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Executive Summary 

For the sake of self-containment, this deliverable first repeats the overall principle, the 
reference architecture, and the compiler tool flow of client-side code splitting. These 
contributions are copied literally from previous deliverables D1.02, D1.04 and D5.01.  

Next, the individual components' design and development are discussed. For the 
identification and extraction of native code chunks from the software to be protected, a new 
front-end tool based on the Diablo link-time rewriting framework is presented. For the X-
translation of the extracted native code to bytecode, an LLVM-based tool contributed by 
SFNT is presented, along with its adaptations to be useable in the ASPIRE context. For the 
bytecode interpretation, SFNT's SoftVM is presented, along with the adaptations that were 
made to make it useable in ASPIRE. And another Diablo-based tool is presented that 
replaces the extracted native code in the software to be protected by invocations of the 
SoftVM. 

Next, we report that the basic binary code obfuscation techniques (i.e., for control flow 
obfuscations) that were foreseen to be developed in year 2 of the project, are already 
available. They are opaque predicates, control flow flattening, branch functions, and code 
layout randomization. 

The effect of the client-side code splitting is demonstrated on a small example, illustrating 
that not only the X-translated code is protected, but that also the control flow of the 
surrounding code is obfuscated. Furthermore, we show that code layout randomization 
effectively succeeds in intermingling the original application code and the SoftVM code, thus 
hiding the functionality of the SoftVM.  

Whereas the current implementation of all tools only supports single-entry, single-exit code 
chunks, an extension is presented to enable the translation and interpretation of single-entry, 
multiple-exit code chunks, and to do so in a stealthy manner.  

Throughout this deliverable, the important design considerations regarding a clear separation 
of concerns is discussed repeatedly. This separation of concerns improves the 
maintainability, and hence the integration of ongoing research into the integrated ACTC, and 
ensures minimal IP dependencies among the contributing partners.  
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Section 1 Introduction  
Chapter Authors:  

Bjorn De Sutter (UGent), Werner Dondle (SFNT), Andreas Weber (SFNT) 

This deliverable documents the progress made in Task 2.3 of WP2 regarding the design and 
implementation of techniques for client-side code splitting. At this point in the project, the 
techniques concern the actual splitting itself, not the determination of the split points from a 
security or performance optimization perspective.  

Many aspects of the design have already been presented in other deliverables. To make this 
(public) document self-contained, we repeat those presentations here. Whenever we do so, 
we explicitly clarify this, such that readers that already read previous deliverables can save 
time reading this document.  

When tool component identifiers are used in this document, they correspond to the identifiers 
introduced in deliverable D5.01. 

Due to the public nature of this deliverable, we purposely put a limit on the level of detail with 
which the design, development and implementation of certain components are described. 

1.1 Principle  
The content of this Section 1.1 is copied literally from ASPIRE deliverable D1.02 Section 5.1. 

1.1.1 Definition 
Virtual Machines (VMs) can be used to obfuscate a program or parts thereof. The VMs 
emulate a custom instruction set, which we will call bytecode, and therefore provide the 
necessary run-time functionality to have native code from the program replaced by bytecode. 
The emulator can be completely customized, i.e., it can implement many different forms of 
bytecode instruction sets, support for different languages, etc. 

Such VMs can make it much harder to reverse-engineer programs because standard 
disassemblers and standard tracing tools (e.g., debuggers) do not target the custom 
bytecodes, and because the attackers are not as familiar with the bytecodes as they are with 
native, standardized and extensively documented instruction sets.  

1.1.2 State of the art 
In some VM-based obfuscation approaches, an application's executable code is first 
statically translated (and possibly encrypted) into a custom instruction set, i.e., some form of 
bytecode, after which that bytecode is linked with a VM. When the application launches, the 
VM gets control first, after which its dynamic binary translation (DBT) engine begins 
executing the application by translating the bytecode back to native code that is then 
executed in a so-called software cache under control of the VM [Anc06,Hu06]. In this 
approach, the VM supervises the application’s execution. These types of VMs are 
susceptible to VM replacement attacks, in which an attacker replaces the original VM that 
implements a number of security features by one that lacks those features [Gho12]. The 
attackers can do so, because the application itself is not bound to the specific VM. As a 
countermeasure, techniques have recently been proposed to inject such bindings [Gho13]. 
Furthermore, such VMs are susceptible to tracing attacks [Rab13,Sha09], in which attackers 
collect and analyse execution traces to separate VM engine code (e.g., the code that 
maintains the software cache) from the original application code being executed in the 
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software cache. From the remaining application code trace, they can then reconstruct the 
original program.  

In this section, however, we consider attacks on another type of VMs, i.e., VMs that interpret 
the bytecode. By avoiding a software cache that stores native code, such interpreting VMs 
avoid that the original, native code becomes available for inspection. As interpretation comes 
with a considerable performance penalty, however, such VMs typically only interpret parts of 
the application, i.e., those parts that are not executed too frequently, and of which the 
removal of the native code impacts the reverse-engineering most. The rest of the application 
is still in native code format.  

