming language by means of an adjacency matrix:  
 
 int m[][]; 
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where m[i][j] == 1 means i-th node and j-th node are connected by an edge while the 
edges are not connected if m[i][j] == 0. The following piece of code checks if a random 
subset of n nodes forms an n-clique: 
 
1: int res = 0; 
2: int i,j,k; 
 
3: int * idx = malloc(n*sizeof(int)); 
 
4: assign_randomly(n,idx); 
 
5: for (i=0; i<n-1; i++) 
6:  for (j=i+1; j<n-1; j++) 
7:     if (!m[idx[i]][idx[j]])) { 
8:  res = 1; 
9:  break; 
10:     } 
 
11: free(idx); 
 
12: if (!res) { 
13: // this branch is taken if idx identifies a n-clique 
14: }  
 

where assign_randomly(n,v) is a function which assigns to the vector v n unique 
random values in the range [0,...,n−1], i.e. for all i, 0≤v(i)<n−1 and for all i≠j, v(i)≠v(j). In our 
settings, assign_randomly(m,n,v) is implemented by means of the Knuth shuffle 
[Knu69]. 

If the 3-SAT formula is unsatisfiable, we know that the true branch of the if-statement at line 
#12 will never be executed. Trying to run such code symbolically, a symbolic executor will be 
trapped in solving a NP-complete problem trying to find a way to traverse the unfeasible 
branch. 

2.5 Attack Analysis 

In this section we present how we tested our approach using KLEE using the same 
methodology employed to analyse the 3SAT approach in Section 2.4.1.1. 

2.5.1 Running the n-clique checking code with KLEE 

We simulated the task of an attacker running KLEE against the k-clique checking. Actually 
this task is by far simpler than the one an actual attacker has to perform as in the real case, 
for example, a symbolic executor on binary code has to be executed or the binary has to be 
decompiled to C language before attempting the analysis.  

We replaced the random generation procedure listed above between lines #15 and #33 with 
the following code, containing a KLEE declaration function (klee_make_symbolic) and 
constraints (klee_assume). Furthermore dynamic allocation of memory is replaced by static 
allocation: 
 
15’: klee_make_symbolic(idx,NODE_NUM*sizeof(int),"idx"); 
 
16’: for (i=0; i<NODE_NUM; i++) { 
17’:   klee_assume((idx[i] >= 0) & (idx[i] < NODE_NUM)); 
18’: } 
 
19’: for (i=0; i<NODE_NUM; i++) { 
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20’:   for (j=0; j<NODE_NUM; j++) { 
21’:     if (i != j) { 
22’:       klee_assume(idx[i] != idx[j]); 
23’:     } 
24’:   } 
25’: } 
 

Line #15’ declares idx as a symbolic array of NODE_NUM ints. For-loops from line #16’ to 
line #25’ are used to state that idx is a permutation of the sequence {0,1,2,…,NODE_NUM-
1}. 

2.5.1.1 A Sanity Check on a satisfiable problem 

Before performing the actual experiment, we need to check that KLEE is the right tool to 
address the problem of breaking our obfuscation. To achieve this objective, we try and use 
KLEE to solve a very small k-clique problem that is satisfiable, i.e., for which a clique of size 
k exists. It should be noted, however, that the problem used in the sanity check is (i) smaller 
than the problem that we will use to obfuscate data and (ii) our obfuscation scheme is based 
on a probably-hard to verify un-satisfiable formula (as described by Selman et al. [Sel96]), 
much harder to address on average than a randomly generated satisfiable formula, because 
in common solver implementations the latter requires a more exhaustive search. 

As a sanity check we run KLEE on various k-clique problems derived from satisfiable 
3SAT formulas. For example, on the 4-clique problem defined after the (satisfiable) 3SAT 
formula shown above KLEE produces two test cases, the second one consisting of: 
 

ktest file : 'klee-last/test000002.ktest' 
args       : ['main.bc'] 
num objects: 2 
object    0: name: 'model_version' 
object    0: size: 4 
object    0: data: 1 
object    1: name: 'idx' 
object    1: size: 48 
object    1: data: '\x00\x00\x00\x00\x03\x00\x00\x00\x0b\x00\x00\x00\x07\ 
x00\x00\x00\n\x00\x00\x00\x01\x00\x00\x00\t\x00\x00\x00\x02\x00\x00\x00\x06
\x00\x00\x00\x05\x00\x00\x00\x04\x00\x00\x00\x08\x00\x00\x00' 
 

From lines starting with ‘object 1:’ we can recover the values of the vector idx: 

0,3,11,7,10,1,9,2,6,5,4,8 

The first four elements of ‘object 1’ identify a 4-clique in the graph. Figure 5 shows the 
identified subgraph. 
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Figure 5 – A 4-clique found by the symbolic executor KLEE  

The result of the sanity check allows us to consider KLEE as the right tool to break data 
obfuscation, it applies static analysis to elaborate a solution to the k-clique problem. 

2.5.1.2 Running KLEE on a unsatisfiable problem 

In the actual experimental assessment, we run the KLEE symbolic executor on an k-clque 
(unsatisfiable) problem with 4 variables and 17 clauses. However, the problem is so complex 
to solve that KLEE is unable to conclude the analysis on a Linux 64-bit  machine, 8 cores 
Intel i7, with 6 GBytes of RAM. Executions ended with an out of memory error after 
approximately 8 hours. 

Our intention was to plot the analysis time increase for problems with different the number of 
variables (as we did for SAT). However, the obfuscation is so hard to break that a state-of-
the-art static analysis tools such KLEE, fails even on the smallest problem size.  

Our conjecture is that our mapping from SAT to k-clique is very hard to revert. Our intuition is 
that  KLEE applied to the k-clique problem is not able to recover the original SAT problem, 
but a much more complex one (usually solvers always work with SAT formulas), and this 
requires too much time to be solved. 

Eventually, our novel data obfuscation scheme overcomes the weakness problem that we 
detected on 3SAT by Moser at al. (static analysis could, in fact, break it) but sill satisfy by 
construction the three obfuscation requirements. 

In fact, while KLEE was effective in breaking opaque constants based on 3SAT, the same 
tool could not break opaque constants based on k-clique, even at the smallest problem size. 

2.6 Dynamic XOR Masking 

In this section we present the second major improvement we performed to data obfuscation 
techniques developed during the first year of the ASPIRE project, namely the “Dynamic XOR 
Masking” technique. 

As remembered in the introduction, a XOR Masking transformation is defined as: 

pvve ⊕=)(  

Dynamic XOR Masking is a variant of XOR Masking, where the mask p which is involved in 
the transformation is defined at run time instead of being statically decided at obfuscation 
time.  Thus, the encoding function becomes: 

()_)( vdynmskvve ⊕=  

where dynmsk_v()  is a function that returns a randomly drawn number at the first invocation 
and keeps returning the same number on successive invocations. As an example, Dynamic 
XOR Masking can be used to protect code from multiple memory scans across executions 
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because masks are randomly changed at every new run. The code for the function 
dynmsk_v() follows:    
 

Table 2 – XOR Masking parameter generation function 

static TYPE m = -1; 
TYPE dynmsk_v() { 
 if (m == -1) { 
  m = random() % MAXTYPE; 
 } 
 return m; 
} 

 

Depending on the size of the obfuscation variable v, namely char, short, integer, or long, 
constants TYPE and MAXTYPE are defined accordingly. Table 3 shows (a) a simple C code 
snippet (on the left), (b) a version obtained applying static XOR Masking (in centre) and (c) a 
version obtained applying dynamic XOR Masking (on the right). The clear code consists in 
two variable initializations and one statement involving an addition. In the static variant, we 
decided to use a masks 10, 11 and 12 respectively to encode x, y and z values. In the 
dynamic case those constant masks are replaced with calls to functions dynmsk_x,  
dynmak_y and  dynmsk_z respectively.  

Table 3 – Static vs Dynamic XOR Masking 

Clear Code Static XOR masking Dynamic XOR Masking 

1: x = 3; 
2: y = 8; 
3: z = x + y; 

x = 3^10; 
y = 8^11; 
z = ((x^10)+(y^11))^12;  

x = opcnst_3()^dynmsk_x();  
y = opcnst_8()^dynmsk_y(); 
z = ((x^dynmsk_x())+ 
      y^dynmsk_y()))^dynmsk _z(); 

2.6.1 Handling variable initializations 

Often a variable is initialized with some constant, like in lines 1 and 2 of the example in Table 
3. In applying XOR Masking, such constants are replaced with XOR expressions. In the 
static case, variable initialization XOR expressions such as “3^10” are evaluated by the 
compiler at compiling time and original constants, namely 3 in the example, are no more 
present in the compiled code. This is not the case when dynamic XOR masking is applied. In 
this case, every constant must be replaced with a call to the opaque constant generating 
function, to avoid the possibility of recovering constant values by means of inspecting the 
compiled code. 

2.7 Implementation 

We implemented the algorithms presented above in a component of the ASPIRE Compile 
Tool Chain (ACTC), named “Data Obfuscator”. A detailed description of how the Data 
Obfuscator component was developed is given in D2.01. In the present Section, we describe 
how we extended such process to include the dynamic variants.  

2.7.1 Updated Obfuscation Process 

The data obfuscation process is updated according to in the following steps: 

1. Variable definitions and uses are obfuscated according to code annotations.  
Protection requirements are expressed in the source code by using annotations as 
described in Section 4 of D02.1 “Early White-Box Cryptography and Data Obfuscation 
Report”; 
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a. If Dynamic XOR Masking is used, XOR Masking parameters are replaced with 
calls to dynmask functions and constants used in variable initialization with 
calls to functions (opaque-constant generator function in what follows) that 
compute the required opaque constants on-the-fly; 

b. otherwise constants, used as masks and modulus in encoding and decoding 
expressions, are replaced with opaque-constant generator functions that 
compute the required value at run-time; 

2. Files containing definitions for the opaque-constant generator functions are created 
and have to be added to the compilation process. 

Step 2 of the process is the heart of the novel obfuscation technique and we present it in 
more detail next. 

