

Advanced Software Protection:
Integration, Research and Exploitation

D2.08
ASPIRE Offline Code Protection Report

Project no.: 609734
Funding scheme: Collaborative project
Start date of the project: 1st November 2013
Duration: 36 months
Work programme topic: FP7-ICT-2013-10

Deliverable type: Report
Deliverable reference number: ICT-609734 / D2.08/ 1.0
WP and tasks contributing: WP 2 / Tasks T2.1, T2.2, T2.3, T2.4, T2.5
Due date: October 2015 - M24
Actual submission date: 17 November 2015

Responsible Organization: UGent
Editor: Bjorn De Sutter
Dissemination Level: Public
Revision: 1.0

Abstract:
This deliverable documents the tool support delivered in the corresponding prototype
deliverable D2.07 Offline Code Protection Support, and the research undertaken towards
that end in WP2 in year 2 of the project. The code protections documented are data
obfuscations, white-box cryptography, client-side code splitting, code obfuscation, and anti-
tampering.
Keywords:
Data obfuscation, white-box cryptography, client-server code splitting, code obfuscation, anti-
tampering

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC I

Editor
Bjorn De Sutter (UGent)

Contributors (ordered according to beneficiary numbers)

Bjorn De Sutter, Bart Coppens (UGent)

Brecht Wyseur, Patrick Hachemane (NAGRA)

Roberto Tiella, Mariano Ceccato (FBK)

Andreas Weber (SFNT)

Jerome D'Annoville (GTO)

The ASPIRE Consortium consists of:

Ghent University (UGent) Coordinator & Beneficiary Belgium

Politecnico Di Torino (POLITO) Beneficiary Italy

Nagravision SA (NAGRA) Beneficiary Switzerland

Fondazione Bruno Kessler (FBK) Beneficiary Italy

University of East London (UEL) Beneficiary UK

SFNT Germany GmbH (SFNT) Beneficiary Germany

Gemalto SA (GTO) Beneficiary France

Coordinating person: Prof. Bjorn De Sutter
E-mail: coordinator@aspire-fp7.eu
Tel: +32 9 264 3367
Fax: +32 9 264 3594
Project website: www.aspire-fp7.eu
Disclaimer
The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 609734.
The information in this document is provided as is and no guarantee or warranty is given that
the information is fit for any particular purpose. The user thereof uses the information at its
sole risk and liability.

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC II

Executive Summary

This deliverable reports the year two RTD progress in WP2 on the topic of offline protection
techniques. Five major sections report on the progress of the five tasks in WP2.

First, the progress with respect to dynamic forms of data obfuscation of Task T2.1 is
reported. In these forms, the constants used as mask or modulus in data obfuscations
cannot be recovered by attackers deploying only static attacks. FBK has studied a number of
alternative methods to obfuscate the constants, i.e., to generate them dynamically during the
program's execution, incl. alias-based opaque predicates, graph enumeration, conjectures,
and the 3SAT problem. The latter was initially considered as a potential approach to
generate code that is hard to analyse statically, but it was found not to scale well: the run-
time overhead becomes too big for significant level of protections. So a novel obfuscation
scheme based on the NP-complete n-clique problem is proposed, that builds on a reduction
of a 3SAT problem to an n-clique problem to generate hard to analyse code.

Second, the progress with respect to white-box cryptography in Task T2.2 is documented.
The focus is on the development of NAGRA's White-Box Tool for ASPIRE, and the
implementation of two extensions as foreseen in the DoW: time-limited white-box
implementations that provide security only for a limited amount of time but that come with
acceptable run-time overhead (unlike the provably secure versions developed earlier);
dynamic-key white-box AES, in which a server generates obfuscated keys to be sent to the
client rather than embedding a fixed key into the client.

Third, SFNT reports what additional background they have contributed to the project for Task
T2.3 on the subject of client-server code splitting, thus showing that the goals of that task
have been reached.

Fourth, the progress regarding native code obfuscation in Task T2.4 is discussed. UGent
reports improvements in the way opaque predicates, branch functions and control flow
flattening are applied based on profile information instead of purely stochastically, which
results in significantly reduced execution times. Furthermore, they report extensive
debugging and intermediate representation bookkeeping functionality to make the binary
code obfuscations composible with other protections deployed in the binary-level part of the
ACTC. UGent also reports on a new approach to obfuscate control flow by means of
externally defined data structures and APIs that allow more stealthy protection. GTO reports
the architecture of an algorithm-specific multithreaded AES-based cryptographic technique
that can be used to hide master keys embedded in client applications behind complex
multithreaded computations. This performance of this technique is also evaluated.

Finally, four techniques are discussed from Task T2.5 in the domain of anti-tampering.
UGent presents the first results and implementation effort of a so-called self-debugging anti-
debugging technique, in which an application is split over a debuggee and a debugger
process to prevent the attachment of an attacker debugger. UGent also reports the initial
results obtained for simple call-back checks that can prevent call-backs from attacker-
injected code. GTO briefly discusses the first results obtained for control-flow tagging, a code
execution integrity verification check, and finally, UGent briefly discusses the first results
obtained with respect to offline code guards, which reuses the guards also used in remote
attestation (WP3, Task 3.2).

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC III

Contents

Section 1 Introduction .. 1

Section 2 Task T2.1: Data Obfuscation ... 2

2.1 Introduction ... 2
2.1.1 Data Obfuscations .. 2

2.1.1.1 XOR Masking .. 2
2.1.1.2 RNC Encoding .. 2

2.2 Threat Model .. 2

2.3 Possible Extensions ... 3

2.3.1 Convert Static to Procedural Data .. 3
2.3.2 Opaque Constant based on 3SAT Problem ... 3
2.3.3 Opaque Constant based on Collberg’s Opaque Predicates 4
2.3.4 Graphs Enumeration ... 4
2.3.5 Leveraging Conjectures .. 4

2.4 Our Novel Obfuscation Scheme ... 5
2.4.1 Obfuscation Scheme Requirements ... 5

2.4.1.1 Analysis of the 3SAT Approach .. 6
2.4.2 Data Obfuscation as a k-clique Problem .. 8
2.4.3 Reducing 3-SAT to k-clique .. 9

2.4.3.1 Example .. 10
2.4.4 Coding the graph .. 10

2.5 Attack Analysis ... 11

2.5.1 Running the n-clique checking code with KLEE ... 11
2.5.1.1 A Sanity Check on a satisfiable problem .. 12
2.5.1.2 Running KLEE on a unsatisfiable problem ... 13

2.6 Dynamic XOR Masking... 13

2.6.1 Handling variable initializations ... 14
2.7 Implementation ... 14

2.7.1 Updated Obfuscation Process .. 14
2.7.2 Constant-generating functions creation process .. 15

2.7.2.1 3SAT Problem Generation .. 15
2.7.2.2 3SAT Problem Satisfiability ... 16
2.7.2.3 Graph Generation ... 16
2.7.2.4 Constant-generating Function Forging ... 17

Section 3 Task T2.2: White Box Cryptography .. 18

3.1 Introduction ... 18

3.2 White Box Cryptography ... 19

3.3 White Box Tool for ASPIRE .. 20

3.3.1 Overview ... 21

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC IV

3.3.2 Technical choices ... 21
3.3.3 Previous steps .. 21
3.3.4 M24 achievements .. 22

3.3.4.1 Overview ... 22
3.3.4.2 Input data and annotations ... 23
3.3.4.3 Output data and integration to ACTC .. 23
3.3.4.4 Examples .. 23

Section 4 Task T2.3: Client-Side Code Splitting .. 25

4.1 Automated detection of code regions to split off ... 25

4.2 X-Translator: ... 25

4.2.1 Supporting a larger subset of the ARM instruction set 26
4.2.2 Embedding the continuation address ... 28
4.2.3 Supporting shared objects .. 29
4.2.4 Post-Linker interface ... 29
4.2.5 Chunk internal control flow ... 30
4.2.6 Chunk test framework ... 30
4.2.7 Integrating the LLVM Interpreter (lli) ... 31
4.2.8 Supporting memory access .. 31
4.2.9 Tool versioning and automated release builds ... 33

Section 5 Task T2.4: Binary Code Obfuscation ... 35

5.1 Control Flow Obfuscation ... 35
5.1.1 Improving the deployment of existing obfuscations .. 35
5.1.2 Flexible, two-way opaque predicates .. 36

5.2 Multithreaded Cryptography ... 39
5.2.1 Original AES ... 40
5.2.2 Master key .. 40
5.2.3 Architecture ... 40

5.2.3.1 Crypto server .. 41
5.2.4 CryptoMultiThread library ... 42
5.2.5 Application Server ... 43
5.2.6 Application Performance degradation ... 43
5.2.7 Limitations ... 44

Section 6 Task T2.5: Anti-Tampering .. 45

6.1 Anti-Debugging ... 45

6.2 Anti-callback Stack Checks .. 46

6.3 Control Flow Tagging ... 47

6.4 Code Guards .. 48

Section 7 List of Abbreviations ... 50

Bibliography ... 51

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC V

List of Figures

Figure 1 – Using Collatz's conjecture to obfuscate a predicate .. 5

Figure 2 – 3SAT checking code instrumented to be run using KLEE 6

Figure 3 – KLEE execution time for checking 3SAT problems ... 8

Figure 4 – A graph derived by reducing a 3SAT problem with 3 variables and 4 clauses. 10

Figure 5 – A 4-clique found by the symbolic executor KLEE ... 13

Figure 6 – Process to create code for constant-generating functions 15

Figure 7 – Structure of the constant generation function ... 16

Figure 8 – Dynamic-key white-box high-level view .. 20

Figure 9 – T2.2 process overview .. 21

Figure 10 – T2.2 process overview - dynamic key ... 22

Figure 11 – Dynamic key protection ... 23

Figure 12 – Overhead comparison between stochastic and profile-guided obfuscation 35

Figure 13 – Principle of flexible two-way opaque predicates ... 36

Figure 14 – Program size overhead of using flexible two-way opaque predicates. 38

Figure 15 – Execution times for flexible two-way opaque predicates 39

Figure 16 – Architecture of the Multi-Threaded Crypto protection ... 41

Figure 17 – AES ... 42

Figure 18 – Modified AES .. 43

Figure 19 – Permutation rule .. 43

Figure 20 – Processing time with 128bit key for plain text sizes for 1, 3, 4 and 7 threads 44

Figure 21 – Comparison of the two methods to transform memory accesses. 46

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC VI

List of Tables
Table 1 – KLEE execution times. ... 7

Table 2 – XOR Masking parameter generation function .. 14

Table 3 – Static vs Dynamic XOR Masking .. 14

Table 4 – Overview of the benchmarks use to evaluate flexible opaque predicates 38

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 1 of 52

Section 1 Introduction

This deliverable reports the progress made in the five tasks of WP2 Offline Software
Protections. Sections 2 to 6 are devoted to tasks T2.1 to T2.5.

Tasks T2.1 to T2.4 are supposed to end in M24 according to the DoW. This means that the
basic research into the different techniques, and the (isolated) tool support development
need to be finished. As foreseen in the DoW, a minimal amount of activity is still to be
expected in year 3, however, as the techniques are further integrated into the ASPIRE
Compiler Tool Chain, as they are deployed on the project use cases, and as they will be
driven by the ASPIRE Decision Support System in year 3.

This deliverable D2.08 of type report also documents the tool support that has been
developed in year 2 of the project in WP2, and that is delivered as prototype deliverable
D2.07.

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 2 of 52

Section 2 Task T2.1: Data Obfuscation

Section Authors: Roberto Tiella, Mariano Ceccato

2.1 Introduction

At the end of the first year of the ASPIRE project, the output of task T2.1 (described in
deliverable D2.01 “Early White-Box Cryptography and Data Obfuscation Report”) consisted
of the implementation of four algorithms for data obfuscation taken from the state of the art.
They are:

• XOR Masking;

• Variable Merging;

• Residue Number Coding (RNC); and

• Convert Static to Procedural Data.

The objective of the second year of the project is to extend (a subset of) these algorithms
towards stronger variants.

2.1.1 Data Obfuscations

In this subsection, we recall some concepts from D2.01 for the reader’s sake. The reader is
suggested to refer to D2.01 in case further details are needed.

A data obfuscation transformation is a program transformation aimed at hiding variables’
values. A data obfuscation transformation is characterised by a function)(ve (called
encoding function in what follows) that describes how the transformation acts on the values
assumed by obfuscated variables. In the following two subsections we present two examples
of data obfuscation, namely XOR Masking and RNC Encoding.

2.1.1.1 XOR Masking

A XOR Masking transformation is characterised by the following encoding function:

pvve ⊕=)(

Where ⊕ is the bit-wise XOR operator and p is a fixed parameter called the mask.

2.1.1.2 RNC Encoding

Given a set of n integers },...,,{ 21 nmmm pairwise mutually prime (two numbers are mutually
prime if their only common divisor is 1), RNC encoding function is defined as:

)mod,...,mod,mod()(21 nmvmvmvve =

The function)(ve is guaranteed invertible under the assumptions and the original value v
can be decoded back from an n-tuple),...,,(21 nyyy by means of the extended Euclid

greatest common divisor algorithm. Integers },...,,{ 21 nmmm are called the modules in what
follows.

2.2 Threat Model

The motivation to elaborate an extension to the previous work is that state-of-the-art data
obfuscations are vulnerable to attacks based on static analysis. In fact, masks used in XOR
Masking and modules used in Residue Number Coding, for example, are static constants

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 3 of 52

that, once identified in the static code, can be used to decode (i.e., obtain the clear value) of
obfuscated variables.

A way to turn these obfuscation schemes more reliable is to make it harder to detect
these constants by static analysis.

Dynamic analysis would be probably always an issue for data obfuscation, because the
clear values can be intercepted at run time after decoding. Other protections are required to
avoid run-time monitoring, such as anti-debugging.

