
 

 

 

  

 

 

 

 

 

 

 
 
Advanced Software Protection: 
Integration, Research and Exploitation 

 

D2.06 
Binary Code Obfuscation Report 
 
Project no.:    609734   
Funding scheme:    Collaborative project 
Start date of the project:  1st November 2013 
Duration:    36 months 
Work programme topic:   FP7-ICT-2013-10 
 
Deliverable type:   Report 
Deliverable reference number: ICT-609734 / D2.06 
WP and tasks contributing:  WP 2 / Tasks 2.4 
Due date:    Apr 2015 – M18 
Actual submission date:  13 May 2015 
 
Responsible Organization:  UGent 
Editor:     Bart Coppens 
Dissemination Level:  Public 
Revision:    DRAFT 
 
Abstract: 
This deliverable presents the support in the ASPIRE compiler tool chain for binary code 
obfuscation, as implemented and delivered in D2.05 until M18.  
Keywords: 
binary code, obfuscation  

  



 

D2.06 – Binary Code Obfuscation Report   

ASPIRE D2.06 PUBLIC I 

 

Editor 
Bart Coppens (UGent) 

 
Contributors (ordered according to beneficiary numbers) 
Bjorn De Sutter (UGent) 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ASPIRE Consortium consists of: 

Ghent University (UGent) Coordinator & Beneficiary Belgium 

Politecnico Di Torino (POLITO) Beneficiary Italy 

Nagravision SA (NAGRA) Beneficiary Switzerland 

Fondazione Bruno Kessler (FBK)  Beneficiary Italy 

University of East London (UEL) Beneficiary UK 

SFNT Germany GmbH (SFNT) Beneficiary Germany 

Gemalto SA (GTO) Beneficiary France 
 
Coordinating person:  Prof. Bjorn De Sutter 
E-mail:    coordinator@aspire-fp7.eu 
Tel:    +32 9 264 3367 
Fax:    +32 9 264 3594 
Project website:  www.aspire-fp7.eu 

Disclaimer 
The research leading to these results has received funding from the European Union 
Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 609734. 
The information in this document is provided as is and no guarantee or warranty is given that 
the information is fit for any particular purpose. The user thereof uses the information at its 
sole risk and liability. 



 

D2.06 – Binary Code Obfuscation Report   

ASPIRE D2.06 PUBLIC II 

Executive Summary 

UGent ported the existing x86 control flow obfuscation support in its Diablo Background 
software (control flow flattening, branch functions, and opaque predicates) to the ARMv7 
architecture targeted in the ASPIRE project. The obfuscation support was restructured into 
architecture-dependent and architecture-independent software layers, and effort was 
invested in making the obfuscations more flexible, more generally applicable, and better 
controllable by the ACTC. To that extent, support for the ASPIRE source code annotations 
was implemented.  

In addition, the control flow obfuscations are combined with code factoring and code layout 
randomization.  

Extensive correctness testing on multiple platforms (Linux + Android, x86 + ARM) has been 
performed, and the obfuscations have been evaluated and shown to effectively disrupt static 
reverse engineering tools such as IDA Pro.  

 

 



 

D2.06 – Binary Code Obfuscation Report   

ASPIRE D2.06 PUBLIC III 

Contents 

Section 1 Introduction ............................................................................................ 1 

Section 2 Binary Protections ................................................................................. 2 

2.1 Control flow flattening ........................................................................................ 2 

2.2 Branch functions ................................................................................................ 2 

2.3 Opaque predicates ............................................................................................ 4 

2.4 Factoring ............................................................................................................ 5 

2.5 Generic obfuscation infrastructure ..................................................................... 5 

2.6 Layout randomization ........................................................................................ 6 

Section 3 Integration in the ACTC ......................................................................... 7 

3.1 Annotations ........................................................................................................ 7 

3.2 Logging .............................................................................................................. 7 

Section 4 Validation ................................................................................................ 9 

4.1 Correctness testing ............................................................................................ 9 

4.2 Impact of the protections against attack tools ................................................. 10 

Section 5 Future Work .......................................................................................... 13 

Section 6 List of Abbreviations ........................................................................... 14 

Bibliography ............................................................................................................. 15 

 

 

 

 

 

 



 

D2.06 – Binary Code Obfuscation Report   

ASPIRE D2.06 PUBLIC IV 

List of Figures 

Figure 1: Toy code example of a function before control flow flattening .................................. 3 