2.7.2 Constant-generating functions creation process 

Figure 6 depicts the process for generating a function that computes an opaque constant. 
The input consists of the constant which is supposed to fit an NBITS integer. The output is a 
file containing the definition of a function which returns the value of the input constant. The 
value of the opaque constant is the result of the computation described in previous parts of 
this section. In Figure 6, the black dot represents the beginning of the process. In the rest of 
this subsection, we will present the whole process. 

 
Figure 6 – Process to create code for constant-generating functions 

2.7.2.1 3SAT Problem Generation 
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The first step is the generation of a random initial 3SAT problem. Following the work of 
Selman et at. [Sel96], we used a generator based on the “fixed clause length model” which is 
characterised by three parameters: the number N of variables, the number L of literals per 
clause and the number M of clauses. We left N to be specified by the developer by means of 
a specific annotation parameter as documented in D5.02 “ASPIRE Offline Compiler Tool 
Chain”. By changing the number of variables N the developer has a mean to tune the 
hardness of the generated 3SAT problem (and consequently the effort required to tamper 
with the obfuscated code) versus the amount of memory overhead required to store the 
related k-clique problem. In our case, L, the number of literals per clause is fixed to the value 
3 by definition of 3SAT. The number M of clauses, is fixed to floor(4.3*N) that will produce a 
hard-to-solve SAT problem with a high probability, as reported by Selman et at [Sel96]. 

2.7.2.2 3SAT Problem Satisfiability 

This SAT problem is then checked using a SAT procedure to verify it is unsatisfiable. The 
generation step is repeated until an unsatisfiable formula is found. While an existing SAT 
solver could be employed for the task, we implemented from scratch the Davis-Putnam 
Procedure following the algorithm reported by Selman et at. [Sel96]. The rationale for the 
choice relies on one hand on the fact that SAT problems of the size from 4 to 40 variables 
and 17 to 172 clauses, as the developer is suggested to specify, can be easily solved by our 
in-house developed SAT solver. On the other hand we don’t add a dependency on an 
external tool that would have made the deployment of the tool more complicated. Our version 
of the Davis-Putnam Procedure is implemented in the Python programming language. 

2.7.2.3 Graph Generation 

Once an unsatisfiable formula is found, the graph G prescribed by Karp’s reduction to the k-
clique problem is generated and its encoding as adjacency matrix is added to the output file. 

int t_00105_ASPIRE_opaque_constant_13(int n) { 

... 

int res = 0; 

label_0: 

  for (k=0; k<n; k++) { 

idx[k] = rand() % s; 

  } 

  for (i=0; i<n-1; i++) { 

    for (j=i+1; j<n-1; j++) { 

      if (!t_00105_ASPIRE_opaque_constant_13_m_0[idx[i]][idx[j]]) { 

          res += 0*(1<<0); // bit 0 of the constant 

          goto label_1; 

      } 

     } 

   } 

label_1:  

... 

return res; 

} 

Figure 7 – Structure of the constant generation function 
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By construction the matrix will have a size of 29M chars, where M is the number of clauses, 
i.e. M=floor(4.3*N). 

2.7.2.4 Constant-generating Function Forging 

The developer, using another annotation parameter, specifies the number NBITS of bits 
required to store the constant value. For each bit, a matrix is generated as described in the 
steps above. Figure 7 shows a snippet of the generating function. The first loop randomly 
generates a set of vertexes. The second loop verifies whether the subgraph induced by the 
set of vertex is a click. If it is not, which is always the case by construction, the bit is set to 
the required value. The chunk of code is repeated for all NBITS. Variable res collects the 
value of the constant which is returned on exiting the function. 
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Section 3 Task T2.2: White Box Cryptography 

Section Authors: Brecht Wyseur, Patrick Hachemane (NAGRA) 

3.1 Introduction 

Task 2.2 is a task that runs for the first 2 years of the project, M1-M24. The activities of the 
first year have been reported in Deliverable D2.01 “Early White-Box Cryptography and Data 
Obfuscation Report”. D2.01 comprises an introduction to white-box cryptography with a brief 
overview of the state of the art, followed by a detailed description of the activities conducted 
in the first year. This included 

• The design of the White-Box Tool for ASPIRE (WBTA ) (Section 10 of D2.01), which 
was delivered as Release 1.00 in M12, and 

• Research on new WBC schemes with provable security (Section 11 of D2.01). 

In M18, an updated WBTA was delivered, tagged as Release 1.2.0, and reported upon in 
Deliverable D2.04 “White-Box Crypto Library and Code Generation”. 

In this deliverable, we report the progress since D2.01 (M12) and D2.04 (M18). In particular, 
this captures the following progress: 

• The design and implementation of a white-box AES (Advanced Encryption Standard) 
implementation, where the key is hardcoded into the source code that is generated by 
the White-Box Tools. This implementation is a step back from the provably white-box 
constructions in order to achieve performances that are acceptable for the ASPIRE 
use-cases, as foreseen in the DoW. Because of the trade-off between performance 
and security, we call this implementation a time-limited white-box implementation, 
i.e., a white-box implementation that should only be considered secure for a limited 
amount of time. We elaborate on this in more detail in Section 3.2. 

• The design and implementation of a dynamic-key white-box AES implementation. 
This is an implementation where the key is not hardcoded into the source code at 
generation time, but where the implementation can be instantiated later-on by using 
an obfuscated (protected) key. We elaborate on this in more detail in Section 3.2. 

• Improvement on the White-Box Tools to support these implementations. In 
particular, to support testing them, and to support dynamic-key white-box generation 
processes; these are complex because of the additional server-side function for 
protecting the key that needs to be handled with. 

We also investigated how white-box cryptography can be used for diversifying and hiding 
the VM bytecode as has been developed in Task 2.3. In this investigation we followed 
different strategies 

• To investigate how the white-box code generation tools could be used to diversify the 
VM bytecode. The white-box tools receive a seed as input that allows to generate 
seed-dependent diversified white-box implementations. We investigated how this 
approach could be used for generating diversified bytecode instances. Unfortunately, 
this is challenging to adopt in the current approach of how VM bytecode is translated 
using the cross translator. It would require significant modifications on the translator 
tools. Modifying the white-box tools to support this is not feasible, because the white-
box tools cannot receive as input code definitions; the definition of the schemes that 
need to be generated are hard-coded into the white-box modules. 

• To investigate how white-box can help to hide the VM bytecode. We concluded that a 
pragmatic solution requires two steps: (1) to implement an on-demand bytecode 
decryption scheme, which uses a cryptographic algorithm to decrypt the bytecode just 
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before it needs to be executed, and then (2) to white-box that cryptographic 
algorithm. 

Beyond the initial scope as describe in the ASPIRE Description of Work (DoW), we also 
implemented support for the XTS mode of operation. We implemented this to support the 
SFNT use-case. This required additional white-box implementations (both encryption as 
decryption were needed for this) as well as additional support in the White-Box Tools. 

The work of this task has been split according to the complementary expertise of partners 
involved in the collaboration. As expert on cryptography, at NAGRA, research was more 
focused in development of the part responsible for the generation of white-box cryptography 
code. As expert on source code transformation, at FBK research was devoted to the 
implementation of code rewriting transformations. 

In particular, FBK extended the tool that was delivered at M12, to support the new dynamic-
key white-box AES delivered at M24. This required: 

• Adaptation of the content of the XML configuration file, that the source code analysis 
part fills to drive the execution of the white-box cryptography code generation 
algorithm. In fact dynamic-key white-box AES requires new data to be used during 
code generation, such as the value of the initialization vector, initially not included in 
the tool delivered at M12; 

• Adaptation of the signature of the white-box function to call, that is changed after M12 
due to new and different parameters to be passed to the dynamic-key variant; 

• Adaptation of the source code transformation for the dynamic-key variant. In fact, on 
the static-key case, the variable holding the key value should be removed from the 
code. Conversely, on the dynamic-key case, the variable needs to remain in the code 
and accept the (always changing) value of the dynamic key. 

• Emission of a detailed log file to document the code transformation performed by this 
step. 

3.2 White Box Cryptography 

We have implemented two families of white-box implementations: a fixed-key white-box AES 
implementation and a dynamic key white-box AES implementation. The AES cipher was 
selected because this was needed for the ASPIRE use-cases, as identified in Year 1 of the 
ASPIRE project. 

A fixed-key white-box AES implementation, in decryption mode, was delivered on April 
13, 2015 and validated on test cases in the white-box tools and integration in the ACTC. This 
delivery is a set of python scripts, which we denote as a “white-box module”. The scripts are 
invoked by the White-Box Tool for ASPIRE (WBTA) and receive as input a seed, the key that 
needs to be hardcoded into the implementation, and additional parameters that allow to 
tweak the generation process. The output of source code (C code and header code) which 
the WBTA parses into a C source code file that can be integrated in the application that 
needs to be protected. 

When this is applied on two test programs that we implemented, this results into an increase 
in the application size of 167 KBytes. 

In a later delivery, we also provided a white-box AES implementation module that generates 
the encryption mode. 

A dynamic-key white-box AES implementation, in decryption mode, was delivered on July 
16, 2015. This too concerns a set of python scripts, but in contrast to the fixed-key white-box 
implementation module, it does obviously not receive a key as input parameter. Instead, the 
white-box module will generate additional code that allows transforming a given key into an 
obfuscated key that the dynamic white-box implementation is able to parse. 
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Figure 8 – Dynamic-key white-box high-level view 

Figure 8 depicts the two functions that are generated and the dataflow between them. The 
function that protects a key receives as input the key by which the white-box implementation 
needs to be instantiated. This function should reside in a trusted environment like for 
example a trusted server. It produces an obfuscated key, which prevents the key itself from 
being recovered when recovered during transit or storage at client-side. The second function 
is the white-box descrambler itself, which has been generated as such that it can parse the 
obfuscated keys as such that the AES decryption operation with a key k is semantically 
equivalent to executing the white-box AES decryption function with the obfuscated key O(k). 

In the white-box module that has been implemented, the protect-key operation turns a given 
16 byte (128 bit) key into a 176 byte obfuscated key. 

3.3 White Box Tool for ASPIRE 

As explained in the previous section, white-box cryptography (WBC) is a particular 
implementation of a crypto algorithm that hides a key so that it is difficult to extract it, even 
with the source code at disposal. 