We assume the subsequent attack model:

• The attacker adopts static analysis, i.e., they have full access to the compiled code
and can run state-of-the-art analysis tools and algorithm on it;

• The attacker can run the code (or part of it), but they cannot perform dynamic analysis
on it, e.g., a debugger cannot be attached to the code.

2.3 Possible Extensions

This section collects the results of discussions and of brainstorming sessions, towards the
definition of the novel extension.

2.3.1 Convert Static to Procedural Data

The first extension consists of removing the plain constant used in the data obfuscation
(mask or module) and replacing it with a procedure to compute it on demand at run time, for
example by resorting to a Mealy Machine as described by C. Collberg and J. Nagra [Col09].
In this way, a simple search in the code binaries would not succeed. However, the procedure
should not be trivial, otherwise an attacker could figure out its behaviour and forecast the
result.

Moreover, advanced static analysis can break non-trivial obfuscations, when the analysis
is able to statically figure out the outcome of non-trivial procedures to compute the constant.
An example of such powerful static analysis is symbolic execution. Therefore, the
obfuscation should be designed to be strong against advanced static analyses, for example
by requiring the analysis to solve intractable problems to break the obfuscation.

 The obfuscation should be designed such that, to break it, a static analysis tool should solve
a problem known to be intractable.

Moreover, if the attacker figures out that the output of this procedure does not depend on
the program input (or on random values computed at run time), the attacker could run this
procedure once and then reuse the result to break the obfuscation.

 The procedure to compute the constant should depend on program input (including random
values computed at run time).

2.3.2 Opaque Constant based on 3SAT Problem

The work by Moser et al. [Mos07] describes how to turn static constants into opaque
constants, i.e. constant values that are difficult to guess statically. In their approach, to detect
the value of the constant, an attacker would need to solve the satisfiability problem for a
Boolean formula in 3 variables (3SAT), a problem that is known to be NP-complete.

They use opaque constants (i) to hide absolute and relative jumps/calls to make the
control flow graph very hard to recover; (ii) to hide the address of program variables, and in
particular the import table in dynamic library headers; and (iii) hide variable usage by
breaking def-use chains.

Moser et al. [Mos07] used this obfuscation to make known malware stealth to commercial
malware detectors and to advanced semantic-based malware detectors that still resort to

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 4 of 52

static analysis. They claim for the need of more advanced malware detection based on
dynamic analysis.

In the paper, they describe their algorithm to generate an opaque bit. We could extend
this approach to generate a sequence of 32 opaque bits that would encode integer values
used as masks or modules in obfuscations. Indeed, different 3SAT formulas could be used to
generate the same constant, thus complicating the attacker analysis.

2.3.3 Opaque Constant based on Collberg’s Opaque Predicates

Collberg et al. [Col98] propose a technique to forge opaque predicates. The technique
leverages the hardness (undecidability, in general [Ram94]) of the statically must/may point-
to analysis problem. The very basic idea is to have two pointers running on two disjointed
components of a dynamic data structure such as a graph. Involved dynamic data structures
are updated in certain point of program execution, randomly adding new components or
removing existing components. An articulated example that leverages the idea is sketched in
the article. The article recommends developers to provide many implementation variants,
obfuscated, and merged with actual code.

Leveraging the proposed technique, each bit of the opaque constant is decided based on an
opaque predicate.

2.3.4 Graphs Enumeration

Collberg et al. [Col99] describe watermarking techniques. In their paper, the authors suggest
to encode constants into data structures by means of enumeration. Graph-based structures
such as trees and circular lists can be systematically enumerated, actually establishing a link
from an integer number to the “shape” of an instance of a specific data structure. Algorithms
to support this protection are presented in Yong He’s Master Thesis [He02], the work by
Palsberg et al. [Pal00] and more recently by Chron and Nikolopoulos [Chr11].

2.3.5 Leveraging Conjectures

Wang et al. [Wan11] present a technique to obfuscate predicates that trigger malware
behaviours. The technique aims at preventing to recover which conditions make a predicate
true by means of an analysis based on symbolic execution. Conditions are defined in terms
of values assumed by some input variables. They leverage some mathematical conjectures,
for example the Collatz’s one. Collatz’s conjecture says that the sequence {y

k
} defined by:

0; 00 >∈ yNy

⎪⎩

⎪
⎨
⎧

≡

≡+
=+)2(mod0

2

)2(mod113
1

k
k

kk

k yify
yify

y

eventually reaches 1. The conjecture was proven true for y0≤∼258 by computation but no
formal proof is available of its validity.

Figure 1 shows an example based on the Collatz’s conjecture. In the program on the left,
x=30 triggers the condition x==30 and causes the malware to be executed. In the program in
the centre of the figure, supposing the conjecture true, the loop is eventually exited. The
figure on the right depicts how to embed the trigger into the loop: when y reaches value 1 the
condition is true and the malware is executed.

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 5 of 52

Figure 1 – Using Collatz's conjecture to obfuscate a predicate

2.4 Our Novel Obfuscation Scheme

This section illustrates the new obfuscation scheme we devised during the survey of the
existing literature.

2.4.1 Obfuscation Scheme Requirements

The discussion of data obfuscation based on the 3SAT problem [Mos07] highlighted what are
the requirements for the mathematical problem to be used for our new obfuscation scheme:

1. Difficult for the attacker to analyse: Undoing obfuscation (i.e., recovering the
obfuscated constant) should require the attacker to solve a problem Pr, known to be
NP-complete that requires a non-polynomial time.

2. Opaqueness of the problem: The solution v is build staring from random/input
values. It means that, the obfuscation transformation consists of generating an
instance of the problem Pr, whose solution v depends on and can be built starting from
any input/random data.

3. Easy for the defender (at run time): The obfuscated program can compute easily (in
polynomial time) the obfuscated value. It particular, it is fast to check that a value v is
the solution of the problem Pr.

The 3SAT problem satisfies these requirements because it is:

1. Difficult for the attacker to analyse: Given a formula, it is difficult to understand if it is
satisfiable (unsatisfiable), and what are the variable values that make it TRUE
(FALSE);

2. Opaqueness of the problem: It is easy to construct a (hard to solve) formula that
always evaluate to TRUE or to FALSE. In this way, the variables to use in the formula
can trivially depend on random/input values.

// x given as input

if (x == 30) {
 some_malware();

}

y = // any integer

while (y>1) {
 if (y % 2 == 1) {
 y = 3*y+1;
 } else {
 y = y/2;
 }
}

// x given as input

int y = x + 1000;

while (y>1) {
 if (y % 2 == 1){
 y = 3*y+1;
 } else {
 y = y/2;
 }

 if (x-y>28 && x+y<32){
 some_malware();
 break;
 }
}

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 6 of 52

3. Easy for the defender (at run time): Given concrete Boolean values of formula
variables, the formula evaluation is fast.

2.4.1.1 Analysis of the 3SAT Approach

As stated by Moser et al. [Mos07], a static analyser that aims to determine exactly the
possible values of an opaque constant has to solve an instance of the 3SAT problem. We
evaluated the approach proposed by Moser et al. [Mos07] using the symbolic executor KLEE
[Cad08]. KLEE is a symbolic virtual machine built on top of the LLVM [Lat04] compiler
infrastructure. KLEE is able to run a C program symbolically provided the source code is
modified to declare variables that have to hold symbolic values. KLEE can be used to
recover the opaque constant, because KLEE will try to identify the set of input that solve the
3SAT problem and leak the value of the opaque constant.

We run KLEE on the code presented by Moser et al. in their paper [Mos07]. For the reader’s
sake we sketched the code in Figure 2. The original code checks whether a 3SAT formula
encoded in vectors l1,l2 and l3, is true under the assignment of some random values to
variables v1,v2,...,vn (only declaration for v1 is shown in the figure. If the formula is true the

int v1,nv1;

...

int * l1[17] = { &nv2, ...};

int * l2[17] = { &nv3, ... };

int * l3[17] = { &nv4, ... };

void init_klee() {

 klee_make_symbolic(&v1,sizeof(int),"v1");

 klee_assume(v1 == 0 | v1 == 1);

 nv1=1-v1;

 ...

}

void main(...) {

int res = 1;

int i;

init_klee();

for (i=0; i<NC; i++) {

 if (!*l1[i] && !*l2[i] && !*l3[i]) {

 res = 0;

 break;

 }

printf (“truth value=%d\n”,sat);

}

Figure 2 – 3SAT checking code instrumented to be run using KLEE

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 7 of 52

program will print “truth value=1”, “truth value=0” is printed otherwise. The figure shows the
code modified to accommodate KLEE’s declarations of symbolic variables.

As KLEE attempts to cover all paths in the application it tries to find concrete replacements
for symbolic values that causes the program both to print “truth value=1” and “truth value=0”.
This is equivalent to solve a 3SAT problem.

Having fixed the number NVARS of Boolean variables in a 3SAT problem, not all problems
are equally difficult in terms of required time for finding a solution. Selman et al. [Sel96] have
shown that if we randomly draw a SAT3 formulas with NCLS clauses and test for its
satisfiability, setting NCLS to floor(4.3*NVARS) gives a high probability of choosing a difficult
3SAT problem. We adopted this finding in this analysis.

Table 1 reports the user time (UTIME, in seconds, and its standard deviation SD) required by
KLEE to run on unsatisfiable 3SAT problems with a number of variables NVARS ranging
from 4 to 20 and floor(4.3*NVARS) clauses. It corresponds to the time required by static
analysis to break data obfuscation based on 3SAT, as proposed by Moser at al. The boxplot
in Figure 3 shows time needed to break obfuscation (UTIME) whit an increasing number
variables in the 3SAT formula (NVARS).

Table 1 – KLEE execution times.

NVARS	 Runs	 UTIME	 SD	
4	 10	 0.33	 0.02	
8	 10	 1.54	 0.17	

12	 10	 8.68	 1.63	
16	 10	 56.77	 22.9	
20	 10	 513.56	 172.03	

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 8 of 52

Figure 3 – KLEE execution time for checking 3SAT problems

As we can see, even if the 3SAT problem is NP-complete, it can be practically solved in a
limited amount of time using available static analysis tools (in our case KLEE). A problem
with 16 variables can be solved in less than one minute, and a problem with 20 variables
requires less than 7 minutes.

In the graph shows an evident exponential trend of the time required to break the 3SAT
obfuscation, so one might think of using an arbitrarily big 3SAT problem to make the attack
time diverge. However, to keep the obfuscation overhead manageable, in their
implementation Moser at al. adopted a rather small problem size. In their empirical
assessment, they considered a 3SAT problem with 20 clauses. It recorded an increased
program size of 30 times and an execution time of almost five times longer (+471%).
However, 20 clauses means approximately 5 variables, a size that we could break in less
than one second.

In the following, we will present our approach to a novel data obfuscation scheme that, as the
3SAT, is still based on a NP-complete problem in order to satisfy the three obfuscation
requirements (difficult for the attacker, opaqueness of the problem and easy for the
defender). However, with the complexity comparable to 3SAT, our approach is meant to be
more robust against static analysis. In particular, our approach is based on the k-clique
problem.

2.4.2 Data Obfuscation as a k-clique Problem

Karp [Kar96] lists 21 NP-complete problems and Garey and Johnson’s book [Gar79] contains
tens of NP-complete examples from graph theory, sets and partitions, sequencing and

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 9 of 52

scheduling, just to mention some examples. The NP-complete problem we decided to use is
the k-clique problem:

 k-clique problem: given a graph G, does it contain a clique of size k?
A clique of size k is defined as a complete subgraph G’ of G of size k and a graph G is

said to be complete if every two distinct vertexes in G are connected.

The k-clique problem is included in Karp’s collection of NP-complete problems and, in the
same work, the problem is proven to be NP-complete by showing a straightforward reduction
from SAT. We propose to use the same reduction from SAT to k-clique, described below, to
construct a k-clique problem starting from an arbitrary SAT problem. The satisfiability of a k-
clique problem constructed in this way depends on the satisfiability of the starting SAT
problem.

The proposed obfuscation scheme leverages the k-clique problem intractability in this
way:

• We generate a 3SAT unsatisfiable formula f in conjunctive normal form, reusing the
results by Selman et al. [Sel96]

• We construct a k-clique problem by reduction from the 3SAT problem: a solution to the
k-clique problem is a solution to the satisfiability problem on f, so we know that it is NP-
complete;

• We take a random subset S of k nodes of G. It is fast to compute whether S is a clique.
This verification takes k(k−1)/2 checks in the worst case, namely when S is actually a
clique, but on the average case, when S is not a clique, it takes less, because the
check can stop when the first missing edge is found;

• By construction, we know that G does not contain cliques of size k (otherwise f would
be satisfiable). So we know that s is not a clique and the check will return false.

This approach is used to generate one opaque bit. Therefore, for a 32-bit constant we
need 32 k-clique problems generated according to the previous algorithm.

This opaque constant can be used to:

• Hide a cryptographic key;

• Generate the module of RNC or the mask for XOR once at program initialization time
and then keep it in memory; or

• Generate the module of RNC or the mask for XOR every time it is required, and then
discard and overwrite the value.

2.4.3 Reducing 3-SAT to k-clique

Following the original Karp reduction scheme [Kar96], given the 3-SAT formula in m
variables mvvv ,...,, 21 consisting in n clauses:

 ϕ=⋀i=1,...,nαi,1∨αi,2∨αi,3

with:

or

v
v

k

k
ji

⎩
⎨
⎧

¬
=,α

it is possible to construct the following graph),(EVG =Φ , where:

 V={(i,αi,1),(i,αi,2),(i,αi,3)|i=1,...,n}

and

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 10 of 52

 ((i1,αi1,j1
),(i2,αi2,j2

))∈E iff i1≠i2 and αi1,j1
∧αi2,j2

 satisfiable.

It follows by construction that the 3-SAT formula Φ is satisfiable if and only if the graph ΦG
has a n-clique (n the number of clauses in the formula). A 3SAT formula Φ in m variables
and n clauses is mapped in a graph which has 3n nodes and a number of arcs which is
bounded by 9n2.