Figure 2: Toy code example of a function after control flow flattening ..................................... 3 

Figure 3: Toy code example of a function after branch function insertion ................................ 4 

Figure 4: Toy code example of a function after opaque predicate insertion ............................ 6 

Figure 5: Number of functions reported in the binaries according to IDA Pro on dynamically 
linked gcc 4.8.1 ARM binaries ........................................................................................ 11 

Figure 6: Partitioning of instructions in correct functions on dynamically linked gcc 4.8.1 ARM 
binaries ........................................................................................................................... 12 

 

 

 

 

 

 



 

D2.06 – Binary Code Obfuscation Report   

ASPIRE D2.06 PUBLIC Page 1 of 15 

Section 1 Introduction  

The goal of this deliverable (see GA Annex II DoW part A) is to document the initial tool 
support for the binary code obfuscations delivered in ASPIRE’s Work Package 2, Task 2.4. 
This tool support is implemented in the Diablo link-time rewriter, and is itself delivered as a 
prototype in Deliverable D2.05, on which this deliverable reports. 

This binary code obfuscation support is currently integrated into the ASPIRE Compiler Tool 
Chain (ACTC), which is being implemented for Task T5.1. 

The protections implemented for this deliverable are control flow obfuscations applied at the 
level of assembly instructions. These obfuscations are inserted in the binary to thwart 
reverse engineering and analyses of the assets protected by the ASPIRE tool flow. These 
Diablo-based obfuscations are inserted in the protected binary in protection step BLP04 in 
the ACTC, as described in Deliverable  

Even though this task officially only started in M12, to be delivered in M18, work on this 
deliverable started earlier in order to facilitate the integration and debugging effort. 

The remainder of this report first discusses in detail the binary control flow obfuscations 
implemented and how they were implemented on top of UGent's Diablo Background. Next, 
we discuss different aspects of the integration of the Diablo-based tools in the ACTC. Finally, 
we provide some details on how we validated the correctness and robustness of the provided 
obfuscation transformations.  

 



 

D2.06 – Binary Code Obfuscation Report   

ASPIRE D2.06 PUBLIC Page 2 of 15 

Section 2 Binary Protections 

We implemented several binary obfuscation techniques for ARM binaries: control flow 
flattening, branch functions, and opaque predicate insertion. Additionally, identical code 
fragments are factored out as an additional anti-reverse engineering step. Furthermore, we 
introduced code layout randomization to increase the effectiveness of the obfuscation 
transformations. 

In addition to the obfuscations themselves, we also added support for integrating these 
obfuscations in the ASPIRE tool chain. In particular, we added extensive logging support for 
the obfuscation transformations, and we made the insertion of obfuscations configurable 
through a JSON annotation fact file, which is input D01 to BLP04 of the ACTC. 

2.1 Control flow flattening 
Control flow flattening is an obfuscation technique that transforms a control flow graph with a 
clean structure into one in which all control flow is redirected through a single switch block. 
This technique was originally introduced by Wang et al [Wang00]. 

Figures 1 and 2 demonstrate the effect of this transformation on a simple example. The 
control flow of Figure 1 is easy to follow by studying the structure of this graph, even by an 
untrained reverse engineer. Figure 2 shows the same function after applying control flow 
flattening. All control flow is redirected through the single switch block at the top. To figure 
out the exact control flow, studying the structure of the control flow no longer suffices, and 
reverse engineers have to analyse the code in order to determine the structure of the 
function. 

The existing implementation in Diablo was an x86-only implementation [Mad07]. This 
implementation used hard-coded registers for all computations, rather than trying to use 
registers that are dead throughout the flattened function. 

We implemented this functionality starting from this pre-existing implementation for x86 code. 
The existing implementation was first refactored into a generic part, and an architecture-
specific part, so that the code is as generic and architecture-independent as possible. Next, 
the ARM-specific control flow flattening transformation was implemented on top of this. At 
this time, Diablo supports flattening the basic blocks of a single function at a time. 

The registers used by the switch blocks are now randomly chosen from the set of registers 
that are dead over all flattened edges. Only when no such registers are found, live registers 
are chosen at random, and these registers are saved and restored on the stack by the 
flattening code. 