Difficult does not mean impossible. Sooner or later, an attacker should be able to extract the 
key and access the secrets it protects. For this reason, WBC always should be used in 
combination with other protection techniques, like code obfuscation, anti-tampering 
techniques, etc. In addition, it should be diversified regarding: 

Ø time: periodically, the implementation should be renewed; 
 

Ø space: different implementations should be used for different products, segments, OS 
platforms or even single devices. 

Renewability and diversity require a tool to generate the implementation, check its 
correctness and include it to the product. Therefore NAGRA proposed to develop an ad hoc 
tool named White-Box Tool for ASPIRE (WBTA). 
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3.3.1 Overview 

 
Figure 9 – T2.2 process overview 

Figure 9 depicts an overview of the replacement of a standard (vanilla) cryptographic 
function call by a white-box cryptography (WBC) equivalent. 

The vanilla function to replace is first annotated by the user. Then, the source file is used 
using the annotation parser (SLP 03.01), which results in an XML input file called source 
input. On the other side, in order to decide which primitive and which parameters must be 
selected to replace the code, a decision file is used. As of today, the file is hard-coded; it 
should be generated or fine-tuned by the ADSS in the next phase of ASPIRE. 

Based on these two input files, WBTA generates the replacement code for the specified 
cryptographic function (SLP 03.02). The output is used as input of the header inclusion step 
(SLP 03.03), in order to flatten the source files. Next, the files are pre-processed and 
normalized (SLP 03.04); finally, the call to the vanilla cryptographic function is replaced by 
the one to the WBC primitive (SLP 03.05). 

3.3.2 Technical choices 

In order to ensure code portability, WBTA is written in Python 2.7, including support for 
Python 3.x. On the client side, the generated code (functions to process data using white-box 
crypto primitives) is in the C language; on the server side, the generated code (script to 
protect a dynamic key) is in Python 2.7. Input files are XML-formatted. 

3.3.3 Previous steps 

As described in document D2.01, WBTA 1.0.0 has been delivered to ASPIRE on 23 Oct 
2014, with support for an XOR algorithm (a very lightweight form of encryption useful for tool 
demonstration only), with fixed key. 

WBTA 1.1.0 has been delivered on 19 Feb 2015 (refer to document D2.04) and introduces 
the support of AES, DES and triple DES with fixed key; moreover, ECB, CBC and inverse 
CBC chaining modes are supported. 

WBTA 1.2.0 has been delivered on 17 Apr 2015 (refer to document D2.04) and integrates a 
real primitive for fixed-key AES. 
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3.3.4 M24 achievements 

3.3.4.1 Overview 

WBTA 1.3.0 has been delivered on 29 Jul 2015 and was documented in the internal working 
document WD2.04b. It introduces the support of white-box cryptography applied to a 
dynamic key, also known as dynamic WBC. In such case, the key to protect is not static 
(fixed) in the application, but is dynamically transmitted during the execution of the 
application. This is typically the case of a content key used to descramble a video in a pay-
TV system. In order to protect such a key, it is necessary to protect the original (vanilla) key 
on the server side, to transmit it protected, and to use a function on client side that decrypts 
the data using the protected key, without revealing the vanilla key. WBTA provides the two 
elements: 

Ø a protection script, in Python, that protects the vanilla key; 
Ø a code fragment, in C, that decrypts a data block given the encrypted data and the 

protected key as inputs. 

Note that the encryption process does not change: data are encrypted like usual, using the 
vanilla key on server side. 

 
Figure 10 – T2.2 process overview - dynamic key 

Figure 10 depicts the process. In comparison to Figure 9, WBTA provides the protecting 
script intended to be used on the server side to protect the key. This script is used on the 
server side to protect the key before delivering it to the client application, as shows Figure 
11. 

Next sections detail the improvements provided by release 1.3.0. 
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Figure 11 – Dynamic key protection 

3.3.4.2 Input data and annotations 

In a fixed-key implementation, the used key is hard-coded in the application and used during 
the call to the cryptographic function. During WBC replacement, the value of the key is 
removed from the code and somehow hidden in the WBC code. This means that the value of 
the key must be indicated in the annotation, so that WBTA can obtain it as input to the 
generated code. 

In a dynamic-key implementation, the used key is dynamically delivered to the application. 
After WBC replacement, the key still is delivered dynamically, but in a protected form. As the 
size of the protected key may differ from the size of the vanilla one, this value must be 
specified as parameter, so that the generated code is able to use it. 

These constraints triggered some modifications in the annotation format, as well in the 
annotation parser, the source input file and the WBTA itself. All these modifications have 
been introduced with support of backward compatibility. 

3.3.4.3 Output data and integration to ACTC 

As explained before, in dynamic case, WBTA produces an additional output: the script 
intended to protect the vanilla key on server side. 

No changes were needed in the ACTC itself: this is because dynamic WBC is an offline 
protection. This means that the protection of the license key used on client side is done 
offline and this is out of the scope of the ACSL (ASPIRE Common Server Logic). 

In case of the dynamic WBC, the protecting script is automatically generated during the 
phase SC 04.01 of the ACTC build process (see several deliverables D5.0x); it can be 
retrieved in the related directory of ACTC output. 

3.3.4.4 Examples 

WBTA is delivered along with a set of documented examples, also used to validate the tool 
at module level (module testing).  

Initially, FBK provided a toy example checking the validity of a license. 
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The example has been enriched during previous phases, using different algorithms to 
encrypt the license data, with fixed or dynamic key (examples license2, license3, license4, 
license5 and license5b). 

Two additional examples have been delivered with the last release, specifically related to 
dynamic use case. 

The first one is named license6. It is derived from the initial example runLicense, provided by 
FBK. The difference is that the key used to protect the license is encrypted with a random 
key on server side; then, both the encrypted and the random keys are transmitted to the 
client and used to decrypt the license. This is a typical case where dynamic WBC can be 
used to hide the value of the protecting key. 

The second example, license7, is similar to license6, but the license key is protected using 
the decryption method of the crypto algorithm, on server side. This means that the dynamic 
WBC must hide the encryption method of the algorithm on client side. 

In addition to these examples, two examples have been delivered to check the integration of 
WBTA and FBK tools with ACTC. The first one, license_aes, has been delivered during 
previous phases and is based on a fixed-key implementation. During this phase, the example 
license_aes_dynamic has been delivered along with JSON files used as input for ACTC, as 
well as the script start_demo.sh, that launches ACTC to compile the application, protects 
the keys using the generated Python script, and starts the application to check that the 
license can be decrypted using the protected key. 
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Section 4 Task T2.3: Client-Side Code Splitting 

Section Authors: Bjorn De Sutter (UGent), Andreas Weber (SFNT) 

4.1 Automated detection of code regions to split off 

One work item of Task 2.1 as originally described in the project DoW consisted of profile-
guided, multi-objective optimization techniques for program slicing to identify code regions to 
split off to protect variables, including source-level support. This work would build on the 
already available FBK-provided support for client-server code split point determination from 
task T3.1 in WP3. 

Already in the first months of year 2 of the project, the consortium discussed this topic 
looking for more concrete approaches to start experimenting with, and realized that this topic 
would be very challenging.  

Even before we raised this issue ourselves with the project advisory boards, the members of 
the board (and some other experts at the industrial partners not active within the project 
itself) anticipated this issue by pointing out that in general, we should not aim for tools that 
automatically detect which code to protect. The mentioned reasons for not doing so included 

• the very application-specific nature of the relevant features of assets to protect and 
their relations, for which it is very hard if not impossible to develop a generic 
identification approach; 

• the fact that aliasing hinders precise automated program analysis to such an extent 
that in practice the user would have to guide the tools anyway; 

• the fact that the user is already annotating a lot of code, thus identifying it, by means 
of annotations anyway. It is consequently not much of a burden to require the user to 
explicitly identify all code that needs to be protected/transformed.  

In summary, abandoning this work item would not endanger the practical usability of the 
ACTC, and hence not endanger the exploitation of the project results.  

Furthermore, abandoning this work item for the client-side code splitting protection does not 
impact any other protection in the project. While several other protections will build on the 
client-side code splitting to implement advanced protection forms, none of those depend on 
the automated identification of code regions to be protected.  

By contrast, abandoning this work item would free resources (at FBK) to spend on other work 
items considered more critical for the project.  

For these reasons, we decided to directly follow the advice of the advisory boards and the 
external experts, and we decided to abandon this work item.  

4.2 X-Translator: 

The X-Translator that was provided as background to the project has in the meantime been 
enhanced independently of the project. In SFNT it is used as a proof of concept for 
experimenting in this direction. Enhancements are also re-used here inside the project. To 
support the project-specific adaptations had to be put in place and a test framework to 
support the quality level for ASPIRE had to be developed. 

The further development focused on providing support for more complex code fragments, so 
that larger pieces of an ARM application can be translated into SoftVM (the interpreter 
embedded in the protected application) bytecode. 

At M12 a translatable code fragment was fairly limited in its capabilities: 
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• It could only consist of a very limited subset of the ARM instruction set. 
• It could not use control flow, only straight line code (a single basic block with a single 

exit) was supported. 
• It is not possible to embed the continuation address into the bytecode but instead the 

VM invoking native code must provide this address at run time to the SoftVM. 
• The code fragment could not access memory. 

The following sections discuss the state at M24. While the work to achieve this state was 
done by SFNT outside the project and re-used by the project, we report it here to clarify that 
the goals foreseen in the DoW and the year two outlook presented during the first year 
technical review have indeed been reached at the end of year 2.  