2.4.3.1 Example
The following (satisfiable) logical formula:

)()()()(321321321321 vvvvvvvvvvvv ∨∨∧∨¬∨∧¬∨∨¬∧¬∨¬∨¬

maps to the graph depicted in Figure 4.

Figure 4 – A graph derived by reducing a 3SAT problem with 3 variables and 4 clauses.

In the figure, each vertex is labelled following the syntax “<id>:(c, l)” where id is a vertex
identifier, c is the clause index and l is a positive integer k if the literal v

k
 is present in the

clause c or –k if the literal v
k
 is present negated in the clause c.

It can be easily checked from the figure that, among many other solutions, the set of
nodes {0,3,7,11} forms a 4-clique in the given graph. The clique defines the following
assignment:

v1=False
v2=False
v3= True

It is easy to verify that the above assignments make the formula true.

2.4.4 Coding the graph

The graph is coded in the C programming language by means of an adjacency matrix:

 int m[][];

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 11 of 52

where m[i][j] == 1 means i-th node and j-th node are connected by an edge while the
edges are not connected if m[i][j] == 0. The following piece of code checks if a random
subset of n nodes forms an n-clique:

1: int res = 0;
2: int i,j,k;

3: int * idx = malloc(n*sizeof(int));

4: assign_randomly(n,idx);

5: for (i=0; i<n-1; i++)
6: for (j=i+1; j<n-1; j++)
7: if (!m[idx[i]][idx[j]])) {
8: res = 1;
9: break;
10: }

11: free(idx);

12: if (!res) {
13: // this branch is taken if idx identifies a n-clique
14: }

where assign_randomly(n,v) is a function which assigns to the vector v n unique
random values in the range [0,...,n−1], i.e. for all i, 0≤v(i)<n−1 and for all i≠j, v(i)≠v(j). In our
settings, assign_randomly(m,n,v) is implemented by means of the Knuth shuffle
[Knu69].

If the 3-SAT formula is unsatisfiable, we know that the true branch of the if-statement at line
#12 will never be executed. Trying to run such code symbolically, a symbolic executor will be
trapped in solving a NP-complete problem trying to find a way to traverse the unfeasible
branch.

2.5 Attack Analysis

In this section we present how we tested our approach using KLEE using the same
methodology employed to analyse the 3SAT approach in Section 2.4.1.1.

2.5.1 Running the n-clique checking code with KLEE

We simulated the task of an attacker running KLEE against the k-clique checking. Actually
this task is by far simpler than the one an actual attacker has to perform as in the real case,
for example, a symbolic executor on binary code has to be executed or the binary has to be
decompiled to C language before attempting the analysis.

We replaced the random generation procedure listed above between lines #15 and #33 with
the following code, containing a KLEE declaration function (klee_make_symbolic) and
constraints (klee_assume). Furthermore dynamic allocation of memory is replaced by static
allocation:

15’: klee_make_symbolic(idx,NODE_NUM*sizeof(int),"idx");

16’: for (i=0; i<NODE_NUM; i++) {
17’: klee_assume((idx[i] >= 0) & (idx[i] < NODE_NUM));
18’: }

19’: for (i=0; i<NODE_NUM; i++) {

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 12 of 52

20’: for (j=0; j<NODE_NUM; j++) {
21’: if (i != j) {
22’: klee_assume(idx[i] != idx[j]);
23’: }
24’: }
25’: }

Line #15’ declares idx as a symbolic array of NODE_NUM ints. For-loops from line #16’ to
line #25’ are used to state that idx is a permutation of the sequence {0,1,2,…,NODE_NUM-
1}.

2.5.1.1 A Sanity Check on a satisfiable problem

Before performing the actual experiment, we need to check that KLEE is the right tool to
address the problem of breaking our obfuscation. To achieve this objective, we try and use
KLEE to solve a very small k-clique problem that is satisfiable, i.e., for which a clique of size
k exists. It should be noted, however, that the problem used in the sanity check is (i) smaller
than the problem that we will use to obfuscate data and (ii) our obfuscation scheme is based
on a probably-hard to verify un-satisfiable formula (as described by Selman et al. [Sel96]),
much harder to address on average than a randomly generated satisfiable formula, because
in common solver implementations the latter requires a more exhaustive search.

As a sanity check we run KLEE on various k-clique problems derived from satisfiable
3SAT formulas. For example, on the 4-clique problem defined after the (satisfiable) 3SAT
formula shown above KLEE produces two test cases, the second one consisting of:

ktest file : 'klee-last/test000002.ktest'
args : ['main.bc']
num objects: 2
object 0: name: 'model_version'
object 0: size: 4
object 0: data: 1
object 1: name: 'idx'
object 1: size: 48
object 1: data: '\x00\x00\x00\x00\x03\x00\x00\x00\x0b\x00\x00\x00\x07\
x00\x00\x00\n\x00\x00\x00\x01\x00\x00\x00\t\x00\x00\x00\x02\x00\x00\x00\x06
\x00\x00\x00\x05\x00\x00\x00\x04\x00\x00\x00\x08\x00\x00\x00'

From lines starting with ‘object 1:’ we can recover the values of the vector idx:

0,3,11,7,10,1,9,2,6,5,4,8

The first four elements of ‘object 1’ identify a 4-clique in the graph. Figure 5 shows the
identified subgraph.

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 13 of 52

Figure 5 – A 4-clique found by the symbolic executor KLEE

The result of the sanity check allows us to consider KLEE as the right tool to break data
obfuscation, it applies static analysis to elaborate a solution to the k-clique problem.

2.5.1.2 Running KLEE on a unsatisfiable problem

In the actual experimental assessment, we run the KLEE symbolic executor on an k-clque
(unsatisfiable) problem with 4 variables and 17 clauses. However, the problem is so complex
to solve that KLEE is unable to conclude the analysis on a Linux 64-bit machine, 8 cores
Intel i7, with 6 GBytes of RAM. Executions ended with an out of memory error after
approximately 8 hours.

Our intention was to plot the analysis time increase for problems with different the number of
variables (as we did for SAT). However, the obfuscation is so hard to break that a state-of-
the-art static analysis tools such KLEE, fails even on the smallest problem size.

Our conjecture is that our mapping from SAT to k-clique is very hard to revert. Our intuition is
that KLEE applied to the k-clique problem is not able to recover the original SAT problem,
but a much more complex one (usually solvers always work with SAT formulas), and this
requires too much time to be solved.

Eventually, our novel data obfuscation scheme overcomes the weakness problem that we
detected on 3SAT by Moser at al. (static analysis could, in fact, break it) but sill satisfy by
construction the three obfuscation requirements.

In fact, while KLEE was effective in breaking opaque constants based on 3SAT, the same
tool could not break opaque constants based on k-clique, even at the smallest problem size.

2.6 Dynamic XOR Masking

In this section we present the second major improvement we performed to data obfuscation
techniques developed during the first year of the ASPIRE project, namely the “Dynamic XOR
Masking” technique.

As remembered in the introduction, a XOR Masking transformation is defined as:

pvve ⊕=)(

Dynamic XOR Masking is a variant of XOR Masking, where the mask p which is involved in
the transformation is defined at run time instead of being statically decided at obfuscation
time. Thus, the encoding function becomes:

()_)(vdynmskvve ⊕=

where dynmsk_v() is a function that returns a randomly drawn number at the first invocation
and keeps returning the same number on successive invocations. As an example, Dynamic
XOR Masking can be used to protect code from multiple memory scans across executions

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 14 of 52

because masks are randomly changed at every new run. The code for the function
dynmsk_v() follows:

Table 2 – XOR Masking parameter generation function

static TYPE m = -1;
TYPE dynmsk_v() {
 if (m == -1) {
 m = random() % MAXTYPE;
 }
 return m;
}

Depending on the size of the obfuscation variable v, namely char, short, integer, or long,
constants TYPE and MAXTYPE are defined accordingly. Table 3 shows (a) a simple C code
snippet (on the left), (b) a version obtained applying static XOR Masking (in centre) and (c) a
version obtained applying dynamic XOR Masking (on the right). The clear code consists in
two variable initializations and one statement involving an addition. In the static variant, we
decided to use a masks 10, 11 and 12 respectively to encode x, y and z values. In the
dynamic case those constant masks are replaced with calls to functions dynmsk_x,
dynmak_y and dynmsk_z respectively.

Table 3 – Static vs Dynamic XOR Masking

Clear Code Static XOR masking Dynamic XOR Masking

1: x = 3;
2: y = 8;
3: z = x + y;

x = 3^10;
y = 8^11;
z = ((x^10)+(y^11))^12;

x = opcnst_3()^dynmsk_x();
y = opcnst_8()^dynmsk_y();
z = ((x^dynmsk_x())+
 y^dynmsk_y()))^dynmsk _z();

2.6.1 Handling variable initializations

Often a variable is initialized with some constant, like in lines 1 and 2 of the example in Table
3. In applying XOR Masking, such constants are replaced with XOR expressions. In the
static case, variable initialization XOR expressions such as “3^10” are evaluated by the
compiler at compiling time and original constants, namely 3 in the example, are no more
present in the compiled code. This is not the case when dynamic XOR masking is applied. In
this case, every constant must be replaced with a call to the opaque constant generating
function, to avoid the possibility of recovering constant values by means of inspecting the
compiled code.

2.7 Implementation

We implemented the algorithms presented above in a component of the ASPIRE Compile
Tool Chain (ACTC), named “Data Obfuscator”. A detailed description of how the Data
Obfuscator component was developed is given in D2.01. In the present Section, we describe
how we extended such process to include the dynamic variants.

2.7.1 Updated Obfuscation Process

The data obfuscation process is updated according to in the following steps:

1. Variable definitions and uses are obfuscated according to code annotations.
Protection requirements are expressed in the source code by using annotations as
described in Section 4 of D02.1 “Early White-Box Cryptography and Data Obfuscation
Report”;

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 15 of 52

a. If Dynamic XOR Masking is used, XOR Masking parameters are replaced with
calls to dynmask functions and constants used in variable initialization with
calls to functions (opaque-constant generator function in what follows) that
compute the required opaque constants on-the-fly;

b. otherwise constants, used as masks and modulus in encoding and decoding
expressions, are replaced with opaque-constant generator functions that
compute the required value at run-time;

2. Files containing definitions for the opaque-constant generator functions are created
and have to be added to the compilation process.

Step 2 of the process is the heart of the novel obfuscation technique and we present it in
more detail next.

2.7.2 Constant-generating functions creation process

Figure 6 depicts the process for generating a function that computes an opaque constant.
The input consists of the constant which is supposed to fit an NBITS integer. The output is a
file containing the definition of a function which returns the value of the input constant. The
value of the opaque constant is the result of the computation described in previous parts of
this section. In Figure 6, the black dot represents the beginning of the process. In the rest of
this subsection, we will present the whole process.

Figure 6 – Process to create code for constant-generating functions

2.7.2.1 3SAT Problem Generation

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 16 of 52

The first step is the generation of a random initial 3SAT problem. Following the work of
Selman et at. [Sel96], we used a generator based on the “fixed clause length model” which is
characterised by three parameters: the number N of variables, the number L of literals per
clause and the number M of clauses. We left N to be specified by the developer by means of
a specific annotation parameter as documented in D5.02 “ASPIRE Offline Compiler Tool
Chain”. By changing the number of variables N the developer has a mean to tune the
hardness of the generated 3SAT problem (and consequently the effort required to tamper
with the obfuscated code) versus the amount of memory overhead required to store the
related k-clique problem. In our case, L, the number of literals per clause is fixed to the value
3 by definition of 3SAT. The number M of clauses, is fixed to floor(4.3*N) that will produce a
hard-to-solve SAT problem with a high probability, as reported by Selman et at [Sel96].

2.7.2.2 3SAT Problem Satisfiability

This SAT problem is then checked using a SAT procedure to verify it is unsatisfiable. The
generation step is repeated until an unsatisfiable formula is found. While an existing SAT
solver could be employed for the task, we implemented from scratch the Davis-Putnam
Procedure following the algorithm reported by Selman et at. [Sel96]. The rationale for the
choice relies on one hand on the fact that SAT problems of the size from 4 to 40 variables
and 17 to 172 clauses, as the developer is suggested to specify, can be easily solved by our
in-house developed SAT solver. On the other hand we don’t add a dependency on an
external tool that would have made the deployment of the tool more complicated. Our version
of the Davis-Putnam Procedure is implemented in the Python programming language.

2.7.2.3 Graph Generation

Once an unsatisfiable formula is found, the graph G prescribed by Karp’s reduction to the k-
clique problem is generated and its encoding as adjacency matrix is added to the output file.

int t_00105_ASPIRE_opaque_constant_13(int n) {

...

int res = 0;

label_0:

 for (k=0; k<n; k++) {

idx[k] = rand() % s;

 }

 for (i=0; i<n-1; i++) {

 for (j=i+1; j<n-1; j++) {

 if (!t_00105_ASPIRE_opaque_constant_13_m_0[idx[i]][idx[j]]) {

 res += 0*(1<<0); // bit 0 of the constant

 goto label_1;

 }

 }

 }

label_1:

...

return res;

}

Figure 7 – Structure of the constant generation function

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 17 of 52

By construction the matrix will have a size of 29M chars, where M is the number of clauses,
i.e. M=floor(4.3*N).

2.7.2.4 Constant-generating Function Forging

The developer, using another annotation parameter, specifies the number NBITS of bits
required to store the constant value. For each bit, a matrix is generated as described in the
steps above. Figure 7 shows a snippet of the generating function. The first loop randomly
generates a set of vertexes. The second loop verifies whether the subgraph induced by the
set of vertex is a click. If it is not, which is always the case by construction, the bit is set to
the required value. The chunk of code is repeated for all NBITS. Variable res collects the
value of the constant which is returned on exiting the function.