2.2 Branch functions 
Branch functions transform direct control flow into indirect control flow, using a call to a newly 
inserted branch function.  This implies that jumps are computed at run-time rather than hard-
coded into the code. This indirection decreases the precision of the analyses applied by 
reverse engineers, and increases the overall effort to understand the protected binary. This 
technique was introduced by Linn and Debray [Linn03]. 

The previous implementation of branch functions in Diablo consisted of an x86-only 
implementation [Mad07]. In this previous implementation, the argument to the branch 
function is an offset relative to the continuation point of the call to the branch function. The 
branch function itself is not randomized and not optimized: it uses a fixed register, and 
always spills and restores this register and the flags register to the stack. 



 

D2.06 – Binary Code Obfuscation Report   

ASPIRE D2.06 PUBLIC Page 3 of 15 

 
Figure 1: Toy code example of a function before control flow flattening 

 

 

 
Figure 2: Toy code example of a function after control flow flattening 



 

D2.06 – Binary Code Obfuscation Report   

ASPIRE D2.06 PUBLIC Page 4 of 15 

For ASPIRE, we added support for a similar form of branch functions for the ARMv7 back-
end. This branch function is similar to the pre-existing implementation in the x86 backend. It 
consists of a PC-relative indirect jump. The PC-relative target address is passed in a 
randomized register, which is chosen from the dead registers when dead registers are 
available. If necessary, a dead register is created by spilling a live register onto the stack.  

A toy code example is shown in Figure 3. Compared to the code in Figure 1, a branch to the 
branch function has been inserted in the first basic block of the function (with start address 
0x8340). No spill code for the target stored in r3 was inserted, but for the return address 
register r14, spill code needed to be inserted. The (unreachable) continuation point of the 
call to the branch function is left unspecified. Thanks to layout randomization, this 
continuation point is randomly chosen from all possible continuation points across the binary. 

 
Figure 3: Toy code example of a function after branch function insertion 

2.3 Opaque predicates 
Opaque predicate insertion injects predicates and associated control flow edges into the 
binary, whose computation always evaluates to the same value. The control flow edges 
associated with the value that never occurs in a program execution can be directed to 
unrelated code locations in the binary. This obfuscation technique was introduced by 
Collberg et al [Col97]. This again significantly increases the effort for a reverse engineer. 

The prior implementation of opaque predicates in Diablo is an x86-only implementation 
[Mad07]. It consists of a database of 9 hard-coded opaque predicates. Similar to the 
implementation of branch functions, this implementation used hardcoded registers, hard-
coded integer constants (that are used as masks on the variable inputs of the opaque 
predicate computations in order to ensure that those computations do not introduce integer 
overflows or other exceptions), and unnecessarily spilled registers to the stack. 

Support for multiple opaque predicates on ARM has been implemented and tested, based on 
this x86 implementation. 



 

D2.06 – Binary Code Obfuscation Report   

ASPIRE D2.06 PUBLIC Page 5 of 15 

We introduced two different sources of randomness in the generated instruction sequences. 
Firstly, the registers used for the opaque predicate are randomly chosen from the set of dead 
registers; only when there is an insufficient amount of dead registers, live registers are 
randomly chosen and temporarily spilled to the stack. Secondly, when opaque predicates 
require hard-coded integer constants, these constants are randomly chosen. 

By default, the current implementation chooses an existing basic block entry in the same 
function to redirect the not-taken path. 

Opaque predicates and the corresponding branches can be inserted at any program point 
between any pair of instructions within a basic block where the condition flags are dead. If 
Diablo decides to insert an opaque predicate in a basic block, it chooses a random opaque 
predicate from its collection, and inserts it between a randomly selected pair of adjacent 
instructions where the flags are dead. 

An example is shown in Figure 4, where an opaque predicate was inserted in the middle of 
an existing basic block, i.e., between the instructions at addresses 0x834c and 0x8350. The 
target block of the edge that is never taken, is taken to be a random block from the function. 

The following set of opaque predicates is implemented: 

• 2 | x+x^2 
• 7*y^2-1 != x^2 
• 2|x+x 
• x^2 >= 0 
• 2 | x^2/2 
• 2 | x  v  8 | (x^2-1) 
• 3 | x^3 –x  
• Sum of all odd i in the range (1, 2*x-1) == x^2. 