4.2.1 Supporting a larger subset of the ARM instruction set 

Support for the following ARM instructions has been added: 
• bic reg, reg, imm 
• bics reg, reg, imm 
• bic reg, reg, reg, shift 
• bics reg, reg, reg, shift 
• clz reg, reg 
• cmn reg, imm 
• cmn reg, reg 
• cmp reg, imm 
• cmp reg, reg 
• eor reg, reg, imm 
• eors reg, reg, imm 
• eor reg, reg, reg, shift 
• eors reg, reg, reg, shift 
• lsl reg, reg, imm 
• lsls reg, reg, imm 
• lsl reg, reg, reg 
• lsls reg, reg, reg 
• lsr reg, reg, imm 
• lsrs reg, reg, imm 
• lsr reg, reg, reg 
• lsrs reg, reg, reg 
• mla reg, reg, reg, reg 
• mlas reg, reg, reg, reg 
• mls reg, reg, reg, reg 
• movt reg, imm 
• mvn reg, imm 
• mvns reg, imm 
• mvn reg, reg, shift 
• mvns reg, reg, shift 
• rsb reg, reg, imm 
• rsbs reg, reg, imm 
• orr reg, reg, imm 
• orrs reg, reg, imm 
• orr reg, reg, reg, shift 
• orrs reg, reg, reg, shift 
• qadd reg, reg, reg 
• qadd16 reg, reg, reg 
• qadd8 reg, reg, reg 
• qsub reg, reg, reg 
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• qsub16 reg, reg, reg 
• qsub8 reg, reg, reg 
• qasx reg, reg, reg 
• qsax reg, reg, reg 
• qdadd reg, reg, reg 
• qdsub reg, reg, reg 
• rbit  reg, reg 
• rev reg, reg 
• rev16 reg, reg 
• revsh reg, reg 
• ror reg, reg, imm 
• rors reg, reg, imm 
• ror reg, reg, reg 
• rors reg, reg, reg 
• rrx reg, reg 
• rrxs reg, reg 
• rsb reg, reg, reg 
• rsbs reg, reg, reg 
• rsc reg, reg, imm 
• rscs reg, reg, imm 
• rsc reg, reg, reg 
• rscs reg, reg, reg 
• sadd16 reg, reg, reg 
• sadd8 reg, reg, reg 
• sasx reg, reg, reg 
• sbc reg, reg, imm 
• sbcs reg, reg, imm 
• sbc reg, reg, reg, shift 
• sbcs reg, reg, reg, shift 
• sbfx reg, reg, lsb, width 
• sdiv reg, reg, reg 
• sel reg, reg, reg 
• shadd16 reg, reg, reg 
• shadd8 reg, reg, reg 
• shasx reg, reg, reg 
• shsax reg, reg, reg 
• shsub16 reg, reg, reg 
• shsub8 reg, reg, reg 
• smlabb reg, reg, reg, reg 
• smlabt reg, reg, reg, reg 
• smlatb reg, reg, reg, reg 
• smlatt reg, reg, reg, reg 
• smlad reg, reg, reg, reg 
• smladx reg, reg, reg, reg 
• smlal reg, reg, reg, reg 
• smlalbb reg, reg, reg, reg 
• smlalbt reg, reg, reg, reg 
• smlaltb reg, reg, reg, reg 
• smlaltt reg, reg, reg, reg 
• smlald reg, reg, reg, reg 
• smlaldx reg, reg, reg, reg 
• smlawb reg, reg, reg, reg 
• smlawt reg, reg, reg, reg 
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• smlsd reg, reg, reg, reg 
• smlsdx reg, reg, reg, reg 
• smlsld reg, reg, reg, reg 
• smlsldx reg, reg, reg, reg 
• smmla reg, reg, reg, reg 
• smmlar reg, reg, reg, reg 
• smmls reg, reg, reg, reg 
• smmlsr reg, reg, reg, reg 
• smmul reg, reg, reg, reg 
• smmulr reg, reg, reg, reg 
• smuad reg, reg, reg 
• smuadx reg, reg, reg 
• smulbb reg, reg, reg 
• smulbt reg, reg, reg 
• smultb reg, reg, reg 
• smultt reg, reg, reg 
• smulwb reg, reg, reg 
• smulwt reg, reg, reg 
• smusd reg, reg, reg 
• smusdx reg, reg, reg 
• ssax reg, reg, reg 
• ssub16 reg, reg, reg 
• ssub8 reg, reg, reg 
• sxtab reg, reg, reg, ror 
• sxtab16 reg, reg, reg, ror 
• sxtah reg,reg, reg, ror 
• sxtb reg, reg, ror 
• sxtb16 reg, reg, ror 
• sxth reg, reg, ror 
• teq reg, imm 
• teq reg, reg, shift 
• tst reg, imm 
• tst reg, reg, shift 
• uadd16 reg, reg, reg 
• uadd8 reg, reg, reg 
• uasx reg, reg, reg 
• ubfx reg, reg, imm, imm 
• uhadd16 reg, reg, reg 
• uhadd8 reg, reg, reg 
• uhasx reg, reg, reg 
• uhsax reg, reg, reg 
• uhsub16 reg, reg, reg 
• uhsub8 reg, reg, reg 
• umaal reg, reg, reg, reg 
• umlal reg, reg, reg, reg 
• umlals reg, reg, reg, reg 
• sub reg, reg, imm 
• subs reg, reg, imm 

4.2.2 Embedding the continuation address 

At M12 binary code splitting did not yet embed the continuation address into the bytecode, 
but instead pushed it onto the stack prior to invoking the SoftVM. This provides the SoftVM 
with the information where the native execution should continue when leaving the bytecode. 
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Although easy to implement, this call-like scheme is fairly limited as it cannot support code 
fragments with multiple exit points, e.g. an if-statement, where the true path passes control to 
address 0xC001C0DE and the false path to address 0xBADC0DE. To support this kind of 
fragment the X-Translator was extended to be able to embed one or more continuation 
addresses inside the bytecode so that the bytecode image itself knows where native 
execution should continue. 

A simulated protection workflow is used to test X-Translator/SoftVM features end to end on 
real ARM hardware without the need of prior ACTC integration. This is done by simulating 
Diablo’s binary rewriting (which extracts native code from the binary in the ACTC) using 
different versions of handwritten ARM assembly. 

With the above implementation a sample application can invoke the SoftVM by jumping to 
the associated native code stub. The SoftVM than interprets the VM image (at this stage still 
straight line code) and jumps back to the bytecode embedded continuation address. 

4.2.3 Supporting shared objects 

Support for shared objects has been added to the X-Translator & SoftVM already outside the 
project. This provides the baseline to support Android native support, as all Android native 
code is provided via shared objects. 

With shared objects it is no longer possible to embed the continuation address as an 
absolute address into the bytecode, because it is not known at protection time but only at run 
time. To solve this, the symbols inside the JSON file that describes the extracted native code 
fragment to be translated by the X-translator no longer define absolute addresses but instead 
offsets from the shared object’s base address. The base address is assigned by the dynamic 
linker when it loads a shared object into memory. The assembler glue code expects an 
absolute continuation address from the bytecode, so it is the bytecode’s responsibility to 
calculate the address at run time by adding the embedded offset to the base address of the 
shared object. To do this the SoftVM interpreter (vmExecute) retrieves the base address 
from the dynamic linker and passes it to the bytecode as a part of the machine context. 

4.2.4 Post-Linker interface 

Embedding the continuation address inside the bytecode results in a chicken-egg problem: 
Before the bytecode can be generated the shared object’s memory layout must have been 
fixed so that the final addresses are known. But finalizing the memory layout requires the 
bytecode images as these must be part of the shared object’s memory image. To solve this 
problem the bytecode is generated twice. During the first generation the addresses are not 
known and instead dummy values are used. The purpose of the resulting bytecode is just to 
learn its size, so that the subsequent layout process can finalize the memory layout. Once 
the memory layout is fixed, the bytecode is generated again, this time using the real 
addresses instead of the dummy values. Afterwards the shared object is patched by 
replacing the placeholder bytecode from the first generation with the final bytecode from the 
second generation. 

In ASPIRE the layout process and the creation of the final binary is done by Diablo. This 
means Diablo must be able to pass the symbol’s final addresses to the X-Translator and also 
receive the final bytecode, so it can write it into the binary. Therefore the X-Translator’s 
functionality was also made available as a shared object and a new function 
(bin2vm_diablo_phase2) was added, so Diablo can simply call the X-Translator to 
retrieve the final bytecode. This function accepts a buffer containing the JSON file content as 
a string and returns the generated bytecode as a linked list. It is expected that the passed 
JSON file defines addresses for all symbols. The order of the returned list follows the chunk 
definition from the JSON file. The list can be freed with the function 
bin2vm_free_vmimages_arm. 
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4.2.5 Chunk internal control flow 

The now available chunk internal control flow was made available for the use inside ASPIRE.  

4.2.6 Chunk test framework 

To support the quality level required by ASPIRE the framework has been extended. The test 
framework from M12 includes semi-automatic generation of test case data to ensure the 
bytecode versions behave like real ARM hardware. Support for new instructions has been 
added to also assure good test coverage. Because that framework only targets individual 
ARM instructions, it was not suitable to assist development and quality assurance of chunk 
internal control flow, symbol support/embedded continuation address and multi-exit support. 
To also enable test driven development and automatic unit tests for these features the X-
Translator has been extended to also support the definition and execution of test cases for 
complete chunks. 

In this second test framework the test cases are defined inside a JSON file. So in addition to 
the basic blocks and edges a chunk optionally can also define a list of test cases. Each test 
case defines the input and the expected output values for the machine context. Any register 
not included in these lists will be set to zero prior to invoking the SoftVM and it is expected 
that the bytecode does not alter these unspecified registers. 

A test case might look like this: 
{ "input": { 

    "cpsr": "0x00000000", //No flags. 

    "r0":   "0xDEADBEEF", 

    "r1":   "0xDEADBEEF", 

    "r2":   "0x65", 

    "returnAddress": "0x0" }, 

  "expected_output": { 

    "cpsr": "0x60000000", //Z-flag, C-flag. 

    "r0":   "0x13ba", 

    "r1":   "0x65", 

    "r2":   "0x65", 

    "returnAddress": "0x1" } 

} 

To enable execution and verification of these test cases the X-Translator’s post-linker 
interface was extended, so that bin2vm_diablo_phase2 does not only return a list of 
bytecode images for the given JSON file, but that each bytecode image is optionally 
accompanied by a list of test cases. Each test case contains a machine context with the input 
values and another machine context with the expected output values. 