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 18 of 52

Section 3 Task T2.2: White Box Cryptography

Section Authors: Brecht Wyseur, Patrick Hachemane (NAGRA)

3.1 Introduction

Task 2.2 is a task that runs for the first 2 years of the project, M1-M24. The activities of the
first year have been reported in Deliverable D2.01 “Early White-Box Cryptography and Data
Obfuscation Report”. D2.01 comprises an introduction to white-box cryptography with a brief
overview of the state of the art, followed by a detailed description of the activities conducted
in the first year. This included

• The design of the White-Box Tool for ASPIRE (WBTA) (Section 10 of D2.01), which
was delivered as Release 1.00 in M12, and

• Research on new WBC schemes with provable security (Section 11 of D2.01).

In M18, an updated WBTA was delivered, tagged as Release 1.2.0, and reported upon in
Deliverable D2.04 “White-Box Crypto Library and Code Generation”.

In this deliverable, we report the progress since D2.01 (M12) and D2.04 (M18). In particular,
this captures the following progress:

• The design and implementation of a white-box AES (Advanced Encryption Standard)
implementation, where the key is hardcoded into the source code that is generated by
the White-Box Tools. This implementation is a step back from the provably white-box
constructions in order to achieve performances that are acceptable for the ASPIRE
use-cases, as foreseen in the DoW. Because of the trade-off between performance
and security, we call this implementation a time-limited white-box implementation,
i.e., a white-box implementation that should only be considered secure for a limited
amount of time. We elaborate on this in more detail in Section 3.2.

• The design and implementation of a dynamic-key white-box AES implementation.
This is an implementation where the key is not hardcoded into the source code at
generation time, but where the implementation can be instantiated later-on by using
an obfuscated (protected) key. We elaborate on this in more detail in Section 3.2.

• Improvement on the White-Box Tools to support these implementations. In
particular, to support testing them, and to support dynamic-key white-box generation
processes; these are complex because of the additional server-side function for
protecting the key that needs to be handled with.

We also investigated how white-box cryptography can be used for diversifying and hiding
the VM bytecode as has been developed in Task 2.3. In this investigation we followed
different strategies

• To investigate how the white-box code generation tools could be used to diversify the
VM bytecode. The white-box tools receive a seed as input that allows to generate
seed-dependent diversified white-box implementations. We investigated how this
approach could be used for generating diversified bytecode instances. Unfortunately,
this is challenging to adopt in the current approach of how VM bytecode is translated
using the cross translator. It would require significant modifications on the translator
tools. Modifying the white-box tools to support this is not feasible, because the white-
box tools cannot receive as input code definitions; the definition of the schemes that
need to be generated are hard-coded into the white-box modules.

• To investigate how white-box can help to hide the VM bytecode. We concluded that a
pragmatic solution requires two steps: (1) to implement an on-demand bytecode
decryption scheme, which uses a cryptographic algorithm to decrypt the bytecode just

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 19 of 52

before it needs to be executed, and then (2) to white-box that cryptographic
algorithm.

Beyond the initial scope as describe in the ASPIRE Description of Work (DoW), we also
implemented support for the XTS mode of operation. We implemented this to support the
SFNT use-case. This required additional white-box implementations (both encryption as
decryption were needed for this) as well as additional support in the White-Box Tools.

The work of this task has been split according to the complementary expertise of partners
involved in the collaboration. As expert on cryptography, at NAGRA, research was more
focused in development of the part responsible for the generation of white-box cryptography
code. As expert on source code transformation, at FBK research was devoted to the
implementation of code rewriting transformations.

In particular, FBK extended the tool that was delivered at M12, to support the new dynamic-
key white-box AES delivered at M24. This required:

• Adaptation of the content of the XML configuration file, that the source code analysis
part fills to drive the execution of the white-box cryptography code generation
algorithm. In fact dynamic-key white-box AES requires new data to be used during
code generation, such as the value of the initialization vector, initially not included in
the tool delivered at M12;

• Adaptation of the signature of the white-box function to call, that is changed after M12
due to new and different parameters to be passed to the dynamic-key variant;

• Adaptation of the source code transformation for the dynamic-key variant. In fact, on
the static-key case, the variable holding the key value should be removed from the
code. Conversely, on the dynamic-key case, the variable needs to remain in the code
and accept the (always changing) value of the dynamic key.

• Emission of a detailed log file to document the code transformation performed by this
step.

3.2 White Box Cryptography

We have implemented two families of white-box implementations: a fixed-key white-box AES
implementation and a dynamic key white-box AES implementation. The AES cipher was
selected because this was needed for the ASPIRE use-cases, as identified in Year 1 of the
ASPIRE project.

A fixed-key white-box AES implementation, in decryption mode, was delivered on April
13, 2015 and validated on test cases in the white-box tools and integration in the ACTC. This
delivery is a set of python scripts, which we denote as a “white-box module”. The scripts are
invoked by the White-Box Tool for ASPIRE (WBTA) and receive as input a seed, the key that
needs to be hardcoded into the implementation, and additional parameters that allow to
tweak the generation process. The output of source code (C code and header code) which
the WBTA parses into a C source code file that can be integrated in the application that
needs to be protected.

When this is applied on two test programs that we implemented, this results into an increase
in the application size of 167 KBytes.

In a later delivery, we also provided a white-box AES implementation module that generates
the encryption mode.

A dynamic-key white-box AES implementation, in decryption mode, was delivered on July
16, 2015. This too concerns a set of python scripts, but in contrast to the fixed-key white-box
implementation module, it does obviously not receive a key as input parameter. Instead, the
white-box module will generate additional code that allows transforming a given key into an
obfuscated key that the dynamic white-box implementation is able to parse.

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 20 of 52

Protect-Key

WB-DEC

key O(key)

ciphertext plaintext

Figure 8 – Dynamic-key white-box high-level view

Figure 8 depicts the two functions that are generated and the dataflow between them. The
function that protects a key receives as input the key by which the white-box implementation
needs to be instantiated. This function should reside in a trusted environment like for
example a trusted server. It produces an obfuscated key, which prevents the key itself from
being recovered when recovered during transit or storage at client-side. The second function
is the white-box descrambler itself, which has been generated as such that it can parse the
obfuscated keys as such that the AES decryption operation with a key k is semantically
equivalent to executing the white-box AES decryption function with the obfuscated key O(k).

In the white-box module that has been implemented, the protect-key operation turns a given
16 byte (128 bit) key into a 176 byte obfuscated key.

3.3 White Box Tool for ASPIRE

As explained in the previous section, white-box cryptography (WBC) is a particular
implementation of a crypto algorithm that hides a key so that it is difficult to extract it, even
with the source code at disposal.

Difficult does not mean impossible. Sooner or later, an attacker should be able to extract the
key and access the secrets it protects. For this reason, WBC always should be used in
combination with other protection techniques, like code obfuscation, anti-tampering
techniques, etc. In addition, it should be diversified regarding:

Ø time: periodically, the implementation should be renewed;

Ø space: different implementations should be used for different products, segments, OS
platforms or even single devices.

Renewability and diversity require a tool to generate the implementation, check its
correctness and include it to the product. Therefore NAGRA proposed to develop an ad hoc
tool named White-Box Tool for ASPIRE (WBTA).

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 21 of 52

3.3.1 Overview

Figure 9 – T2.2 process overview

Figure 9 depicts an overview of the replacement of a standard (vanilla) cryptographic
function call by a white-box cryptography (WBC) equivalent.

The vanilla function to replace is first annotated by the user. Then, the source file is used
using the annotation parser (SLP 03.01), which results in an XML input file called source
input. On the other side, in order to decide which primitive and which parameters must be
selected to replace the code, a decision file is used. As of today, the file is hard-coded; it
should be generated or fine-tuned by the ADSS in the next phase of ASPIRE.

Based on these two input files, WBTA generates the replacement code for the specified
cryptographic function (SLP 03.02). The output is used as input of the header inclusion step
(SLP 03.03), in order to flatten the source files. Next, the files are pre-processed and
normalized (SLP 03.04); finally, the call to the vanilla cryptographic function is replaced by
the one to the WBC primitive (SLP 03.05).

3.3.2 Technical choices

In order to ensure code portability, WBTA is written in Python 2.7, including support for
Python 3.x. On the client side, the generated code (functions to process data using white-box
crypto primitives) is in the C language; on the server side, the generated code (script to
protect a dynamic key) is in Python 2.7. Input files are XML-formatted.

3.3.3 Previous steps

As described in document D2.01, WBTA 1.0.0 has been delivered to ASPIRE on 23 Oct
2014, with support for an XOR algorithm (a very lightweight form of encryption useful for tool
demonstration only), with fixed key.

WBTA 1.1.0 has been delivered on 19 Feb 2015 (refer to document D2.04) and introduces
the support of AES, DES and triple DES with fixed key; moreover, ECB, CBC and inverse
CBC chaining modes are supported.

WBTA 1.2.0 has been delivered on 17 Apr 2015 (refer to document D2.04) and integrates a
real primitive for fixed-key AES.

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 22 of 52

3.3.4 M24 achievements

3.3.4.1 Overview

WBTA 1.3.0 has been delivered on 29 Jul 2015 and was documented in the internal working
document WD2.04b. It introduces the support of white-box cryptography applied to a
dynamic key, also known as dynamic WBC. In such case, the key to protect is not static
(fixed) in the application, but is dynamically transmitted during the execution of the
application. This is typically the case of a content key used to descramble a video in a pay-
TV system. In order to protect such a key, it is necessary to protect the original (vanilla) key
on the server side, to transmit it protected, and to use a function on client side that decrypts
the data using the protected key, without revealing the vanilla key. WBTA provides the two
elements:

Ø a protection script, in Python, that protects the vanilla key;
Ø a code fragment, in C, that decrypts a data block given the encrypted data and the

protected key as inputs.

Note that the encryption process does not change: data are encrypted like usual, using the
vanilla key on server side.

Figure 10 – T2.2 process overview - dynamic key

Figure 10 depicts the process. In comparison to Figure 9, WBTA provides the protecting
script intended to be used on the server side to protect the key. This script is used on the
server side to protect the key before delivering it to the client application, as shows Figure
11.

Next sections detail the improvements provided by release 1.3.0.

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 23 of 52

Figure 11 – Dynamic key protection

3.3.4.2 Input data and annotations

In a fixed-key implementation, the used key is hard-coded in the application and used during
the call to the cryptographic function. During WBC replacement, the value of the key is
removed from the code and somehow hidden in the WBC code. This means that the value of
the key must be indicated in the annotation, so that WBTA can obtain it as input to the
generated code.

In a dynamic-key implementation, the used key is dynamically delivered to the application.
After WBC replacement, the key still is delivered dynamically, but in a protected form. As the
size of the protected key may differ from the size of the vanilla one, this value must be
specified as parameter, so that the generated code is able to use it.

These constraints triggered some modifications in the annotation format, as well in the
annotation parser, the source input file and the WBTA itself. All these modifications have
been introduced with support of backward compatibility.

3.3.4.3 Output data and integration to ACTC

As explained before, in dynamic case, WBTA produces an additional output: the script
intended to protect the vanilla key on server side.

No changes were needed in the ACTC itself: this is because dynamic WBC is an offline
protection. This means that the protection of the license key used on client side is done
offline and this is out of the scope of the ACSL (ASPIRE Common Server Logic).

In case of the dynamic WBC, the protecting script is automatically generated during the
phase SC 04.01 of the ACTC build process (see several deliverables D5.0x); it can be
retrieved in the related directory of ACTC output.

3.3.4.4 Examples

WBTA is delivered along with a set of documented examples, also used to validate the tool
at module level (module testing).

Initially, FBK provided a toy example checking the validity of a license.

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 24 of 52

The example has been enriched during previous phases, using different algorithms to
encrypt the license data, with fixed or dynamic key (examples license2, license3, license4,
license5 and license5b).

Two additional examples have been delivered with the last release, specifically related to
dynamic use case.

The first one is named license6. It is derived from the initial example runLicense, provided by
FBK. The difference is that the key used to protect the license is encrypted with a random
key on server side; then, both the encrypted and the random keys are transmitted to the
client and used to decrypt the license. This is a typical case where dynamic WBC can be
used to hide the value of the protecting key.

The second example, license7, is similar to license6, but the license key is protected using
the decryption method of the crypto algorithm, on server side. This means that the dynamic
WBC must hide the encryption method of the algorithm on client side.

In addition to these examples, two examples have been delivered to check the integration of
WBTA and FBK tools with ACTC. The first one, license_aes, has been delivered during
previous phases and is based on a fixed-key implementation. During this phase, the example
license_aes_dynamic has been delivered along with JSON files used as input for ACTC, as
well as the script start_demo.sh, that launches ACTC to compile the application, protects
the keys using the generated Python script, and starts the application to check that the
license can be decrypted using the protected key.

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 25 of 52

Section 4 Task T2.3: Client-Side Code Splitting

Section Authors: Bjorn De Sutter (UGent), Andreas Weber (SFNT)

4.1 Automated detection of code regions to split off

One work item of Task 2.1 as originally described in the project DoW consisted of profile-
guided, multi-objective optimization techniques for program slicing to identify code regions to
split off to protect variables, including source-level support. This work would build on the
already available FBK-provided support for client-server code split point determination from
task T3.1 in WP3.

Already in the first months of year 2 of the project, the consortium discussed this topic
looking for more concrete approaches to start experimenting with, and realized that this topic
would be very challenging.

Even before we raised this issue ourselves with the project advisory boards, the members of
the board (and some other experts at the industrial partners not active within the project
itself) anticipated this issue by pointing out that in general, we should not aim for tools that
automatically detect which code to protect. The mentioned reasons for not doing so included

• the very application-specific nature of the relevant features of assets to protect and
their relations, for which it is very hard if not impossible to develop a generic
identification approach;

• the fact that aliasing hinders precise automated program analysis to such an extent
that in practice the user would have to guide the tools anyway;

• the fact that the user is already annotating a lot of code, thus identifying it, by means
of annotations anyway. It is consequently not much of a burden to require the user to
explicitly identify all code that needs to be protected/transformed.

In summary, abandoning this work item would not endanger the practical usability of the
ACTC, and hence not endanger the exploitation of the project results.