2.4 Factoring 
In addition to the aforementioned obfuscation transformations, Diablo also has support for 
factoring code. This transformation identifies identical code fragments across the binary, 
extracts these different fragments into a single function that is then called from all locations 
that previously contained the original, duplicated code fragments. The original motivation for 
this transformation was for code compaction [Deb00]. 

In the context of ASPIRE, we factor code to thwart reverse engineering, rather than to 
compact code. Because factoring combines syntactically identical code fragments, the 
combined fragments need not be semantically related. Thus, the factored code will be called 
from semantically different contexts, which breaks the relationship between code fragments 
and their semantics. This makes it harder for an attacker to analyse the factored code and 
their surrounding context. Furthermore, it is our eventual goal that original program code is 
factored together with code from the protection techniques themselves.   

This is part of Diablo’s background IP, i.e., we currently re-use the pre-existing ARM 
implementation. 

2.5 Generic obfuscation infrastructure 
The previous x86-only implementation of obfuscations in Diablo was not generic. To 
obfuscate a binary, Diablo’s obfuscation back-end contained a hard-coded sequence of calls 
to different obfuscation transformations. That framework was rigid and not suitable for the 
flexibility and externally configurable behavior demanded by the ACTC from the obfuscation 
transformations. 

In addition to the aforementioned refactoring of the x86-specific code into an architecture 
consisting of a platform-independent part and platform-specific implementations, we also 



 

D2.06 – Binary Code Obfuscation Report   

ASPIRE D2.06 PUBLIC Page 6 of 15 

genericized the entire obfuscation infrastructure. All obfuscations have been modeled in a 
class hierarchy, that can dynamically be queried for random obfuscations from a (sub)set of 
the class hierarchy. For example, a user can now ask to insert a specific opaque predicate 
by querying its name, but s/he can also insert just as easily any random opaque predicate by 
specifying “opaque_predicate” as the requested obfuscation transformation. Similarly, a 
user can now even request for any random obfuscation transformation to be inserted. Diablo 
simply queries the class hierarchy for the set of transformations that match the description, 
and picks a random transformation from that set. 

2.6 Layout randomization 
We added support for code layout randomization to Diablo’s ARM backend. Rather than 
optimizing the code layout for minimizing the code size of the final binary, this transformation 
randomizes the order in which chains of basic blocks (i.e., sequences of basic blocks through 
which control flow can fall through) are placed in the final binary [Cop13].  

With this randomization, related chains (such as the chains from one function) are no longer 
placed next to each other, but spread all over the code section of the binary or library. This is 
particularly useful in combination with control flow obfuscations that insert indirect control 
flow, because it is then no longer obvious from the code layout which code fragments are 
related to each other, e.g., how chains are partitioned in functions. 

 

 

 
Figure 4: Toy code example of a function after opaque predicate insertion 



 

D2.06 – Binary Code Obfuscation Report   

ASPIRE D2.06 PUBLIC Page 7 of 15 

Section 3 Integration in the ACTC 

An initial version of the binary code obfuscation support was already integrated into the 
ACTC by M12 for milestone MS07. However, this initial integration was kept relatively 
shallow. Even though Diablo could already apply the obfuscations, and Diablo could be 
invoked by the ACTC, the process of selecting and applying obfuscation transformations in 
Diablo was not really controllable from the ACTC. To resolve this, we added annotation 
support to Diablo, so that the process of selecting obfuscation transformations can be guided 
through user-specified JSON annotation files. In addition, after integrating the obfuscation 
transformations with other protection techniques such as the Client-Side Code Splitting as 
implemented in BLP03 of Deliverable D5.01. Finally, we also extended some of the existing 
obfuscation transformations, for example by making the selection of possible continuation 
points for the opaque predicates and branch function insertion a global process, rather than a 
function-local one. 

3.1 Annotations 
To make the application of the obfuscations externally configurable, we added support for 
applying the transformations as they are specified in the annotations in the source code. 

First, we added support to Diablo to read debug information containing source file and line 
number information from the object files. This line number information is then associated with 
the assembly instructions in Diablo. 

The JSON file containing the source annotations (that is, the D01 input to BLP04) refers to 
file names and line numbers. When this file is parsed by Diablo, for each annotation, we 
create an annotation region that consists of the instructions that correspond to the line range 
specified by that annotation. 