The X-Translator was modified, so it supports a new test mode, which can be activated with 
the command line switch --phase 3. In this testmode the X-Translator first translates the 
JSON file using the post-linker interface and then additionally executes each bytecode image 
with all its test cases in a SoftVM where it checks if each test case invocation produces its 
expected values.  
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4.2.7 Integrating the LLVM Interpreter (lli)  

In parallel to ASPIRE, SFNT modified the original SoftVM interpreter to leverage the lli 
(LLVM Interpreter) as an execution engine. This supports easier diversification of the 
bytecode. In ASPIRE, the improved lli-based SoftVM is now used as well.  

4.2.8 Supporting memory access 

Enabling for ASPIRE the use of the new capability of the SoftVM to access memory of the 
application required adaptations of the X-Translator. 

• Add support for an artificial address_producer instruction that loads a register with 
the absolute address of a named memory location. 

• Extend the chunk test framework with the ability to define and verify test cases 
involving memory. 

• Translate ARM’s various load and store instructions into equivalent LLVM-IR. 

In addition the Instruction-Selector Interface was extended to deliver the correct information 
to Diablo. 

An address_producer is an artificial instruction that behaves like a mov reg, imm where 
the immediate can occupy 32bits and corresponds to a symbol value. This enables the 
bytecode to address arbitrary memory locations inside the ASPIRE-protected shared object. 
Such an instruction cannot be natively available on ARM because every instruction has a 
length of 4 bytes (32bits) making it impossible to fit an opcode and a 32bit immediate into 
one instruction. Actual ARM code uses a variety of code patterns to achieve the same result, 
e.g. by separately setting the lower and higher 16bit of the target register or using a program-
counter relative load from a reachable constant pool. It is the responsibility of the chunk 
extractor (which is Diablo in ASPIRE) to recognize these patterns and canonise them into 
appropriate address producers. 

Inside the JSON file such an address producer and its corresponding symbol might look like 
this:  
Address producer: 
{"type": "address_producer", "addrsymbol": 7, "addrregister": "r4"} 

Symbol #7: 
{"name": "a_variable", "address": "0x1234"} 

The X-Translator translates this definition into bytecode that loads the absolute address of 
“a_variable” into register r4 by adding 0x1234 to the shared object’s run-time base 
address and storing the result into register r4. It is the responsibility of the post-linker (in 
ASPIRE: Diablo) to generate the JSON file with correct symbol offsets. 

 

For an adequate level of quality, it is important to extend the existing chunk test framework, 
so it also supports automatic verification of memory test cases.  

The extended test framework allows the definition of memory regions inside the JSON file. 
These memory regions only have a meaning for testing and define a length and an 
associated symbol.  

An example memory region and its associated symbol: 

Memory region #3: 
{ "symbol": 7, "size": "4" } 

Symbol #7: 
{ "name": "a_variable", "address": "0x1234" } 
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The test case definition in the JSON file had also been extended, so one can define memory 
pre and post images. This might look like this: 

Pre image: 
{ "mem_id": 3, "image": "0x01000000" } 

A matching post image: 
{ "mem_id": 3, "image": "0x10000000" } 

The extended test case includes the 4 byte variable a_variable, which lives in memory. 
Before executing the test case the framework initializes the variable with the integer 1 
(0x01000000 in little endian) and after executing the chunk under test, it will check if the 
variable had been updated by the chunk to contain the value 16 (0x10000000 in little 
endian). 

Supporting these memory test cases requires additional support in the X-Translator, because 
the bytecode contains hardcoded memory addresses. Therefore the X-Translator learned a 
new test mode (command line switch --phase 3) that behaves very similar to the bytecode 
generation during the post-linking step (bin2vm_diablo_phase2). The difference is that 
this mode does not hardcode the memory addresses as defined by the JSON file but instead 
dynamically allocates the memory regions and uses the addresses returned by malloc for 
the corresponding symbols. This way the generated bytecode is tailored towards X-
Translator’s own address space allowing its execution by an embedded SoftVM. The 
bytecode generation does not only return the bytecode for each chunk, but also a list of test 
cases. In addition to the register input and expected output values, each test case also 
carries a list of memory behaviours. A memory behaviour specifies the expected behaviour 
of a memory region by containing a pointer to the region and its pre and post image. 

When running in test mode the X-Translator verifies each chunk against all its test cases. To 
verify a test case the X-Translator first initializes the registers with the input values and the 
memory regions with the pre images and then executes the chunk with the embedded 
SoftVM. Once the execution finished it checks if the actual output (register values and 
memory content) matches the expected output as defined by the expected register values 
and the post images.  

With the ability to define unit tests for memory operations it was fairly straight forward to 
implement and verify the translations for ARM’s load and store instructions. Currently the X-
Translator supports the following load/stores: 

• ldr reg, [reg] 
• str reg, [reg] 
• ldr reg, [reg, imm] 
• str reg, [reg, imm] 
• ldria<!> reg, { reg_list } 
• stria<!> reg, { reg_list } 
• strda<!> reg, { reg_list } 
• ldrda<!> reg, { reg_list } 
• strdb<!> reg, { reg_list } 
• ldrdb<!> reg, { reg_list } 
• ldrib<!> reg, { reg_list } 
• strib<!> reg, { reg_list } 
• push { reg_list } 
• pop  { reg_list } 
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4.2.9 Tool versioning and automated release builds 

After initial integration of the X-Translator into the ACTC, various bugs had been discovered 
requiring bug fixes. This lead to a relatively high release frequency, which demonstrated the 
need for strict versioning, automated packaging and automated regression testing. 

To support strict versioning the ability to return a version string was added to each binary 
component of an X-Translator release build. Currently an X-Translator release includes the 
following binary components: 

• xtranslator: Executable that provides X-Translator’s command line interface. 
• libbin2vm.so: Library that provides the Instruction-Selection and Post-Linker APIs 

and implements the actual translation from JSON to bytecode. 
• libsoftvm.so: SafeNet’s traditional stack based SoftVM built as an x86 library, 

used by xtranslator to execute test cases. 
• libwandivm.so: The LLVM-based SoftVM built as an x86 library, used by 

xtranslator to execute test cases. 

The version string consists of the following elements: 

• Git tag: The name of the release, e.g. EU_RELEASE_3.1.3. Development builds are 
not tagged and identify themselves with an empty string. 

• Build machine: Username and hostname of the machine that performed the build. 
Official releases identify themselves with aspire@aspirevm. 

• Git hash: The source tree’s commit-id the build was created from.  
• Configuration: The build configuration, e.g. verbose/non-verbose, release/debug. 

The build scripts had been modified to collect this information and make it available to the 
code via defines. The X-Translator learned the new command line switch --version, which 
prints the version strings of the components. 

To support automated packaging an additional integration script had been added, that 
automatically creates a releasable archive from source. This script performs following tasks: 

• Build 3rd party libraries (LLVM, Capstone, and YAJL). 
• Build a non-verbose version of the X-Translator binary components. 
• Build a verbose version of the X-Translator binary components. 
• Run the X-Translator unit tests: 

o Instruction level unit tests for the traditional SoftVM. 
o Instruction level unit tests for the LLVM-based SoftVM. 
o Chunk level unit tests for the traditional SoftVM. 
o Chunk level unit tests for the LLVM-based SoftVM. 
o Memory access unit tests for the LLVM-based SoftVM. 

• Collect the contents of the release archive: 
o X-Translator non-verbose build. 
o X-Translator verbose build. 
o Header files for the Instruction-Selection and Post-Linker APIs. 
o Source code and build script of the traditional SoftVM. 
o Source code and build script of the LLVM-based SoftVM. 
o A sample that demonstrates the usage of the X-Translator end to end on a 

simple ARM program with the traditional and the LLVM-based SoftVM. 
• Create the release archive. 
• Build the ARM executables of a special unit test for the traditional and the LLVM-

based SoftVM. This unit test is dedicated to the generated glue code and checks if 
the information flow between native ARM and SoftVM is working in both directions. 
This makes sure the SoftVM actually receives the values of the physical ARM 
registers and that its calculated values correctly end up in the physical ARM registers. 
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With the above automation in place, delivering a new X-Translator release is a four step 
process: 

1. Use git to tag the desired version of the X-Translator source tree (usually HEAD) with 
the release version, e.g. EU_RELEASE_3.1.3. 

2. On the ASPIRE-VM: Use git to checkout the desired version of the source tree; run 
the integration script to create the release archive. 

3. Upload the two ARM executables of the glue code unit test to an ARM development 
board; execute them and verify that they don’t report an error. (At the moment this 
step is not automated because in the current setup the ASPIRE-VM is not on the 
same network as the ARM development board.) 

4. Ship the release package (e.g. EU_RELEASE_3.1.3.tar.xz) to Gent University. 

Client side code splitting only works reliably if X-Translator and Diablo agree on the same 
APIs. To ensure the ACTC uses compatible versions of Diablo and X-Translator, each X-
Translator release is first sent to Gent where it is tested with the latest Diablo. After 
successful verification Gent updates the ACTC by replacing Diablo and X-Translator 
together. 
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Section 5 Task T2.4: Binary Code Obfuscation 

5.1 Control Flow Obfuscation 

Section Authors: Bjorn De Sutter, Bart Coppens (UGent) 

The basic control flow obfuscation research was advanced in the project, and many results 
were hence already reported in D2.06 at M17 

Additional research was conducted along two lines of research, which are documented in the 
next two sections.  

5.1.1 Improving the deployment of existing obfuscations 

To improve the deployment of the already implemented support for opaque predicates, 
control flow flattening, and brach functions, we worked on two implementation aspects.  

Foremost, we extended how the obfuscations are applied to the code: whereas in our initial 
implementation, obfuscation transformations were applied stochastically, we now support the 
profile-guided application of obfuscations. In this mode, the obfuscator will focus on 
infrequently executed program points to insert the obfuscating instruction sequences, such 
that the run-time overhead is minimized.  

Figure 12 shows the overhead of applying the branch function insertion and opaque 
predicate insertion obfuscations, using either the original, stochastic method or the profile-
guided method (where the X percent least frequently executed blocks are selected per 
function) on the bzip2 SPEC2006 benchmark. The x-axis indicates the percentage of 
transformed code blocks, and the y-axis the execution time overhead. As can be seen, the 
stochastic method already introduces an overhead when only 10% of the blocks are 
transformed, compared to 0% overhead from the profile-guided approach. The profile-guided 
approach consistently produces less overhead, except for when all code blocks are 
obfuscated, in which case both methods produce the same result.  