Furthermore, abandoning this work item for the client-side code splitting protection does not
impact any other protection in the project. While several other protections will build on the
client-side code splitting to implement advanced protection forms, none of those depend on
the automated identification of code regions to be protected.

By contrast, abandoning this work item would free resources (at FBK) to spend on other work
items considered more critical for the project.

For these reasons, we decided to directly follow the advice of the advisory boards and the
external experts, and we decided to abandon this work item.

4.2 X-Translator:

The X-Translator that was provided as background to the project has in the meantime been
enhanced independently of the project. In SFNT it is used as a proof of concept for
experimenting in this direction. Enhancements are also re-used here inside the project. To
support the project-specific adaptations had to be put in place and a test framework to
support the quality level for ASPIRE had to be developed.

The further development focused on providing support for more complex code fragments, so
that larger pieces of an ARM application can be translated into SoftVM (the interpreter
embedded in the protected application) bytecode.

At M12 a translatable code fragment was fairly limited in its capabilities:

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 26 of 52

• It could only consist of a very limited subset of the ARM instruction set.
• It could not use control flow, only straight line code (a single basic block with a single

exit) was supported.
• It is not possible to embed the continuation address into the bytecode but instead the

VM invoking native code must provide this address at run time to the SoftVM.
• The code fragment could not access memory.

The following sections discuss the state at M24. While the work to achieve this state was
done by SFNT outside the project and re-used by the project, we report it here to clarify that
the goals foreseen in the DoW and the year two outlook presented during the first year
technical review have indeed been reached at the end of year 2.

4.2.1 Supporting a larger subset of the ARM instruction set

Support for the following ARM instructions has been added:
• bic reg, reg, imm
• bics reg, reg, imm
• bic reg, reg, reg, shift
• bics reg, reg, reg, shift
• clz reg, reg
• cmn reg, imm
• cmn reg, reg
• cmp reg, imm
• cmp reg, reg
• eor reg, reg, imm
• eors reg, reg, imm
• eor reg, reg, reg, shift
• eors reg, reg, reg, shift
• lsl reg, reg, imm
• lsls reg, reg, imm
• lsl reg, reg, reg
• lsls reg, reg, reg
• lsr reg, reg, imm
• lsrs reg, reg, imm
• lsr reg, reg, reg
• lsrs reg, reg, reg
• mla reg, reg, reg, reg
• mlas reg, reg, reg, reg
• mls reg, reg, reg, reg
• movt reg, imm
• mvn reg, imm
• mvns reg, imm
• mvn reg, reg, shift
• mvns reg, reg, shift
• rsb reg, reg, imm
• rsbs reg, reg, imm
• orr reg, reg, imm
• orrs reg, reg, imm
• orr reg, reg, reg, shift
• orrs reg, reg, reg, shift
• qadd reg, reg, reg
• qadd16 reg, reg, reg
• qadd8 reg, reg, reg
• qsub reg, reg, reg

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 27 of 52

• qsub16 reg, reg, reg
• qsub8 reg, reg, reg
• qasx reg, reg, reg
• qsax reg, reg, reg
• qdadd reg, reg, reg
• qdsub reg, reg, reg
• rbit reg, reg
• rev reg, reg
• rev16 reg, reg
• revsh reg, reg
• ror reg, reg, imm
• rors reg, reg, imm
• ror reg, reg, reg
• rors reg, reg, reg
• rrx reg, reg
• rrxs reg, reg
• rsb reg, reg, reg
• rsbs reg, reg, reg
• rsc reg, reg, imm
• rscs reg, reg, imm
• rsc reg, reg, reg
• rscs reg, reg, reg
• sadd16 reg, reg, reg
• sadd8 reg, reg, reg
• sasx reg, reg, reg
• sbc reg, reg, imm
• sbcs reg, reg, imm
• sbc reg, reg, reg, shift
• sbcs reg, reg, reg, shift
• sbfx reg, reg, lsb, width
• sdiv reg, reg, reg
• sel reg, reg, reg
• shadd16 reg, reg, reg
• shadd8 reg, reg, reg
• shasx reg, reg, reg
• shsax reg, reg, reg
• shsub16 reg, reg, reg
• shsub8 reg, reg, reg
• smlabb reg, reg, reg, reg
• smlabt reg, reg, reg, reg
• smlatb reg, reg, reg, reg
• smlatt reg, reg, reg, reg
• smlad reg, reg, reg, reg
• smladx reg, reg, reg, reg
• smlal reg, reg, reg, reg
• smlalbb reg, reg, reg, reg
• smlalbt reg, reg, reg, reg
• smlaltb reg, reg, reg, reg
• smlaltt reg, reg, reg, reg
• smlald reg, reg, reg, reg
• smlaldx reg, reg, reg, reg
• smlawb reg, reg, reg, reg
• smlawt reg, reg, reg, reg

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 28 of 52

• smlsd reg, reg, reg, reg
• smlsdx reg, reg, reg, reg
• smlsld reg, reg, reg, reg
• smlsldx reg, reg, reg, reg
• smmla reg, reg, reg, reg
• smmlar reg, reg, reg, reg
• smmls reg, reg, reg, reg
• smmlsr reg, reg, reg, reg
• smmul reg, reg, reg, reg
• smmulr reg, reg, reg, reg
• smuad reg, reg, reg
• smuadx reg, reg, reg
• smulbb reg, reg, reg
• smulbt reg, reg, reg
• smultb reg, reg, reg
• smultt reg, reg, reg
• smulwb reg, reg, reg
• smulwt reg, reg, reg
• smusd reg, reg, reg
• smusdx reg, reg, reg
• ssax reg, reg, reg
• ssub16 reg, reg, reg
• ssub8 reg, reg, reg
• sxtab reg, reg, reg, ror
• sxtab16 reg, reg, reg, ror
• sxtah reg,reg, reg, ror
• sxtb reg, reg, ror
• sxtb16 reg, reg, ror
• sxth reg, reg, ror
• teq reg, imm
• teq reg, reg, shift
• tst reg, imm
• tst reg, reg, shift
• uadd16 reg, reg, reg
• uadd8 reg, reg, reg
• uasx reg, reg, reg
• ubfx reg, reg, imm, imm
• uhadd16 reg, reg, reg
• uhadd8 reg, reg, reg
• uhasx reg, reg, reg
• uhsax reg, reg, reg
• uhsub16 reg, reg, reg
• uhsub8 reg, reg, reg
• umaal reg, reg, reg, reg
• umlal reg, reg, reg, reg
• umlals reg, reg, reg, reg
• sub reg, reg, imm
• subs reg, reg, imm

4.2.2 Embedding the continuation address

At M12 binary code splitting did not yet embed the continuation address into the bytecode,
but instead pushed it onto the stack prior to invoking the SoftVM. This provides the SoftVM
with the information where the native execution should continue when leaving the bytecode.

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 29 of 52

Although easy to implement, this call-like scheme is fairly limited as it cannot support code
fragments with multiple exit points, e.g. an if-statement, where the true path passes control to
address 0xC001C0DE and the false path to address 0xBADC0DE. To support this kind of
fragment the X-Translator was extended to be able to embed one or more continuation
addresses inside the bytecode so that the bytecode image itself knows where native
execution should continue.

A simulated protection workflow is used to test X-Translator/SoftVM features end to end on
real ARM hardware without the need of prior ACTC integration. This is done by simulating
Diablo’s binary rewriting (which extracts native code from the binary in the ACTC) using
different versions of handwritten ARM assembly.

With the above implementation a sample application can invoke the SoftVM by jumping to
the associated native code stub. The SoftVM than interprets the VM image (at this stage still
straight line code) and jumps back to the bytecode embedded continuation address.

4.2.3 Supporting shared objects

Support for shared objects has been added to the X-Translator & SoftVM already outside the
project. This provides the baseline to support Android native support, as all Android native
code is provided via shared objects.

With shared objects it is no longer possible to embed the continuation address as an
absolute address into the bytecode, because it is not known at protection time but only at run
time. To solve this, the symbols inside the JSON file that describes the extracted native code
fragment to be translated by the X-translator no longer define absolute addresses but instead
offsets from the shared object’s base address. The base address is assigned by the dynamic
linker when it loads a shared object into memory. The assembler glue code expects an
absolute continuation address from the bytecode, so it is the bytecode’s responsibility to
calculate the address at run time by adding the embedded offset to the base address of the
shared object. To do this the SoftVM interpreter (vmExecute) retrieves the base address
from the dynamic linker and passes it to the bytecode as a part of the machine context.

4.2.4 Post-Linker interface

Embedding the continuation address inside the bytecode results in a chicken-egg problem:
Before the bytecode can be generated the shared object’s memory layout must have been
fixed so that the final addresses are known. But finalizing the memory layout requires the
bytecode images as these must be part of the shared object’s memory image. To solve this
problem the bytecode is generated twice. During the first generation the addresses are not
known and instead dummy values are used. The purpose of the resulting bytecode is just to
learn its size, so that the subsequent layout process can finalize the memory layout. Once
the memory layout is fixed, the bytecode is generated again, this time using the real
addresses instead of the dummy values. Afterwards the shared object is patched by
replacing the placeholder bytecode from the first generation with the final bytecode from the
second generation.

In ASPIRE the layout process and the creation of the final binary is done by Diablo. This
means Diablo must be able to pass the symbol’s final addresses to the X-Translator and also
receive the final bytecode, so it can write it into the binary. Therefore the X-Translator’s
functionality was also made available as a shared object and a new function
(bin2vm_diablo_phase2) was added, so Diablo can simply call the X-Translator to
retrieve the final bytecode. This function accepts a buffer containing the JSON file content as
a string and returns the generated bytecode as a linked list. It is expected that the passed
JSON file defines addresses for all symbols. The order of the returned list follows the chunk
definition from the JSON file. The list can be freed with the function
bin2vm_free_vmimages_arm.

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 30 of 52

4.2.5 Chunk internal control flow

The now available chunk internal control flow was made available for the use inside ASPIRE.

4.2.6 Chunk test framework

To support the quality level required by ASPIRE the framework has been extended. The test
framework from M12 includes semi-automatic generation of test case data to ensure the
bytecode versions behave like real ARM hardware. Support for new instructions has been
added to also assure good test coverage. Because that framework only targets individual
ARM instructions, it was not suitable to assist development and quality assurance of chunk
internal control flow, symbol support/embedded continuation address and multi-exit support.
To also enable test driven development and automatic unit tests for these features the X-
Translator has been extended to also support the definition and execution of test cases for
complete chunks.

In this second test framework the test cases are defined inside a JSON file. So in addition to
the basic blocks and edges a chunk optionally can also define a list of test cases. Each test
case defines the input and the expected output values for the machine context. Any register
not included in these lists will be set to zero prior to invoking the SoftVM and it is expected
that the bytecode does not alter these unspecified registers.

A test case might look like this:
{ "input": {

 "cpsr": "0x00000000", //No flags.

 "r0": "0xDEADBEEF",

 "r1": "0xDEADBEEF",

 "r2": "0x65",

 "returnAddress": "0x0" },

 "expected_output": {

 "cpsr": "0x60000000", //Z-flag, C-flag.

 "r0": "0x13ba",

 "r1": "0x65",

 "r2": "0x65",

 "returnAddress": "0x1" }

}

To enable execution and verification of these test cases the X-Translator’s post-linker
interface was extended, so that bin2vm_diablo_phase2 does not only return a list of
bytecode images for the given JSON file, but that each bytecode image is optionally
accompanied by a list of test cases. Each test case contains a machine context with the input
values and another machine context with the expected output values.

The X-Translator was modified, so it supports a new test mode, which can be activated with
the command line switch --phase 3. In this testmode the X-Translator first translates the
JSON file using the post-linker interface and then additionally executes each bytecode image
with all its test cases in a SoftVM where it checks if each test case invocation produces its
expected values.

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 31 of 52

4.2.7 Integrating the LLVM Interpreter (lli)

In parallel to ASPIRE, SFNT modified the original SoftVM interpreter to leverage the lli
(LLVM Interpreter) as an execution engine. This supports easier diversification of the
bytecode. In ASPIRE, the improved lli-based SoftVM is now used as well.

4.2.8 Supporting memory access

Enabling for ASPIRE the use of the new capability of the SoftVM to access memory of the
application required adaptations of the X-Translator.

• Add support for an artificial address_producer instruction that loads a register with
the absolute address of a named memory location.

• Extend the chunk test framework with the ability to define and verify test cases
involving memory.

• Translate ARM’s various load and store instructions into equivalent LLVM-IR.

In addition the Instruction-Selector Interface was extended to deliver the correct information
to Diablo.

An address_producer is an artificial instruction that behaves like a mov reg, imm where
the immediate can occupy 32bits and corresponds to a symbol value. This enables the
bytecode to address arbitrary memory locations inside the ASPIRE-protected shared object.
Such an instruction cannot be natively available on ARM because every instruction has a
length of 4 bytes (32bits) making it impossible to fit an opcode and a 32bit immediate into
one instruction. Actual ARM code uses a variety of code patterns to achieve the same result,
e.g. by separately setting the lower and higher 16bit of the target register or using a program-
counter relative load from a reachable constant pool. It is the responsibility of the chunk
extractor (which is Diablo in ASPIRE) to recognize these patterns and canonise them into
appropriate address producers.

Inside the JSON file such an address producer and its corresponding symbol might look like
this:
Address producer:
{"type": "address_producer", "addrsymbol": 7, "addrregister": "r4"}

Symbol #7:
{"name": "a_variable", "address": "0x1234"}

The X-Translator translates this definition into bytecode that loads the absolute address of
“a_variable” into register r4 by adding 0x1234 to the shared object’s run-time base
address and storing the result into register r4. It is the responsibility of the post-linker (in
ASPIRE: Diablo) to generate the JSON file with correct symbol offsets.

For an adequate level of quality, it is important to extend the existing chunk test framework,
so it also supports automatic verification of memory test cases.

The extended test framework allows the definition of memory regions inside the JSON file.
These memory regions only have a meaning for testing and define a length and an
associated symbol.