To apply the obfuscation transformations, we iterate over all annotation regions, and apply 
the obfuscation transformation specified for that region. These annotations can specify 
additional information for the decision logic, such as the percentage of basic blocks that has 
to be transformed in a protected region. The exact syntax and semantics of these 
annotations is described in detail in Appendix B of Deliverable D5.01. 

Furthermore, we added additional types of annotation not specified in Deliverable D5.01 to 
test the obfuscation transformation and annotation functionality independently from the 
progress made in WP5 on the ACTC. In particular, we added support for wild-card matching 
of function names, so that we can easily instruct Diablo to transform entire regions of the 
program with a single annotation. This allows us, for example, to transform all crypto-related 
functions with the function name “*crypt*”, without having to annotate all crypto-functions in 
the program’s source code manually and having to rely on the ACTC to produce a correct 
JSON annotation file from these source-code annotations.  

The support for additional annotations is not document in formal ACTC documentation, since 
it is meant for internal UGent development purposes only, and hence no dependencies on 
this support should be created in the ACTC.  

3.2 Logging 
We added extensive logging support to Diablo in order to satisfy REQ-ASR-005 of 
Deliverable D1.03, which states that ‘It must be feasible to have an overview of which 
protection techniques have been deployed by the ASPIRE tool chain, in what order, and on 
which code or part of the binary they have been deployed.’ 



 

D2.06 – Binary Code Obfuscation Report   

ASPIRE D2.06 PUBLIC Page 8 of 15 

All transformations applied by Diablo are assigned consecutive IDs. A log file is produced 
that maps each such ID to high-level information of the transformation, such as the type 
transformation. Furthermore, we have made it possible to optionally dump significantly more 
information for each transformation applied. This information contains a list of all source lines 
that are affected by the transformation applied, and dumps of all control flow graphs of the 
functions affected, both before and after applying the transformation, similar to the ones 
shown in figures 1 to 4. Because of the significant overhead in producing all this information, 
this level of detail in logging is disabled by default. 

As an example, the high-level log of a run of BLP04 could start as follows: 

0,OpaquePredicate,0x8914,spec_init,'arm_opaque_predicate_2|x_v_8|(x^2-‐1)'	  

1,BranchFunction,0x10cac,BZ2_bzCompress,	  

which indicates that the first transformation was applied in the spec_init function, to a basic 
blocks that starts at addresses 0x8914 in the original binary, and that as a second 
transformation, Diablo inserted a branch function in the BZ2_bzCompress function. For the 
first transformation, the more detailed logging information then provides line number 
information that starts as follows: 

OpaquePredicate,spec_init,0x8914,spec.c:91	  

OpaquePredicate,spec_init,0x8918,spec.c:91	  

OpaquePredicate,spec_init,0x8920,spec.c:91	  

This indicates that the instructions at addresses 0x8914	  to	  0x8920, which originate from the 
source file spec.c at line 91, are transformed. Additionally, a pair of “before”and “after” control 
flow graphs of the affected functions would be generated, similar to Figures 1 and 2.  



 

D2.06 – Binary Code Obfuscation Report   

ASPIRE D2.06 PUBLIC Page 9 of 15 

Section 4 Validation 

We verified both the correctness of the obfuscation transformations as well as their 
effectiveness against reverse engineering tools. We mostly relied on the C, C++, Fortran, 
and combined C/Fortran benchmarks from the SPEC2006 benchmark suites for our 
evaluation. The specific benchmarks used are shown in Table 1. Note that some 
benchmarks of SPEC2006 do not compile or run on the Android platform, even without trying 
to transform them with Diablo.  

4.1 Correctness testing 
Because we made our obfuscation implementation architecture-independent, we did not only 
verify the correctness on the ARM platform, but also on the x86 platform. This ensured that 
the refactoring we performed, and extensions we implemented for ASPIRE did not introduce 
any regressions in the existing x86 code. 

We evaluated the transformations on ARM for Linux and Android, and on Linux for x86. The 
benchmarks were both statically and dynamically linked binaries, including PIE and non- PIE 
binaries, compiled with both gcc 4.8.1 and llvm 3.4 with the –O2 flag. Furthermore, we tested 
these transformations on a C library and on a C++ library. We flattened all suitable functions 
in all those binaries compiled, and separately applied branch function insertion and opaque 
predicate insertions to all suitable basic blocks with a 50% percent chance. At each point we 
inserted an opaque predicate, we selected one at random from the collection of opaque 
predicates. All transformations were tested with code layout randomization enabled. All 
obfuscated binaries behave correctly. 