 
Figure 12 – Overhead comparison between stochastic and profile-guided obfuscation 

 

Secondly, we debugged the implementation of the existing obfuscations. In particular, we 
developed the necessary IR (internal representation) bookkeeping functionality to maintain 
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all IRs in a fully coherent state. Before we developed this functionality, the obfuscations in 
Diablo could only be applied as the very last protection step in Diablo: The IR data structures 
was partially broken as a result of their application, which blocked the execution of new data 
flow analyses as needed to support additional protections later on in the execution of the 
obfuscator. In the now extended version, all IR data is correct and complete enough to 
support advanced later transformations, such as those needed for the code mobility 
protection developed in WP3.  

All of these improvements are delivered as part of prototype deliverable D2.07. 

5.1.2 Flexible, two-way opaque predicates 

In D3.04, we report the research performed at UGent into delay data structures, i.e., data 
structures that can covertly store the results of attestations & attestation verifications to hide 
the direct link between a failed attestation/verification, and the triggered reaction.  

 
Figure 13 – Principle of flexible two-way opaque predicates 

For the goal of improving binary control flow obfuscation, we researched the use of the same 
data structures for flexible two-way opaque predicates.  

Figure 13 visualizes the principle of such two-way predicates. On the left, two (independent) 
code fragments from the program's control flow graph are depicted. On the right, the 
transformed fragments are shown. The red and green mark the basic blocks belonging 
together in the original code. But from the restructured control flow graph, this relation is no 
longer apparent: in the restructured graph, all blocks are connected to all blocks.  

The two primitives on top of the restructured graph "setPredTrue" and "sedPredFalse" 
denote invocations of status-setting functions of a flexible data structure API, the 
"getPredicate" denotes an invocation of the a status-querying function of the API. For more 
details about those APIs, we refer to D3.04 Section 5.1.5. Here, the point is that those data 
structures are defined outside the obfuscator. They are defined by the user of the obfuscator 
which gives that user much more flexibility in choosing different data structures than when 
only built-in data structures of the obfuscator could be used. 

By using those APIs and data structures, that are not known by an attacker in advance 
because they are not limited to a list of builtin data structures, the obfuscator can hide the 
relatively simple nature of this protection. The fact that the conditional branch based on the 
predicate will evaluate in both directions during a program's execution also ensures that the 
protection will withstand dynamic attacks that eliminate conditional branches of which the 
attacker observed that they evaluate to only one direction during execution on representative 
inputs. Such attacks can easily break static opaque predicates, but not our flexible two-way 
predicates. 

Moreover, nothing prevents the user of the obfuscator to instantiate the flexible data 
structures by means of data structures already present in the program to be protected. 
Instead, the user is adviced to so. In that case, the functions invoked to implement the 
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setPredTrue, sedPredFalse, and getPredicate primitives will also be invoked as part of the 
normal execution of the program. So the semantics of those functions now become part of 
the original program semantics, as well as of the protections' semantics. Their run-time 
behavior will therefore feature less invariants, and will hence be harder to comprehend, and it 
will become harder for the attacker or for a de-obfuscation tool to separate the application 
code from the protection code, and to abstract away from the protected code. In other words, 
it will become harder to undo the protection.  

The need for this form of protection, as an extension of the binary code obfuscations already 
mentioned in the project description of work, was inspired by a dynamic attack proposed by 
Saumya Debray at all in 2014, and published more extensively in 2015 [Yad15]. In this way, 
the project adapts to evolutions in the never ending arms race between offensive and 
defensive security techniques.  

To inject flexible two-way opaque predicate, Diablo performs the following steps: 

• Choose one of the user-defined predicates of the provide data structure. 
• Choose 2 code blocks in the program’s control flow that will be linked with the two-

way opaque predicate. 
• Both code blocks are split into two parts: each now consists of a predecessor and a 

successor. 
• A new code fragment is injected, which contains a call to query the state of the 

predicate, and a conditional jump that depends on the result of this query. 
• A call to a setter-function of the predicate is injected at the end of each predecessor 

block. The arguments are automatically chosen such that both calls set the predicate 
to the opposite value. 

• Control flow is redirected from the end of each predecessor block, i.e., after the call to 
the setter-function, to the new block containing the call to the query function. The 
outgoing edges from the conditional jump in this block are directed to the successor 
blocks. These edges are added in such a way that this block redirects the control flow 
to the correct successor block for each of the predecessor blocks, depending on the 
predicate value. 

Control flow is redirected from the end of each predecessor block, i.e., after the call to the 
setter-function, to the new block containing the call to the query function. The outgoing edges 
from the conditional jump in this block are directed to the successor blocks. These edges are 
added in such a way that this block redirects the control flow to the correct successor block 
for each of the predecessor blocks, depending on the predicate value. 

Although this line of research is not yet finalized, and our experience with it is hence still 
immature, we can already report some evaluation results.  

For this research, we used two metrics to check the cost of this transformation. We used size 
increase of the program after transformation and the increase in execution time. We have 
implemented the transformation for ARMv7 and executed the code on a development board 
which has 1GB DDR3 RAM and a quad-core ARM Cortex A9-processor. The OS running on 
the development board is Linaro 13.08, a Linux distribution.  

Benchmarks  

To test the overhead of the obfuscation, we transformed libquantum, bzip2 and Helloworld. 
Libquantum and bzip2 are two benchmarks of the SPEC2006 benchmark suite.  

We tested the transformation using 3 data structures: 2 different implemenations of a linked 
list and quantum_reg, a data structure declared in the libquantum source code. We used two 
implementations of a linked list to get an overview on the impact of the implementation of the 
data structure. The functions, which change the value of the predicates in the first linked list, 
allocate and free a lot of memory. The functions of the second linked list only change integer 
values. We assume the transformation using the first linked list will slowdown the pro- gram 
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more than the second linked list. We reused the function quantum_addscratch to put the 
predicate encoded in quantum_reg on true. We implemented the function to put the predicate 
on false by ourself.  

We used the linked lists to obfuscate all 3 programs. We only used quantum_reg on 
libquantum because we reused a part of the code from the original libquantum binary to set 
the value of the predicate.  

Table 4 shows for each of the combinations of benchmark and data structure the number of 
predicates that was inserted in the program. 

 

Benchmark Data structure Nr. Of inserted 
predicates 

Helloworld LinkedList1 13 

LinkedList2 13 

Bzip2 LinkedList1 737 

LinkedList2 726 

Libquantum LinkedList1 223 

LinkedList2 217 

Quantum_reg 172 

Table 4 – Overview of the benchmarks use to evaluate flexible opaque predicates 

 

Program size  

Figure 14 visualizes the increase of the program size for each data structure and benchmark. 
We can conclude the program size increases for all benchmarks. This is due to the fact we 
link extra code in the binary and add some extra instructions to call the functions which 
evaluate the predicate and change the value of the predicates.  

 
Figure 14 – Program size overhead of using flexible two-way opaque predicates. 
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Execution time  

To measure the overhead of the execution time, we measured the original execution time 
and the execution time of the transformed program. We made a comparison between those 
timings and visualized these in Figure 14.  

In this chart we see the number of times the execution time increases for each benchmark 
and data structure. We conclude that quantum reg introduces the most overhead of all data 
structures. This is due to the fact the function which puts the predicate on true, is large and 
complex. The functions which change the value of the predicates in the linked list, are 
smaller and less complex.  

We can also conclude that the second linked list obfuscation slows down the program less 
than the first linked list. We can assign the extra cost for the first linked list to the 
implementation of the predicates: allocation and freeing memory are time-consuming.  

 
Figure 15 – Execution times for flexible two-way opaque predicates 

A more extensive evaluation, and variations on the two-way predicate scheme are discussed 
in Thomas Van Cleemput's master thesis [Cle15]. 

5.2 Multithreaded Cryptography 

Section Authors: Jerome D'Annoville  (GTO) 

Applications that need to exchange data in a secure way with a server need to embed a 
secret to set a secure communication with the application server. In symmetrical 
cryptography a master key can be deployed with the application. A key derivation function is 
used to generate a dedicated key derived from the master key that is later used to protect a 
device dedicated data. An advantage is that the same application can be deployed on all 
devices. The constraint is that a master key is hidden somewhere in the application and can 
be hacked by an attacker. 

This Multi-threaded Cryptography protection proposes to prevent the exposure of a master 
key in an application by moving the key derivation operation onto a server that is called 
hereafter the Crypto server. Several derived keys are returned by the Crypto server that are 
used in parallel in the application to protect data. Among these keys, only one is the valid 
key. The recipient of the protect data is able to retrieve the valid data because he is able to 
derive the valid key since he is sharing with the Crypto server the way to derive the valid key. 

The parallel processing and this overall Multi-threaded protection is not the topmost security 
protection. This is typically security provided by complexity and there is no ambition to block 
a determined and patient attacker. The purpose is to prevent an attacker to easily connect a 
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key with the cyphered text produced by the protection and then to determine which is the 
valid cryptogram.  

5.2.1 Original AES 

The AES cipher standard is originally meant to encrypt 128 bits blocks with a 128, 192 or 256 
bits keys. The encryption is composed of several steps, based on highly non-linear 
permutations of the 16 bytes of the text and XOR operations. The structure of AES is based 
on round: it repeats the same operation a certain number of times with substitution-
permutation at each round. There are 10, 12 or 14 rounds according to the key length. There 
are nice animations available on Internet such as [Abi11] that explains how AES works.  

When the length of plaintext to cipher is not a multiple of 128 bits, it is necessary to pad the 
plain text. The padding standard chosen here is Public Key Cryptography Standard (PKCS) 
#7 [Kal98].  
When several blocks have to be encrypted the mode of operation used is the Cipher Block 
Chaining structure (CBC). It creates dependencies between the encrypted blocks and 
creates some visible randomness: the encrypted block n-1 is used as the initialization vector 
for the encryption of the block n. 

The Multi-threaded protection is based on a modified Advanced Encryption Standard (AES) 
encryption. For the purpose of the project the AES implemented in OpenSSL 
(https://www.openssl.org/) has been used. 