An example memory region and its associated symbol:

Memory region #3:
{ "symbol": 7, "size": "4" }

Symbol #7:
{ "name": "a_variable", "address": "0x1234" }

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 32 of 52

The test case definition in the JSON file had also been extended, so one can define memory
pre and post images. This might look like this:

Pre image:
{ "mem_id": 3, "image": "0x01000000" }

A matching post image:
{ "mem_id": 3, "image": "0x10000000" }

The extended test case includes the 4 byte variable a_variable, which lives in memory.
Before executing the test case the framework initializes the variable with the integer 1
(0x01000000 in little endian) and after executing the chunk under test, it will check if the
variable had been updated by the chunk to contain the value 16 (0x10000000 in little
endian).

Supporting these memory test cases requires additional support in the X-Translator, because
the bytecode contains hardcoded memory addresses. Therefore the X-Translator learned a
new test mode (command line switch --phase 3) that behaves very similar to the bytecode
generation during the post-linking step (bin2vm_diablo_phase2). The difference is that
this mode does not hardcode the memory addresses as defined by the JSON file but instead
dynamically allocates the memory regions and uses the addresses returned by malloc for
the corresponding symbols. This way the generated bytecode is tailored towards X-
Translator’s own address space allowing its execution by an embedded SoftVM. The
bytecode generation does not only return the bytecode for each chunk, but also a list of test
cases. In addition to the register input and expected output values, each test case also
carries a list of memory behaviours. A memory behaviour specifies the expected behaviour
of a memory region by containing a pointer to the region and its pre and post image.

When running in test mode the X-Translator verifies each chunk against all its test cases. To
verify a test case the X-Translator first initializes the registers with the input values and the
memory regions with the pre images and then executes the chunk with the embedded
SoftVM. Once the execution finished it checks if the actual output (register values and
memory content) matches the expected output as defined by the expected register values
and the post images.

With the ability to define unit tests for memory operations it was fairly straight forward to
implement and verify the translations for ARM’s load and store instructions. Currently the X-
Translator supports the following load/stores:

• ldr reg, [reg]
• str reg, [reg]
• ldr reg, [reg, imm]
• str reg, [reg, imm]
• ldria<!> reg, { reg_list }
• stria<!> reg, { reg_list }
• strda<!> reg, { reg_list }
• ldrda<!> reg, { reg_list }
• strdb<!> reg, { reg_list }
• ldrdb<!> reg, { reg_list }
• ldrib<!> reg, { reg_list }
• strib<!> reg, { reg_list }
• push { reg_list }
• pop { reg_list }

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 33 of 52

4.2.9 Tool versioning and automated release builds

After initial integration of the X-Translator into the ACTC, various bugs had been discovered
requiring bug fixes. This lead to a relatively high release frequency, which demonstrated the
need for strict versioning, automated packaging and automated regression testing.

To support strict versioning the ability to return a version string was added to each binary
component of an X-Translator release build. Currently an X-Translator release includes the
following binary components:

• xtranslator: Executable that provides X-Translator’s command line interface.
• libbin2vm.so: Library that provides the Instruction-Selection and Post-Linker APIs

and implements the actual translation from JSON to bytecode.
• libsoftvm.so: SafeNet’s traditional stack based SoftVM built as an x86 library,

used by xtranslator to execute test cases.
• libwandivm.so: The LLVM-based SoftVM built as an x86 library, used by

xtranslator to execute test cases.

The version string consists of the following elements:

• Git tag: The name of the release, e.g. EU_RELEASE_3.1.3. Development builds are
not tagged and identify themselves with an empty string.

• Build machine: Username and hostname of the machine that performed the build.
Official releases identify themselves with aspire@aspirevm.

• Git hash: The source tree’s commit-id the build was created from.
• Configuration: The build configuration, e.g. verbose/non-verbose, release/debug.

The build scripts had been modified to collect this information and make it available to the
code via defines. The X-Translator learned the new command line switch --version, which
prints the version strings of the components.

To support automated packaging an additional integration script had been added, that
automatically creates a releasable archive from source. This script performs following tasks:

• Build 3rd party libraries (LLVM, Capstone, and YAJL).
• Build a non-verbose version of the X-Translator binary components.
• Build a verbose version of the X-Translator binary components.
• Run the X-Translator unit tests:

o Instruction level unit tests for the traditional SoftVM.
o Instruction level unit tests for the LLVM-based SoftVM.
o Chunk level unit tests for the traditional SoftVM.
o Chunk level unit tests for the LLVM-based SoftVM.
o Memory access unit tests for the LLVM-based SoftVM.

• Collect the contents of the release archive:
o X-Translator non-verbose build.
o X-Translator verbose build.
o Header files for the Instruction-Selection and Post-Linker APIs.
o Source code and build script of the traditional SoftVM.
o Source code and build script of the LLVM-based SoftVM.
o A sample that demonstrates the usage of the X-Translator end to end on a

simple ARM program with the traditional and the LLVM-based SoftVM.
• Create the release archive.
• Build the ARM executables of a special unit test for the traditional and the LLVM-

based SoftVM. This unit test is dedicated to the generated glue code and checks if
the information flow between native ARM and SoftVM is working in both directions.
This makes sure the SoftVM actually receives the values of the physical ARM
registers and that its calculated values correctly end up in the physical ARM registers.

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 34 of 52

With the above automation in place, delivering a new X-Translator release is a four step
process:

1. Use git to tag the desired version of the X-Translator source tree (usually HEAD) with
the release version, e.g. EU_RELEASE_3.1.3.

2. On the ASPIRE-VM: Use git to checkout the desired version of the source tree; run
the integration script to create the release archive.

3. Upload the two ARM executables of the glue code unit test to an ARM development
board; execute them and verify that they don’t report an error. (At the moment this
step is not automated because in the current setup the ASPIRE-VM is not on the
same network as the ARM development board.)

4. Ship the release package (e.g. EU_RELEASE_3.1.3.tar.xz) to Gent University.

Client side code splitting only works reliably if X-Translator and Diablo agree on the same
APIs. To ensure the ACTC uses compatible versions of Diablo and X-Translator, each X-
Translator release is first sent to Gent where it is tested with the latest Diablo. After
successful verification Gent updates the ACTC by replacing Diablo and X-Translator
together.

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 35 of 52

Section 5 Task T2.4: Binary Code Obfuscation

5.1 Control Flow Obfuscation

Section Authors: Bjorn De Sutter, Bart Coppens (UGent)

The basic control flow obfuscation research was advanced in the project, and many results
were hence already reported in D2.06 at M17

Additional research was conducted along two lines of research, which are documented in the
next two sections.

5.1.1 Improving the deployment of existing obfuscations

To improve the deployment of the already implemented support for opaque predicates,
control flow flattening, and brach functions, we worked on two implementation aspects.

Foremost, we extended how the obfuscations are applied to the code: whereas in our initial
implementation, obfuscation transformations were applied stochastically, we now support the
profile-guided application of obfuscations. In this mode, the obfuscator will focus on
infrequently executed program points to insert the obfuscating instruction sequences, such
that the run-time overhead is minimized.

Figure 12 shows the overhead of applying the branch function insertion and opaque
predicate insertion obfuscations, using either the original, stochastic method or the profile-
guided method (where the X percent least frequently executed blocks are selected per
function) on the bzip2 SPEC2006 benchmark. The x-axis indicates the percentage of
transformed code blocks, and the y-axis the execution time overhead. As can be seen, the
stochastic method already introduces an overhead when only 10% of the blocks are
transformed, compared to 0% overhead from the profile-guided approach. The profile-guided
approach consistently produces less overhead, except for when all code blocks are
obfuscated, in which case both methods produce the same result.

Figure 12 – Overhead comparison between stochastic and profile-guided obfuscation

Secondly, we debugged the implementation of the existing obfuscations. In particular, we
developed the necessary IR (internal representation) bookkeeping functionality to maintain

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 36 of 52

all IRs in a fully coherent state. Before we developed this functionality, the obfuscations in
Diablo could only be applied as the very last protection step in Diablo: The IR data structures
was partially broken as a result of their application, which blocked the execution of new data
flow analyses as needed to support additional protections later on in the execution of the
obfuscator. In the now extended version, all IR data is correct and complete enough to
support advanced later transformations, such as those needed for the code mobility
protection developed in WP3.

All of these improvements are delivered as part of prototype deliverable D2.07.

5.1.2 Flexible, two-way opaque predicates

In D3.04, we report the research performed at UGent into delay data structures, i.e., data
structures that can covertly store the results of attestations & attestation verifications to hide
the direct link between a failed attestation/verification, and the triggered reaction.

Figure 13 – Principle of flexible two-way opaque predicates

For the goal of improving binary control flow obfuscation, we researched the use of the same
data structures for flexible two-way opaque predicates.

Figure 13 visualizes the principle of such two-way predicates. On the left, two (independent)
code fragments from the program's control flow graph are depicted. On the right, the
transformed fragments are shown. The red and green mark the basic blocks belonging
together in the original code. But from the restructured control flow graph, this relation is no
longer apparent: in the restructured graph, all blocks are connected to all blocks.

The two primitives on top of the restructured graph "setPredTrue" and "sedPredFalse"
denote invocations of status-setting functions of a flexible data structure API, the
"getPredicate" denotes an invocation of the a status-querying function of the API. For more
details about those APIs, we refer to D3.04 Section 5.1.5. Here, the point is that those data
structures are defined outside the obfuscator. They are defined by the user of the obfuscator
which gives that user much more flexibility in choosing different data structures than when
only built-in data structures of the obfuscator could be used.

By using those APIs and data structures, that are not known by an attacker in advance
because they are not limited to a list of builtin data structures, the obfuscator can hide the
relatively simple nature of this protection. The fact that the conditional branch based on the
predicate will evaluate in both directions during a program's execution also ensures that the
protection will withstand dynamic attacks that eliminate conditional branches of which the
attacker observed that they evaluate to only one direction during execution on representative
inputs. Such attacks can easily break static opaque predicates, but not our flexible two-way
predicates.

Moreover, nothing prevents the user of the obfuscator to instantiate the flexible data
structures by means of data structures already present in the program to be protected.
Instead, the user is adviced to so. In that case, the functions invoked to implement the

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 37 of 52

setPredTrue, sedPredFalse, and getPredicate primitives will also be invoked as part of the
normal execution of the program. So the semantics of those functions now become part of
the original program semantics, as well as of the protections' semantics. Their run-time
behavior will therefore feature less invariants, and will hence be harder to comprehend, and it
will become harder for the attacker or for a de-obfuscation tool to separate the application
code from the protection code, and to abstract away from the protected code. In other words,
it will become harder to undo the protection.

The need for this form of protection, as an extension of the binary code obfuscations already
mentioned in the project description of work, was inspired by a dynamic attack proposed by
Saumya Debray at all in 2014, and published more extensively in 2015 [Yad15]. In this way,
the project adapts to evolutions in the never ending arms race between offensive and
defensive security techniques.

To inject flexible two-way opaque predicate, Diablo performs the following steps:

• Choose one of the user-defined predicates of the provide data structure.
• Choose 2 code blocks in the program’s control flow that will be linked with the two-

way opaque predicate.
• Both code blocks are split into two parts: each now consists of a predecessor and a

successor.
• A new code fragment is injected, which contains a call to query the state of the

predicate, and a conditional jump that depends on the result of this query.
• A call to a setter-function of the predicate is injected at the end of each predecessor

block. The arguments are automatically chosen such that both calls set the predicate
to the opposite value.

• Control flow is redirected from the end of each predecessor block, i.e., after the call to
the setter-function, to the new block containing the call to the query function. The
outgoing edges from the conditional jump in this block are directed to the successor
blocks. These edges are added in such a way that this block redirects the control flow
to the correct successor block for each of the predecessor blocks, depending on the
predicate value.

Control flow is redirected from the end of each predecessor block, i.e., after the call to the
setter-function, to the new block containing the call to the query function. The outgoing edges
from the conditional jump in this block are directed to the successor blocks. These edges are
added in such a way that this block redirects the control flow to the correct successor block
for each of the predecessor blocks, depending on the predicate value.

Although this line of research is not yet finalized, and our experience with it is hence still
immature, we can already report some evaluation results.

For this research, we used two metrics to check the cost of this transformation. We used size
increase of the program after transformation and the increase in execution time. We have
implemented the transformation for ARMv7 and executed the code on a development board
which has 1GB DDR3 RAM and a quad-core ARM Cortex A9-processor. The OS running on
the development board is Linaro 13.08, a Linux distribution.

Benchmarks

To test the overhead of the obfuscation, we transformed libquantum, bzip2 and Helloworld.
Libquantum and bzip2 are two benchmarks of the SPEC2006 benchmark suite.

We tested the transformation using 3 data structures: 2 different implemenations of a linked
list and quantum_reg, a data structure declared in the libquantum source code. We used two
implementations of a linked list to get an overview on the impact of the implementation of the
data structure. The functions, which change the value of the predicates in the first linked list,
allocate and free a lot of memory. The functions of the second linked list only change integer
values. We assume the transformation using the first linked list will slowdown the pro- gram

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 38 of 52

more than the second linked list. We reused the function quantum_addscratch to put the
predicate encoded in quantum_reg on true. We implemented the function to put the predicate
on false by ourself.

We used the linked lists to obfuscate all 3 programs. We only used quantum_reg on
libquantum because we reused a part of the code from the original libquantum binary to set
the value of the predicate.

Table 4 shows for each of the combinations of benchmark and data structure the number of
predicates that was inserted in the program.

Benchmark Data structure Nr. Of inserted
predicates

Helloworld LinkedList1 13

LinkedList2 13

Bzip2 LinkedList1 737

LinkedList2 726

Libquantum LinkedList1 223

LinkedList2 217

Quantum_reg 172

Table 4 – Overview of the benchmarks use to evaluate flexible opaque predicates

Program size

Figure 14 visualizes the increase of the program size for each data structure and benchmark.
We can conclude the program size increases for all benchmarks. This is due to the fact we
link extra code in the binary and add some extra instructions to call the functions which
evaluate the predicate and change the value of the predicates.