Table 1: SPEC CPU2006 benchmarks used to test Diablo 

Benchmark suite 
Programming 
Language Benchmark Android 

SPEC CINT2006 C 400.perlbench  - 

SPEC CINT2006 C 401.bzip2 + 

SPEC CINT2006 C 403.gcc + 

SPEC CINT2006 C 429.mcf + 

SPEC CINT2006 C 445.gobmk + 

SPEC CINT2006 C 456.hmmer + 

SPEC CINT2006 C 458.sjeng + 

SPEC CINT2006 C 462.libquantum - 

SPEC CINT2006 C 464.h264ref + 

SPEC CINT2006 C++ 473.astar - 

SPEC CINT2006 C++ 483.xalancbmk - 



 

D2.06 – Binary Code Obfuscation Report   

ASPIRE D2.06 PUBLIC Page 10 of 15 

SPEC CFP2006 Fortran 410.bwaves - 

SPEC CFP2006 Fortran 416.games - 

SPEC CFP2006 C 433.milc + 

SPEC CFP2006 Fortran 434.zeusmp - 

SPEC CFP2006 C, Fortran 435.gromacs - 

SPEC CFP2006 C, Fortran 436.cactusADM - 

SPEC CFP2006 Fortran 437.leslie3d - 

SPEC CFP2006 C++ 444.namd + 

SPEC CFP2006 C++ 447.dealII + 

SPEC CFP2006 C++ 450.soplex + 

SPEC CFP2006 C, Fortran 454.calculix - 

SPEC CFP2006 Fortran 459.GemsFDTD - 

SPEC CFP2006 Fortran 465.tonto - 

SPEC CFP2006 C 470.lbm + 

SPEC CFP2006 C, Fortran 481.wrf - 

SPEC CFP2006 C 482.sphinx3 + 

 

4.2 Impact of the protections against attack tools 
We also evaluated the impact of the obfuscations on reverse-engineering tools, i.e., to what 
extent the obfuscations hinder IDA Pro (version 6.5, released early 2014) in constructing 
valid control flow graphs and call graphs. To assess the performance of IDA Pro 
quantitatively, we measured for a number of dynamically linked benchmarks, compiled for 
the ARMv7 platform with gcc 4.8.1 with –O2, how well IDA Pro reconstructs functions from 
the disassembled code.  

First, the charts in Figure 5 present the number of functions into which IDA Pro partitions the 
disassembled instructions. The benchmark versions studied are (1) original binaries with 
symbol information, (2) original binaries stripped from symbol information, (3) binaries 
rewritten by Diablo (i.e., with the whole code layout reorganized by Diablo on the basis of a 
control flow graph from which unreachable code is removed, and stripped from symbol 
information), and (4-6) binaries obfuscated by Diablo at three levels of obfuscation: 

• Light: Each basic block is split with a probability of 10%. If so, it is split for inserting 
an opaque predicate or a branch function, each of which with an equal probability of 
50%. Thereafter, each function is flattened with a probability of 10%. 

• Medium: Same strategy, but with probabilities of 30% instead of 10%. 
• Heavy: Same strategy, but with probabilities of 50% instead of 30%. 



 

D2.06 – Binary Code Obfuscation Report   

ASPIRE D2.06 PUBLIC Page 11 of 15 

For all binaries, the heavy obfuscations result in IDA Pro partitioning the code into an order of 
magnitude more functions. Clearly, the function reconstruction is heavily distorted.  
Moreover, it can be seen that the amount of distortion correlates well with the amount of 
obfuscation.  

Next, Figure 6 presents how well instructions are partitioned into functions that actually 
match the original functions of the programs.  More precisely, we measured how well IDA 
Pro succeeds in putting together in the same function the instructions that actually belong in 
the same function using the following metric: Instructions A and B are related when they 
originate from the same function in the original binary. This relation is the ground-truth as 
determined by Diablo. In the functions reconstructed by IDA Pro, we measure false 
negatives, i.e., how many of those relations are missing.  In other words, we count the 
number of instruction pairs that should be in the same function, but are not because IDA Pro 
is thwarted. Moreover, we use weighting factors to ensure that the weight of each function is 
equal to its number of instructions, instead of the square of that number: A function A with 10 
instructions has 10x9 instruction pairs that we can count, whereas a function B with 100 
instructions has 100x99 instruction pairs. Giving all of them the same weight would let the 
function B contribute a 100 times more to the metric than function A. So we weight the 
contribution of each pair by dividing it through the number of instructions in its function. 