5.2.2 Master key 

The master key is still embedded in the application but it is ciphered to prevent an attacker to 
use or disclose it. The master key is encrypted with the public key of the Crypto server. Only 
the Crypto server owns the corresponding private key and then the master key is no more 
exposed in the application. A 2048-bit RSA key is used, note that the device only keeps the 
ciphered value but do not run the RSA decryption. This is done on the server side only. 

5.2.3 Architecture 

The new component introduced with this protection is the Crypto Server. The original call to 
standard crypto library in the application is replaced by a call to the crypto server and a call 
to the CryptoMultiThreaded library. As shown in the Figure 16the Derived keys are generated 
by the Crypto Server and are returned to the Application that calls the CryptoMultiThreaded 
to cypher the plain text (PT) in to several ciphered texts (CT).  

The seed that is returned by the Crypto Server enables to retrieve the valid cypher text 
among the set of cipher texts passed to the Application server. The same seed is used to 
determine the permutation rule during the parallel AES rounds processing. 
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Figure 16 – Architecture of the Multi-Threaded Crypto protection 

The Crypto Server and the application server shares the master key, the Derivation function, 
and the number of iterations of the Derivation function.  

The Pseudo Random Number Generator (PRNG) that is used to determine the permutation 
during the obfuscation in the CryptoMultiThread library must be the same as in the 
Application server. 

At the beginning of the exchange between the application and the applicative server, the 
application requests keys to the cryptographic server to perform the encryption with. The 
application gives to the cryptographic server 

5.2.3.1 Crypto server 

The purpose of the Crypto server is to generate a seed and several derived keys from a 
master key given as input. This server provides a simple service that could be generic: there 
is no specific application data to maintain over sessions and required arguments are 
provided as input by the calling application. The key derivation process is shared by the 
Crypto server and the Application server. Then a contract has to be set to enable to retrieve 
the same derived key on both servers. Then some configuration data are required that are 
application specific: 

• The derivation function that is used can be specific for an application 
• The hashing function used by the derivation must be determined as well for an 

application   
• The iteration number used in the derivation process must be configured for an 

application  

For the project the derivation function, the hashing function and the iteration number are 
fixed in order to simplify the implementation of the crypto server then no configuration is 
required  

The Key derivation Password-Based Key Derivation Function 2 (PBKDF2) [Kal00] is used as 
derivation function. 

The seed is randomly generated. 

The way to set the position of the valid key must depend on something that is unknown on 
the client side and that changes for each occurrence of deployed application. The master key 
is ciphered in the application and cannot be retrieved by the attacker. The seed is generated 
on the Crypto server side for each installed application. The function used by the Crypto 
server to determine the position of the valid key in the set of keys returned to the application 
depends of the master key and the seed: 
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F (master_key, seed, number_of_keys ) = (master_key ⊕	seed)  % number_of_keys 

The number of keys is fixed for the project. This is the level of parallelism of the AES, check 
the 5.2.6 paragraph on performances about this. 

5.2.4 CryptoMultiThread library 

As introduced in the architecture paragraph, the call to AES encryption is replace by a call to 
the crypto server and then a call to a modified AES encryption. In this modified encryption 
each round of AES is performed in several threads in parallel with a different key.  

It is as if Nth AES are performed on the same plain text in parallel with different encryption 
keys except that at each round of the algorithm the data are permuted between the threads. 
The “data” mentioned here is an abstract shortcut to designate the states and the round 
keys. This permutation is an extra step done at each round of the AES algorithm as it is 
shown in the following figures. 
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Figure 17 – AES 
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Figure 18 – Modified AES 

 

The standard AES is depicted on Figure 18 and the on modified AES is on Figure 18. The 
algorithm remains unchanged with the four transformations (SubBytes, ShiftRows, 
MixColumns, AddRoundKey). An extra permutation step is done after each round as it is 
shown. A monitor synchronizes all threads that are performing the rounds. When all parallel 
rounds have been executed in their thread then the monitor modifies the data handled by 
each thread.  

The order of permutation is provided by a PRNG that is initialized with the seed at the 
beginning. The permutation rule can be seen as a two dimension array that gives how the 
data are permuted among the threads. After each round data of a thread are assigned to 
another thread 

Current assignment  5 2 4 6 3 1 
Next assignment  3 6 1 2 5 4 

The data processed by the thread 5 for the current round will be processed by the thread 3 
for the next round. This can also be depicted with a diagram as in Figure 19 – Permutation 
rule.  

1 2 3 4 5 6

1 2 3 4 5 6
 

Figure 19 – Permutation rule 

These permutation rules are generated with the Mersenne Twister PRNG. The TinyMT code 
[Mut11] is used because its small size it is adequate on an embedded device.  

5.2.5 Application Server 

The Application server shares the way to derive the key from the master key with the crypto 
server. The master key is kept on the Application server, all derivation required data are 
known by the Application server except the seed and the fingerprint that are passed by the 
application. Then the position of the valid cipher text must be deduced from the path that 
starts with the position of the valid key to the result has it is done on the client side. To ba 
able to do this it must use the same PRGN than the CryptoMultiThread. The same TinyMT 
code as describe previously is used on the Application server side. 

5.2.6 Application Performance degradation 

There is a serious degradation according the parallelism level as expected. The Figure 20 
below shows that an important number of threads would significantly affects the performance 
of the application. Measures have been done on a Nexus 5 device. 
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Figure 20 – Processing time with 128bit key for plain text sizes for 1, 3, 4 and 7 threads 

Some other measures done on a Samsung S3 that in order to stay under one second 
processing for this ciphering task only the number of thread should be less than 5 for a 2048 
bits message length.  

For the purpose of the project the number of thread will be set to 4. 

5.2.7 Limitations 

The limitations of this protections are first that a very specific use-case is covered. The 
recipient should be a remote server, the messages should be limited in size otherwise the 
computing time penalty would be unacceptable. 

Another very serious limitation is the fact that the application is impacted by the protection. 
The original call to the encryption can be automatically replaced by ACTC but since the size 
of the result has changed and that some additional data have to be passed to the recipient 
then applying the protection is not transparent to the application developer that needs to take 
into account the transformation done. Then the automatic transformation done by ACTC has 
little value here since the developer needs to change its code. 

The initial idea of this protection was that because debugging a parallel processing is difficult 
then attacking this kind of code should be more difficult as well and this could be a way to 
obfuscate the code. This is still a valid approach but as it is implemented now the code is still 
sensitive to attacks and more theoretical work should be done to provide a more secure 
protection with the help of mathematics. 
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Section 6 Task T2.5: Anti-Tampering 

Task T2.5 is the only task in WP2 that only started in year 2, and still continues into year 3 of 
the project. For that reason, no final results are reported yet in this section.  

6.1 Anti-Debugging 

Section  Authors: Bjorn De Sutter, Bart Coppens (UGent) 

At UGent, Joris Wijnant (a master thesis student advised by Bert Abrath and other lab 
members) developed an initial implementation of an anti-debugging extension for Diablo. 
This implements the anti-debugging architecture described in Section 3.2 of D1.04 v2.0.  

During Joris' thesis research, he partially implemented the following parts of the reference 
architecture: 

• Single basic blocks are automatically rewritten by Diablo to be run in the context of a 
debugger, i.e., in the debugger process, rather than in the context of the original 
application. This includes injecting code to transfer the registers used and defined by 
the basic block by means of the ptrace API.  

• Diablo inserts instructions that cause a switch to the debugger in the protected 
application in the places where the rewritten basic blocks should be executed. These 
instructions also contain meta-information for the debugger component describing the 
location of the rewritten basic block. 

• The debugger component itself. This component attaches itself as a debugger to the 
protected application, and handles the exceptions triggered by the protected 
application. 

• Diablo injects the debugger component, and ensures that it is started on application 
initialisation. 

• Memory accesses migrated to the debugger as part of the above rewriting are 
transformed: simply executing them in the debugger would not be correct, as the 
debugger runs in another memory space. The memory accesses are thus rewritten to 
work correctly (this will be explained in more detail later on).  

While this code was initially written and tested for ARM Linux devices, we already tested the 
code on rooted Android 4.4 devices, and confirmed that the code works also works in this 
environment. Furthermore, we have verified with a simple toy app, that the concepts also 
works on an unrooted Android 5 device. We can hence consider it future-proof at least for the 
foreseeable future.  

Furthermore, we already made the code compatible with the ASPIRE tool chain: it is fully 
controllable using ASPIRE annotations in the source code.  

However, as this code was written by a thesis student, its quality is not yet of a level that is 
acceptable to be integrated. In particular, it was not yet tested on non-trivial code fragments, 
such as those that the anti-debugging protection will be used for in the ASPIRE use cases. 
Applying the technique to those code fragments shows multiple bugs in the transformed code 
and incorrect, hidden assumptions in the implementation, which we are in the process of 
fixing at the time of writing (second half M24, October 2014).  

We expect to deliver this functionality as part of D2.07 at the end of M24 or slightly thereafter 
in case unexpected problems still show up. At that time, it will be integrated immediately in 
the ACTC. We will definitely report on this integration for the third project review.  

The memory accesses that are migrated to the debugger context can be transformed in two 
ways, depending on address accessed. The first way is to replace the memory access by an 
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invocation of a helper a function that simply invokes the appropriate function from the ptrace 
API to read/write 4 bytes from the debuggee. This method can be used for any memory 
access. The second method is more of an optimization to be used when dealing with 
accesses to the stack: we will use the ptrace API to copy an entire stack region from 
debuggee to debugger context and point the stack pointer to this copied region when 
executing in debuggee context. The actual memory accesses will use the changed stack 
pointer and won’t be transformed themselves. When the execution in debugger context is 
finished will copy the - possibly modified – stack region back from debugger to debuggee 
context. A comparison between the two methods for a variable number of memory accesses 
to the stack can be seen in Figure 21, where the stack copy is implemented by copying two 
memory pages. As one would expect copying an entire region takes about constant in time 
while the first method of doing a ptrace call for every memory access is linear with the 
number of accesses. For this specific case we concluded that when doing more as 8 memory 
accesses to the stack it is preferable to copy the entire region, when doing less as 8 
accesses it is better to do them separately, and when doing exactly 8 accesses there is no 
significant difference between the two methods. 