Figure 14 – Program size overhead of using flexible two-way opaque predicates.

Program size overhead

Linked List 1

Linked List 2

quantum_reg

Helloworld libquantum bzip2
0

0.4

0.8

1.2

1.6

Benchmark

P
ro

gr
am

 s
iz

e
in

cr
ea

se
 fa

ct
or

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 39 of 52

Execution time

To measure the overhead of the execution time, we measured the original execution time
and the execution time of the transformed program. We made a comparison between those
timings and visualized these in Figure 14.

In this chart we see the number of times the execution time increases for each benchmark
and data structure. We conclude that quantum reg introduces the most overhead of all data
structures. This is due to the fact the function which puts the predicate on true, is large and
complex. The functions which change the value of the predicates in the linked list, are
smaller and less complex.

We can also conclude that the second linked list obfuscation slows down the program less
than the first linked list. We can assign the extra cost for the first linked list to the
implementation of the predicates: allocation and freeing memory are time-consuming.

Figure 15 – Execution times for flexible two-way opaque predicates

A more extensive evaluation, and variations on the two-way predicate scheme are discussed
in Thomas Van Cleemput's master thesis [Cle15].

5.2 Multithreaded Cryptography

Section Authors: Jerome D'Annoville (GTO)

Applications that need to exchange data in a secure way with a server need to embed a
secret to set a secure communication with the application server. In symmetrical
cryptography a master key can be deployed with the application. A key derivation function is
used to generate a dedicated key derived from the master key that is later used to protect a
device dedicated data. An advantage is that the same application can be deployed on all
devices. The constraint is that a master key is hidden somewhere in the application and can
be hacked by an attacker.

This Multi-threaded Cryptography protection proposes to prevent the exposure of a master
key in an application by moving the key derivation operation onto a server that is called
hereafter the Crypto server. Several derived keys are returned by the Crypto server that are
used in parallel in the application to protect data. Among these keys, only one is the valid
key. The recipient of the protect data is able to retrieve the valid data because he is able to
derive the valid key since he is sharing with the Crypto server the way to derive the valid key.

The parallel processing and this overall Multi-threaded protection is not the topmost security
protection. This is typically security provided by complexity and there is no ambition to block
a determined and patient attacker. The purpose is to prevent an attacker to easily connect a

Execution time overhead

Linked List 1

Linked List 2

quantum_reg

Helloworld libquantum bzip2 5MB bzip2 2MB
0

2

4

6

8

S
lo

w
do

w
n

fa
ct

or
 e

xe
cu

tio
n

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 40 of 52

key with the cyphered text produced by the protection and then to determine which is the
valid cryptogram.

5.2.1 Original AES

The AES cipher standard is originally meant to encrypt 128 bits blocks with a 128, 192 or 256
bits keys. The encryption is composed of several steps, based on highly non-linear
permutations of the 16 bytes of the text and XOR operations. The structure of AES is based
on round: it repeats the same operation a certain number of times with substitution-
permutation at each round. There are 10, 12 or 14 rounds according to the key length. There
are nice animations available on Internet such as [Abi11] that explains how AES works.

When the length of plaintext to cipher is not a multiple of 128 bits, it is necessary to pad the
plain text. The padding standard chosen here is Public Key Cryptography Standard (PKCS)
#7 [Kal98].
When several blocks have to be encrypted the mode of operation used is the Cipher Block
Chaining structure (CBC). It creates dependencies between the encrypted blocks and
creates some visible randomness: the encrypted block n-1 is used as the initialization vector
for the encryption of the block n.

The Multi-threaded protection is based on a modified Advanced Encryption Standard (AES)
encryption. For the purpose of the project the AES implemented in OpenSSL
(https://www.openssl.org/) has been used.

5.2.2 Master key

The master key is still embedded in the application but it is ciphered to prevent an attacker to
use or disclose it. The master key is encrypted with the public key of the Crypto server. Only
the Crypto server owns the corresponding private key and then the master key is no more
exposed in the application. A 2048-bit RSA key is used, note that the device only keeps the
ciphered value but do not run the RSA decryption. This is done on the server side only.

5.2.3 Architecture

The new component introduced with this protection is the Crypto Server. The original call to
standard crypto library in the application is replaced by a call to the crypto server and a call
to the CryptoMultiThreaded library. As shown in the Figure 16the Derived keys are generated
by the Crypto Server and are returned to the Application that calls the CryptoMultiThreaded
to cypher the plain text (PT) in to several ciphered texts (CT).

The seed that is returned by the Crypto Server enables to retrieve the valid cypher text
among the set of cipher texts passed to the Application server. The same seed is used to
determine the permutation rule during the parallel AES rounds processing.

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 41 of 52

Application
Crypto Server

Derivation function

Application
Server

Derivation function

Request derived keys,
fingerprint

Derived keys, seed
Derived keys, seed

PT

CT1, CT2, ...CTn
seed

CT1, … CTn, seed,
fingerprint

Figure 16 – Architecture of the Multi-Threaded Crypto protection

The Crypto Server and the application server shares the master key, the Derivation function,
and the number of iterations of the Derivation function.

The Pseudo Random Number Generator (PRNG) that is used to determine the permutation
during the obfuscation in the CryptoMultiThread library must be the same as in the
Application server.

At the beginning of the exchange between the application and the applicative server, the
application requests keys to the cryptographic server to perform the encryption with. The
application gives to the cryptographic server

5.2.3.1 Crypto server

The purpose of the Crypto server is to generate a seed and several derived keys from a
master key given as input. This server provides a simple service that could be generic: there
is no specific application data to maintain over sessions and required arguments are
provided as input by the calling application. The key derivation process is shared by the
Crypto server and the Application server. Then a contract has to be set to enable to retrieve
the same derived key on both servers. Then some configuration data are required that are
application specific:

• The derivation function that is used can be specific for an application
• The hashing function used by the derivation must be determined as well for an

application
• The iteration number used in the derivation process must be configured for an

application

For the project the derivation function, the hashing function and the iteration number are
fixed in order to simplify the implementation of the crypto server then no configuration is
required

The Key derivation Password-Based Key Derivation Function 2 (PBKDF2) [Kal00] is used as
derivation function.

The seed is randomly generated.

The way to set the position of the valid key must depend on something that is unknown on
the client side and that changes for each occurrence of deployed application. The master key
is ciphered in the application and cannot be retrieved by the attacker. The seed is generated
on the Crypto server side for each installed application. The function used by the Crypto
server to determine the position of the valid key in the set of keys returned to the application
depends of the master key and the seed:

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 42 of 52

F (master_key, seed, number_of_keys) = (master_key ⊕	seed) % number_of_keys

The number of keys is fixed for the project. This is the level of parallelism of the AES, check
the 5.2.6 paragraph on performances about this.

5.2.4 CryptoMultiThread library

As introduced in the architecture paragraph, the call to AES encryption is replace by a call to
the crypto server and then a call to a modified AES encryption. In this modified encryption
each round of AES is performed in several threads in parallel with a different key.

It is as if Nth AES are performed on the same plain text in parallel with different encryption
keys except that at each round of the algorithm the data are permuted between the threads.
The “data” mentioned here is an abstract shortcut to designate the states and the round
keys. This permutation is an extra step done at each round of the AES algorithm as it is
shown in the following figures.

Plain Text

Cipher Text

MixColumns

AddRoundKey

SubBytres

ShiftRows

AddRoundKey

SubBytres

ShiftRows

AddRoundKey

x Nr -1,
Nr= 9, 11, 13

Figure 17 – AES

Plain Text

Cipher Text

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

x Nr -1,
Nr= 9, 11, 13

Permutations

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 43 of 52

Figure 18 – Modified AES

The standard AES is depicted on Figure 18 and the on modified AES is on Figure 18. The
algorithm remains unchanged with the four transformations (SubBytes, ShiftRows,
MixColumns, AddRoundKey). An extra permutation step is done after each round as it is
shown. A monitor synchronizes all threads that are performing the rounds. When all parallel
rounds have been executed in their thread then the monitor modifies the data handled by
each thread.

The order of permutation is provided by a PRNG that is initialized with the seed at the
beginning. The permutation rule can be seen as a two dimension array that gives how the
data are permuted among the threads. After each round data of a thread are assigned to
another thread

Current assignment 5 2 4 6 3 1
Next assignment 3 6 1 2 5 4

The data processed by the thread 5 for the current round will be processed by the thread 3
for the next round. This can also be depicted with a diagram as in Figure 19 – Permutation
rule.

1 2 3 4 5 6

1 2 3 4 5 6

Figure 19 – Permutation rule

These permutation rules are generated with the Mersenne Twister PRNG. The TinyMT code
[Mut11] is used because its small size it is adequate on an embedded device.

5.2.5 Application Server

The Application server shares the way to derive the key from the master key with the crypto
server. The master key is kept on the Application server, all derivation required data are
known by the Application server except the seed and the fingerprint that are passed by the
application. Then the position of the valid cipher text must be deduced from the path that
starts with the position of the valid key to the result has it is done on the client side. To ba
able to do this it must use the same PRGN than the CryptoMultiThread. The same TinyMT
code as describe previously is used on the Application server side.

5.2.6 Application Performance degradation

There is a serious degradation according the parallelism level as expected. The Figure 20
below shows that an important number of threads would significantly affects the performance
of the application. Measures have been done on a Nexus 5 device.

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 44 of 52

Figure 20 – Processing time with 128bit key for plain text sizes for 1, 3, 4 and 7 threads

Some other measures done on a Samsung S3 that in order to stay under one second
processing for this ciphering task only the number of thread should be less than 5 for a 2048
bits message length.

For the purpose of the project the number of thread will be set to 4.

5.2.7 Limitations

The limitations of this protections are first that a very specific use-case is covered. The
recipient should be a remote server, the messages should be limited in size otherwise the
computing time penalty would be unacceptable.

Another very serious limitation is the fact that the application is impacted by the protection.
The original call to the encryption can be automatically replaced by ACTC but since the size
of the result has changed and that some additional data have to be passed to the recipient
then applying the protection is not transparent to the application developer that needs to take
into account the transformation done. Then the automatic transformation done by ACTC has
little value here since the developer needs to change its code.

The initial idea of this protection was that because debugging a parallel processing is difficult
then attacking this kind of code should be more difficult as well and this could be a way to
obfuscate the code. This is still a valid approach but as it is implemented now the code is still
sensitive to attacks and more theoretical work should be done to provide a more secure
protection with the help of mathematics.

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 45 of 52

Section 6 Task T2.5: Anti-Tampering

Task T2.5 is the only task in WP2 that only started in year 2, and still continues into year 3 of
the project. For that reason, no final results are reported yet in this section.

6.1 Anti-Debugging

Section Authors: Bjorn De Sutter, Bart Coppens (UGent)

At UGent, Joris Wijnant (a master thesis student advised by Bert Abrath and other lab
members) developed an initial implementation of an anti-debugging extension for Diablo.
This implements the anti-debugging architecture described in Section 3.2 of D1.04 v2.0.

During Joris' thesis research, he partially implemented the following parts of the reference
architecture:

• Single basic blocks are automatically rewritten by Diablo to be run in the context of a
debugger, i.e., in the debugger process, rather than in the context of the original
application. This includes injecting code to transfer the registers used and defined by
the basic block by means of the ptrace API.

• Diablo inserts instructions that cause a switch to the debugger in the protected
application in the places where the rewritten basic blocks should be executed. These
instructions also contain meta-information for the debugger component describing the
location of the rewritten basic block.

• The debugger component itself. This component attaches itself as a debugger to the
protected application, and handles the exceptions triggered by the protected
application.

• Diablo injects the debugger component, and ensures that it is started on application
initialisation.

• Memory accesses migrated to the debugger as part of the above rewriting are
transformed: simply executing them in the debugger would not be correct, as the
debugger runs in another memory space. The memory accesses are thus rewritten to
work correctly (this will be explained in more detail later on).

While this code was initially written and tested for ARM Linux devices, we already tested the
code on rooted Android 4.4 devices, and confirmed that the code works also works in this
environment. Furthermore, we have verified with a simple toy app, that the concepts also
works on an unrooted Android 5 device. We can hence consider it future-proof at least for the
foreseeable future.

Furthermore, we already made the code compatible with the ASPIRE tool chain: it is fully
controllable using ASPIRE annotations in the source code.

However, as this code was written by a thesis student, its quality is not yet of a level that is
acceptable to be integrated. In particular, it was not yet tested on non-trivial code fragments,
such as those that the anti-debugging protection will be used for in the ASPIRE use cases.
Applying the technique to those code fragments shows multiple bugs in the transformed code
and incorrect, hidden assumptions in the implementation, which we are in the process of
fixing at the time of writing (second half M24, October 2014).

We expect to deliver this functionality as part of D2.07 at the end of M24 or slightly thereafter
in case unexpected problems still show up. At that time, it will be integrated immediately in
the ACTC. We will definitely report on this integration for the third project review.

The memory accesses that are migrated to the debugger context can be transformed in two
ways, depending on address accessed. The first way is to replace the memory access by an

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 46 of 52

invocation of a helper a function that simply invokes the appropriate function from the ptrace
API to read/write 4 bytes from the debuggee. This method can be used for any memory
access. The second method is more of an optimization to be used when dealing with
accesses to the stack: we will use the ptrace API to copy an entire stack region from
debuggee to debugger context and point the stack pointer to this copied region when
executing in debuggee context. The actual memory accesses will use the changed stack
pointer and won’t be transformed themselves. When the execution in debugger context is
finished will copy the - possibly modified – stack region back from debugger to debuggee
context. A comparison between the two methods for a variable number of memory accesses
to the stack can be seen in Figure 21, where the stack copy is implemented by copying two
memory pages. As one would expect copying an entire region takes about constant in time
while the first method of doing a ptrace call for every memory access is linear with the
number of accesses. For this specific case we concluded that when doing more as 8 memory
accesses to the stack it is preferable to copy the entire region, when doing less as 8
accesses it is better to do them separately, and when doing exactly 8 accesses there is no
significant difference between the two methods.