These results confirm the previous results and again indicate that as the obfuscations are 
applied more heavily, they more and more obstruct IDA Pro in grouping the instructions 
correctly into functions. The result for the statically linked 445.gobmk compiled with GCC 
shows that when the obfuscator gets lucky, light obfuscation can thwart IDA Pro as well as 
medium obfuscation. 

 
Figure 5: Number of functions reported in the binaries according to IDA Pro 

on dynamically linked gcc 4.8.1 ARM binaries 

100

101

102

103

104

105

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

44
5.

go
bm

k

# 
of

 fu
nc

tio
ns

Obfuscation level
original
stripped
none
light
medium
heavy



 

D2.06 – Binary Code Obfuscation Report   

ASPIRE D2.06 PUBLIC Page 12 of 15 

 
Figure 6: Partitioning of instructions in correct functions 

on dynamically linked gcc 4.8.1 ARM binaries 

 

0%

20%

40%

60%

80%

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

44
5.

go
bm

k

Fa
ls

e 
ne

ga
tiv

e 
ra

te

Obfuscation level
none
light
medium
heavy



 

D2.06 – Binary Code Obfuscation Report   

ASPIRE D2.06 PUBLIC Page 13 of 15 

Section 5 Future Work 

We are planning to add extend the binary obfuscation techniques in several ways in the 
future. In particular, we would like to: 

• Improve the selection of continuation points for branch functions and opaque 
predicates. Currently, this selection is made globally over the entire application, but 
the process is not yet tweakable. We would like to make this selection process 
steerable as well, in order to ensure that semantically different code fragments seem 
linked together for an attacker. 

• Flattening larger code regions. Currently, code flattening is limited to function 
boundaries. We are planning to extend this functionality so that a single switch block 
can redirect the control flow to basic blocks from multiple functions. This will 
seemingly link semantically unrelated code fragments through the shared switch 
block. 

• Improve factoring. Currently, factoring is applied to all suitable code fragments. 
However, we will also make the decision process of which code fragments to factor 
more controllable. This includes trying to merge code fragments from the protected 
code with code fragments from the protections. 

• Implement decision support logic to trade-off security and performance overhead.  

 



 

D2.06 – Binary Code Obfuscation Report   

ASPIRE D2.06 PUBLIC Page 14 of 15 

Section 6 List of Abbreviations  

 

ASPIRE Advanced Software Protection: Integration, Research and Exploitation 

ACTC      ASPIRE Compiler Tool Chain 

BLP  Binary-level Processing 

PC  Program Counter 

 

 



 

D2.06 – Binary Code Obfuscation Report   

ASPIRE D2.06 PUBLIC Page 15 of 15 

Bibliography 

 

[Cop13] Feedback-driven binary code diversification 

Bart Coppens, Bjorn De Sutter, Jonas Maebe 

ACM Transactions on Architecture and Code Optimization, 2013, pp 24:1--24:26 

[Col97] A Taxonomy of Obfuscating Transformations 

Christian Collberg, Clark Thomborson and Douglas Low 

Technical Report 148, University of Auckland, 1997, 36 pages 

[Deb00] Compiler techniques for code compaction 

Saumya K. Debray, William Evans, Robert Muth, Bjorn De Sutter 

ACM Transactions on Programming Languages and Systems, 2000, Volume 22 
Issue 2, pp 378-415 

[Linn03] Obfuscation of Executable Code to Improve Resistance to Static 

Disassembly 

Cullen Linn, Saumya Debray 

ACM Conference on Computer and Communications Security, 2003, pp 290-299 

[Mad07] Application Security through Program Obfuscation 

Matias Madou 

PhD thesis, Ghent University, 2007, 145 pages 

[Wang00] Software Tamper Resistance: Obstructing Static Analysis of Programs 

Chenxi Wang, Jonathan Hill, John Knight, Jack Davidson 

Technical Report, University of Virginia, 2000, 18 pages 

 

 

 

 

 