 
Figure 21 – Comparison of the two methods to transform memory accesses. 

 

The second method could be expanded to be used when transforming a series of memory 
accesses that use a certain register or constant address as base (as is common when 
iterating over arrays), but this requires us to know how large the array we will iterate over is 
in order to copy it, which isn’t always known. We will look into how to solve this problem. 

6.2 Anti-callback Stack Checks 

Section Authors: Bjorn De Sutter, Bart Coppens (UGent) 

While not explicitly mentioned in the project DoW, at the time the original DoW was 
conceived the consortium intended to include heavy-weight anti-callback stacks checks into 
the set of ASPIRE protections. Those checks would analyze whole stack traces to check that 
functions in the protected application were not called through unallowed, attacker-injected 
callbacks from external libraries.  

This approach was deemed feasible because, given a whole application to be protected, all 
libraries that could possibly be loaded at run-time are known at compile time. Furthermore, 
besides the application binary's entry point, most applications would feature very few 

4 8 12 16
15

20

25

30

35

tim
e 

(m
s)

stack copy
helper function

nr. of memory acceses



 

D2.08 - ASPIRE Offline Code Protection Report   

ASPIRE D2.08 PUBLIC Page 47 of 52 

functions intended to be called from external libraries through call-backs, so all allowed call-
backs from the libraries can easily be specified. In the case of protected application binary, it 
is the binary that starts executing first, and that in a sense controls which library routines are 
invoked.  

However, early on in the project, in the initial phase of WP1, the original choice for protecting 
applications was revised. To enable validation and demonstration of the developed tools and 
protections on more realistic use cases, it was decided that we would protect dynamically 
linked libraries. With respect to anti-callback stack checks, this completely changes the 
scenarios that need to be handled. In a dynamically linked library, by definition a range of 
functions is exposed to be invoked by external libraries and by the application for which the 
libraries are loaded. Moreover, in the case of Android, that application and the external 
libraries are not a simple application. In most cases, and in two of the project's use cases,  
they are Dalvik/ART, Android's run-time environments in which Java applications are 
executed that invoke the native (protected) libraries through complex Java-to-native 
interfaces that are supported in the run-time environments.  

Developing code that can walk and analyze complete stack traces in such a context, and 
reliably decide whether those traces conform to normal execution or instead imply an 
ongoing attack might still be possible, but it is certainly not possible within the resources 
foreseen for this task in the project.  

The initial high aim of this task has been revised, and somewhat lowered. The proposed 
implementation of the anti-callback checks is still in line with the DoW, but is less advanced. 

Concretely, UGent implemented the necessary functionality in Diablo to inject small stack 
checks into a dynamic library at the entry points of functions that should not be invoked from 
outside the library. These checks inspect the return address of the last call and check 
whether or not it comes from inside the code segment of the protected library itself, or from 
the outside. In the latter case, a reaction will be triggered. This can be an immediate reaction 
such as a crash or abort (in case the execution of the function should be blocked 
immediately for security reasons) or a delayed reaction (in case it is okay for the program to 
continue executing for a short while).  

We already have an embryonic implementation of these call stack checks, that is part of the 
prototype deliverable D2.07 of M24. However, this implementation is as yet too rough to be 
integrated in the ASPIRE tool chain in WP5. We foresee to be able to integrate this by the 
end of M25, and will report on this in the third project review.  

6.3 Control Flow Tagging 

Section  Authors: Jerome D'Annoville  (GTO) 

The Control Flow Tagging protection aims to check that some assertions are verified during 
the execution of the application. Gates are added to the code of the application. Each time 
the activation of the application enters a Gate then the associated counter is incremented; 
this is the tagging step. The assertions to be verified combine the values of these counters in 
logical expressions. These assertions are extra controls that are added also to the 
application. At certain nodes in the graph of the application the assertions verify that the 
activation has entered the expected Gates. If one or several Gates have been missed then 
the reaction logic is triggered. 

The verification of the assertions can be done either locally or remotely. Advantage of a 
remote processing is that attacker has no access to the content of the assertions and cannot 
predict or influence the verdict done by the verifier. The main drawback is that the reaction 
component on the client side is easy to find and to be blocked. There is no satisfying clue 
today to embed this component more tightly with the application in order to prevent its 
detection by the attacker. Indeed, the Reaction Waiting Unit as described in the section 5 of 
[D3.04] runs in a separate thread due to the constraint of the communication protocol and as 
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a consequence is loosely coupled with the application. Another constraint is that in case the 
application does not need the network and might be offline by nature after its installation and 
setting step then bringing the connectivity constraint only for enabling a possible reaction 
action is a very strong constraint.  

Unlike the online design, keeping the verification of the assertions within the application 
enables a tight coupling. The issue to solve is to hide the various verifiers part in the code to 
prevent the attacker to make an easy connection with the reaction part.  

The attestor part of this protection, the Gates, already has this constraint to be hidden at the 
maximum to make it difficult to spot. An early prototype was using big integers to enable to 
map several Gate counters on a single variable. Each Gate is associated with a different 
prime number. An Accumulator variable is grouping several Gate counters. It is managed as 
a big integer except that this data type is not available in C. The Accumulator is initialized to 
1 and each time a Gate is entered then the Accumulator is multiplied by the prime number 
associated to the Gate. Verifiers will be able to retrieve the Gate counter value by dividing 
the Accumulator.  

The extra code could be added at source level. Advantage is that it is easier to implement 
and the source code inserted in the application would be protected by many other protections 
of ASPIRE. Still, the choice is to insert the code at binary level to hide at the maximum the 
extra code. Immediate values used to access the Gate counters are artificially made different 
in the Gate part and in the assertions part.  

An intermediate approach would be to have a combined approach by inserting code at 
source and binary level: the Gates would be inserted at source level and the assertions 
processing at binary level. This is possible but not considered today mainly because Gates 
code is considered as useless code by the optimizer and dropped during the compilation 
step. This can be mitigated by inserting a call to a dummy external function with the counter 
values as arguments at the place where assertions have to be verified. Then the binary 
transformation would be to replace this artificial call to an external function by the assertion 
code.  

As already mentioned in the reference architecture [D1.04], the code integrity checking 
provide by the Code Guards would prevent the attacker to tamper with the extra code added 
by the Control Flow Tagging protection. Still, the Gate counter variables have to be protected 
and a checksum control can be added. It is not considered today because it would make the 
code referencing the counters data bigger and may attract the focus of the attacker. The 
option taken in the balance between security and light code is to prefer a discreet protection.  

The Control Flow Tagging will be implemented using the Diablo framework. 

6.4 Code Guards 

Section  Authors: Bjorn De Sutter, Bart Coppens (UGent) 

For code guards, UGent looked into how to best re-use (where possible) the components 
that have already been implemented for Remote Attestation (RA). Local code guards need 
the following elements to function: hash functions, hash check functions, and a tamper 
response. 

We will re-use the functionality related to computing the hashes of regions that has been 
implemented for RA. This functionality currently consists of a set of hashing functions, an 
Area Data Structure (ADS) that defines the areas to attest, and code that performs a random 
walk over an area based on this ADS. To prevent replay attacks and to introduce some 
diversity, this random walk for RA is seeded by the protection server: subsequent walks will 
attest different, randomized subsets of the protected area. This also means that the 
computed hashes will vary over time. In the RA scenario, this is not an issue: the server has 
all the information to verify the correctness of the hash produced for each random walk. 
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However, as the protected application needs to verify its own hashes for code guards, and 
we do want to attest the entire code ranges rather than a subset, this means that we cannot 
reuse these random walks as-is. Thus, we will ensure that for code guards we 
deterministically attest the entire protected code region. However, from the point of view of 
the existing functionality for RA, this can viewed as a ‘random walk’ that iterates over the 
entire code range. Thus, nothing needs to fundamentally change for computing the hashes. 

As the invocations for the hashing in RA occur asynchronously based on input from the 
protection server, we cannot re-use the attestation invocation code from RA. However, the 
locations where hashes need to be computed have been annotated, we will inject the calls to 
compute the hashes in the annotated locations. 

The code to compute the correct hash values can be re-used as-is from the RA 
implementation. This code runs on the final binary and its ADS, performs the random walk 
based on the information in the ADS, and finally produces the correct hash value. However, 
while for RA this information is then stored in a database for later use, we need to inject the 
correct value in the binary in the correct location. While some effort for this will be required, 
we anticipate no immediate issues here. 

As for RA the verification of the hashes occurs on the server rather than in the protected 
application, we will need to write and inject custom code that verifies the computed hashes. 
For each of the hash functions, we will write a simple verification routine in C that compares 
the correct hash value with the computed value. Calls to these verification routines will be 
injected in the binary by Diablo on the locations that have been annotated. 

We will insert the tamper response in the same manner for other offline attestation 
techniques, such as call stack checks. 

As this proposed implementation for code guards consists mostly of components that have 
already been integrated, we will only need to integrate the additional step of injecting the 
correct hash check values into the final binary. As by now the process of integrating 
additional steps into the ACTC has been streamlined, we anticipate no real problems here. 
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Section 7 List of Abbreviations  

 

ACCL ASPIRE Common Client Logic 

ACTC ASPIRE Compiler Tool Chain 

ACSL ASPIRE Common Server Logic 

ACTC  ASPIRE Compiler Tool Chain  

ADS Area Data Structure 

ADSS ASPIRE Decision Support System 

AES Advanced Encryption Standard 

API  Application Programmer's Interface 

ART Android Run Time 

ASPIRE Advanced Software Protection: Integration, Research and Exploitation 

DES Data Encryption Standard 

DoW  Description of Work 

GUI  Graphical User Interface 

IP  Intellectual Property 

PRNG  Pseudo Random Number Generator 

RA Remote Attestation 

RNC Residue Number 

RTD  Research and Technology Development 

SB  (ASPIRE) Steering Board 

SVN  Subversion  

QAP  Quality Assurance Plan 

URL  Uniform Resource Locator 

VM Virtual Machine 

WBC White-Box Cryptography 

WBTA White-Box Tool for ASPIRE 

XML Extended Markup Language 
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