Figure 21 – Comparison of the two methods to transform memory accesses.

The second method could be expanded to be used when transforming a series of memory
accesses that use a certain register or constant address as base (as is common when
iterating over arrays), but this requires us to know how large the array we will iterate over is
in order to copy it, which isn’t always known. We will look into how to solve this problem.

6.2 Anti-callback Stack Checks

Section Authors: Bjorn De Sutter, Bart Coppens (UGent)

While not explicitly mentioned in the project DoW, at the time the original DoW was
conceived the consortium intended to include heavy-weight anti-callback stacks checks into
the set of ASPIRE protections. Those checks would analyze whole stack traces to check that
functions in the protected application were not called through unallowed, attacker-injected
callbacks from external libraries.

This approach was deemed feasible because, given a whole application to be protected, all
libraries that could possibly be loaded at run-time are known at compile time. Furthermore,
besides the application binary's entry point, most applications would feature very few

4 8 12 16
15

20

25

30

35

tim
e

(m
s)

stack copy
helper function

nr. of memory acceses

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 47 of 52

functions intended to be called from external libraries through call-backs, so all allowed call-
backs from the libraries can easily be specified. In the case of protected application binary, it
is the binary that starts executing first, and that in a sense controls which library routines are
invoked.

However, early on in the project, in the initial phase of WP1, the original choice for protecting
applications was revised. To enable validation and demonstration of the developed tools and
protections on more realistic use cases, it was decided that we would protect dynamically
linked libraries. With respect to anti-callback stack checks, this completely changes the
scenarios that need to be handled. In a dynamically linked library, by definition a range of
functions is exposed to be invoked by external libraries and by the application for which the
libraries are loaded. Moreover, in the case of Android, that application and the external
libraries are not a simple application. In most cases, and in two of the project's use cases,
they are Dalvik/ART, Android's run-time environments in which Java applications are
executed that invoke the native (protected) libraries through complex Java-to-native
interfaces that are supported in the run-time environments.

Developing code that can walk and analyze complete stack traces in such a context, and
reliably decide whether those traces conform to normal execution or instead imply an
ongoing attack might still be possible, but it is certainly not possible within the resources
foreseen for this task in the project.

The initial high aim of this task has been revised, and somewhat lowered. The proposed
implementation of the anti-callback checks is still in line with the DoW, but is less advanced.

Concretely, UGent implemented the necessary functionality in Diablo to inject small stack
checks into a dynamic library at the entry points of functions that should not be invoked from
outside the library. These checks inspect the return address of the last call and check
whether or not it comes from inside the code segment of the protected library itself, or from
the outside. In the latter case, a reaction will be triggered. This can be an immediate reaction
such as a crash or abort (in case the execution of the function should be blocked
immediately for security reasons) or a delayed reaction (in case it is okay for the program to
continue executing for a short while).

We already have an embryonic implementation of these call stack checks, that is part of the
prototype deliverable D2.07 of M24. However, this implementation is as yet too rough to be
integrated in the ASPIRE tool chain in WP5. We foresee to be able to integrate this by the
end of M25, and will report on this in the third project review.

6.3 Control Flow Tagging

Section Authors: Jerome D'Annoville (GTO)

The Control Flow Tagging protection aims to check that some assertions are verified during
the execution of the application. Gates are added to the code of the application. Each time
the activation of the application enters a Gate then the associated counter is incremented;
this is the tagging step. The assertions to be verified combine the values of these counters in
logical expressions. These assertions are extra controls that are added also to the
application. At certain nodes in the graph of the application the assertions verify that the
activation has entered the expected Gates. If one or several Gates have been missed then
the reaction logic is triggered.

The verification of the assertions can be done either locally or remotely. Advantage of a
remote processing is that attacker has no access to the content of the assertions and cannot
predict or influence the verdict done by the verifier. The main drawback is that the reaction
component on the client side is easy to find and to be blocked. There is no satisfying clue
today to embed this component more tightly with the application in order to prevent its
detection by the attacker. Indeed, the Reaction Waiting Unit as described in the section 5 of
[D3.04] runs in a separate thread due to the constraint of the communication protocol and as

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 48 of 52

a consequence is loosely coupled with the application. Another constraint is that in case the
application does not need the network and might be offline by nature after its installation and
setting step then bringing the connectivity constraint only for enabling a possible reaction
action is a very strong constraint.

Unlike the online design, keeping the verification of the assertions within the application
enables a tight coupling. The issue to solve is to hide the various verifiers part in the code to
prevent the attacker to make an easy connection with the reaction part.

The attestor part of this protection, the Gates, already has this constraint to be hidden at the
maximum to make it difficult to spot. An early prototype was using big integers to enable to
map several Gate counters on a single variable. Each Gate is associated with a different
prime number. An Accumulator variable is grouping several Gate counters. It is managed as
a big integer except that this data type is not available in C. The Accumulator is initialized to
1 and each time a Gate is entered then the Accumulator is multiplied by the prime number
associated to the Gate. Verifiers will be able to retrieve the Gate counter value by dividing
the Accumulator.

The extra code could be added at source level. Advantage is that it is easier to implement
and the source code inserted in the application would be protected by many other protections
of ASPIRE. Still, the choice is to insert the code at binary level to hide at the maximum the
extra code. Immediate values used to access the Gate counters are artificially made different
in the Gate part and in the assertions part.

An intermediate approach would be to have a combined approach by inserting code at
source and binary level: the Gates would be inserted at source level and the assertions
processing at binary level. This is possible but not considered today mainly because Gates
code is considered as useless code by the optimizer and dropped during the compilation
step. This can be mitigated by inserting a call to a dummy external function with the counter
values as arguments at the place where assertions have to be verified. Then the binary
transformation would be to replace this artificial call to an external function by the assertion
code.

As already mentioned in the reference architecture [D1.04], the code integrity checking
provide by the Code Guards would prevent the attacker to tamper with the extra code added
by the Control Flow Tagging protection. Still, the Gate counter variables have to be protected
and a checksum control can be added. It is not considered today because it would make the
code referencing the counters data bigger and may attract the focus of the attacker. The
option taken in the balance between security and light code is to prefer a discreet protection.

The Control Flow Tagging will be implemented using the Diablo framework.

6.4 Code Guards

Section Authors: Bjorn De Sutter, Bart Coppens (UGent)

For code guards, UGent looked into how to best re-use (where possible) the components
that have already been implemented for Remote Attestation (RA). Local code guards need
the following elements to function: hash functions, hash check functions, and a tamper
response.

We will re-use the functionality related to computing the hashes of regions that has been
implemented for RA. This functionality currently consists of a set of hashing functions, an
Area Data Structure (ADS) that defines the areas to attest, and code that performs a random
walk over an area based on this ADS. To prevent replay attacks and to introduce some
diversity, this random walk for RA is seeded by the protection server: subsequent walks will
attest different, randomized subsets of the protected area. This also means that the
computed hashes will vary over time. In the RA scenario, this is not an issue: the server has
all the information to verify the correctness of the hash produced for each random walk.

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 49 of 52

However, as the protected application needs to verify its own hashes for code guards, and
we do want to attest the entire code ranges rather than a subset, this means that we cannot
reuse these random walks as-is. Thus, we will ensure that for code guards we
deterministically attest the entire protected code region. However, from the point of view of
the existing functionality for RA, this can viewed as a ‘random walk’ that iterates over the
entire code range. Thus, nothing needs to fundamentally change for computing the hashes.

As the invocations for the hashing in RA occur asynchronously based on input from the
protection server, we cannot re-use the attestation invocation code from RA. However, the
locations where hashes need to be computed have been annotated, we will inject the calls to
compute the hashes in the annotated locations.

The code to compute the correct hash values can be re-used as-is from the RA
implementation. This code runs on the final binary and its ADS, performs the random walk
based on the information in the ADS, and finally produces the correct hash value. However,
while for RA this information is then stored in a database for later use, we need to inject the
correct value in the binary in the correct location. While some effort for this will be required,
we anticipate no immediate issues here.

As for RA the verification of the hashes occurs on the server rather than in the protected
application, we will need to write and inject custom code that verifies the computed hashes.
For each of the hash functions, we will write a simple verification routine in C that compares
the correct hash value with the computed value. Calls to these verification routines will be
injected in the binary by Diablo on the locations that have been annotated.

We will insert the tamper response in the same manner for other offline attestation
techniques, such as call stack checks.

As this proposed implementation for code guards consists mostly of components that have
already been integrated, we will only need to integrate the additional step of injecting the
correct hash check values into the final binary. As by now the process of integrating
additional steps into the ACTC has been streamlined, we anticipate no real problems here.

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 50 of 52

Section 7 List of Abbreviations

ACCL ASPIRE Common Client Logic

ACTC ASPIRE Compiler Tool Chain

ACSL ASPIRE Common Server Logic

ACTC ASPIRE Compiler Tool Chain

ADS Area Data Structure

ADSS ASPIRE Decision Support System

AES Advanced Encryption Standard

API Application Programmer's Interface

ART Android Run Time

ASPIRE Advanced Software Protection: Integration, Research and Exploitation

DES Data Encryption Standard

DoW Description of Work

GUI Graphical User Interface

IP Intellectual Property

PRNG Pseudo Random Number Generator

RA Remote Attestation

RNC Residue Number

RTD Research and Technology Development

SB (ASPIRE) Steering Board

SVN Subversion

QAP Quality Assurance Plan

URL Uniform Resource Locator

VM Virtual Machine

WBC White-Box Cryptography

WBTA White-Box Tool for ASPIRE

XML Extended Markup Language

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 51 of 52

Bibliography

[Abi11] Abin Abraham Alichan, https://www.youtube.com/watch?v=mlzxpkdXP58, May
2011

[D1.04] ASPIRE Project, D1.04 Reference Architecture

[D2.01] ASPIRE Project, D2.01 Early White-Box Cryptography and Data Obfuscation
Report

[D3.04] ASPIRE Project, D3.04 Intermediate Online Protections Report

[D5.02] ASPIRE Project, D5.02 Framework Architecture, Tool Flow, and APIs
of the ASPIRE Compiler Tool Chain and Decision Support System

[Cad08] Cadar, Cristian, Daniel Dunbar, and Dawson R. Engler. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs. OSDI. Vol. 8.
2008.

[Cle15] Thomas Van Cleemput. Automatic injection of flexible opaque predicates. Master
thesis, Ghent University, 2015

[Chr11] M. Chroni and S. D. Nikolopoulos. Efficient encoding of watermark numbers as
reducible permutation graphs. arXiv preprint arXiv:1110.1194, 2011.

[Col09] C. Collberg and J. Nagra. Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection. Addison-Wesley Professional, 1st edition, 2009.

[Col99] C. Collberg and C. Thomborson. Software watermarking: Models and dynamic
embeddings. In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 311–324. ACM, 1999.

[Col98] C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient, and
stealthy opaque constructs. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’98, pages 184–196, New York, NY, USA,
1998. ACM.

[Cos15] R. Costa and al. Hiding cryptographic keys of embedded systems. In Proceedings of
the 9th International Conference on Computer Engineering and Applications (CEA ’15),
2015.

[Gar79] Garey, Michael R., and David S. Johnson. Computers and intractability: a guide to
the theory of NP-completeness. 1979. San Francisco, LA: Freeman (1979).

[He02] Y. He and M. Sc. Tamperproofing a software watermark by encoding constants. PhD
thesis, Computer Science)–University of Auckland, 2002.

D2.08 - ASPIRE Offline Code Protection Report

ASPIRE D2.08 PUBLIC Page 52 of 52

[Kal98] B. Kaliski,PKCS #7: Cryptographic Message Syntax, RFC 2315,
https://tools.ietf.org/html/rfc2315, March 1998

[Kal00] B. Kaliski, PKCS #5: Password-Based Cryptography Specification Version 2.0,
https://tools.ietf.org/html/rfc2898,, Sept. 2000.

[Kar96] Karp, Richard M. Reducibility among combinatorial problems. Springer US, 1972.
Selman, Bart, David G. Mitchell, and Hector J. Levesque. "Generating hard satisfiability
problems." Artificial intelligence 81.1 (1996): 17-29.

[Knu69] Knuth, Donald E. (1969). Seminumerical algorithms. The Art of Computer
Programming 2. Reading, MA: Addison–Wesley. pp. 139–140.

[Lat04] Lattner, Chris, and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. Code Generation and Optimization, 2004. CGO 2004.
International Symposium on. IEEE, 2004.

[Mos07] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware detection.
In Computer security applications conference, 2007. ACSAC 2007. Twenty-third annual,
pages 421–430. IEEE, 2007.

[Mut11] Mutsuo Saito, Makoto Matsumoto, Tiny Mersenne Twister (tinymt).
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/TINYMT/index.html, 2011

[Pal00] J. Palsberg, S. Krishnaswamy, M. Kwon, D. Ma, Q. Shao, and Y. Zhang. Experience
with software watermarking. In Computer Security Applications, 2000. ACSAC’00. 16th
Annual Conference, pages 308–316. IEEE, 2000.

[Ram94] G. Ramalingam. The undecidability of aliasing. ACM Transactions on Programming
Languages and Systems (TOPLAS), 16(5):1467–1471, 1994.

[Sel96] Selman, Bart, David G. Mitchell, and Hector J. Levesque. Generating hard
satisfiability problems. Artificial intelligence 81.1 (1996): 17-29.

[Wan11] Z. Wang, J. Ming, C. Jia, and D. Gao. Linear obfuscation to combat symbolic
execution. In Computer Security–ESORICS 2011, pages 210–226. Springer, 2011.

[Yad15] Yadegari, Brian Johannesmeyer, Benjamin Whitely, Saumya Debray. A Generic
Approach to Automatic Deobfuscation of Executable Code, with Babak
Proc. 36th IEEE Symposium on Security and Privacy, May 2015.