When the application is launched in the latter approach, the VM does not control or supervise 
the execution of the application. Instead the application's native code directly starts 
executing. Through inserted call stubs, the native code invokes the VM whenever a fragment 
of bytecode needs to be interpreted. The stubs also pass the necessary parameters to the 
VM, such as a pointer to the bytecode to be interpreted and the current state of the program 
(i.e., register contents and condition flag status). 

After interpreting the fragment, the VM returns control to the application, where a return stub 
translates the results of the VM into the processor registers and flags, after which the normal 
program execution continues. This form of protection comes with the additional benefit that 
the native code in the application originates from both the VM and from part of the original 
application. Both parts being in native code, they are harder to distinguish by an attacker. 

 
Figure 1 - Static interpreting VM 

1.1.2.1 Static VMs 
Figure 1 visualizes the internal structure and operation of a static interpreting VM. After such 
a VM engine is given control through the call stub, it fetches the bytecode instructions from 
the instruction table, and interprets them one by one. The bytecode instructions most often 
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represent an index into an instruction handler table, which contains pointers to the instruction 
handlers corresponding to each instruction. For each instruction, one handler is invoked, 
which performs the intended operations on the registers, stack, and memory. Handling one 
instruction at a time, this type of VM resembles classic bytecode interpreters and processor 
emulators.  

The generation of the bytecode is done offline, by a so-called cross-translator that translates 
the extracted native code sequences into corresponding bytecode sequences. So the cross-
translator effectively translates from one machine (the native, typically register-based 
instruction set architecture (ISA) to another (the bytecode, stack-based or register-based 
ISA).  

1.1.2.2 Dynamic VMs 
Dynamic VMs move away from the classic processor emulation. With dynamic VMs, 
bytecode is no longer passed to a general-purpose VM engine that can execute all individual 
bytecode instructions, and native code is not cross-translated to sequences of bytecode 
instructions.  

Instead, each native code fragment to be replaced by bytecode is translated directly into a 
series of custom handlers. These custom handlers can correspond to original bytecode 
instruction handlers, but they can also combine multiple bytecode instructions, feature 
multiple (diversified) implementations for the same instruction, be obfuscated using control 
flow and data flow properties of the original native code, etc.  

Obviously, code translated in this way can become quite big. It offers the advantage, 
however, that the VM and its internal operation cannot be modelled like a standard 
interpreter, and will hence be much harder to reverse-engineer. In particular, it will be harder 
to write tools that automatically analyse the interpretation and recover the original program 
from it [Sha09]. 

1.2 Reference Architecture 
The content of this Section 1.2 is copied literally from ASPIRE deliverable D1.04 Section 3.1. 

1.2.1 Client-side components 
The following components are added to the application to implement the protection 
technique. 

1.2.1.1 The embedded Virtual Machine 
The VM consists of a collection of procedures that together implement the functionality of a 
custom bytecode interpreter. This code is linked into the application binary by the ASPIRE 
tool chain. Furthermore, its code will be dispersed throughout the application code by means 
of Diablo's code layout randomization support. As such, this VM component will not be a 
single, easily identifiable code region. 

During its execution, the application will from time to time invoke the VM and pass it the 
relevant program state and the address of the bytecode to interpret as a replacement of 
some original, native code that was removed from the application to hide it from inspection 
and tampering. The VM will then fetch the bytecode and, starting from the passed program 
state, interpret the bytecode. This will include the computation of the address at which the 
execution of native code should continue after the interpretation has finished. 

The ASPIRE tool chain will customize the VM, i.e., its instruction set and/or implementation, 
to some extent, so that an attacker cannot simply reuse results such as a bytecode 
disassembler from previous analysis without modification. The specific diversification 
techniques and their scope (e.g., diversify per application, per copy of the application, per 
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code fragment) are not yet defined but once they are, they will be implemented by SafeNet’s 
cross translator. 

1.2.1.2 Bytecode to be interpreted 
For each code fragment that is removed from the application, a corresponding bytecode 
image is provided instead. All bytecode images are provided in object files that can be linked 
into the application binary by the ASPIRE tool chain linker. Again, Diablo's layout 
randomization capabilities will be used to disperse the bytecode images throughout the app's 
own data and code. 

1.2.1.3 VM Invocation Stubs 
Each bytecode image is accompanied by a distinct native code stub. This stub is responsible 
for passing the relevant program state to the VM according to the interface accepted by this 
particular VM, for passing control to the VM, for translating the updated state computed by 
the VM back to the native app, and for passing control back to the native app at the correct 
address. More concretely, the stub captures the contents of the physical processor registers 
and then calls the VM with the captured register values and the address of the corresponding 
bytecode image. When the VM finished the execution of the bytecode, the stub writes the 
updated values back into the physical processor registers and passes control back to the 
application. The necessary continuation address is provided by the just interpreted bytecode 
image. 

Inside the application, the original instructions are replaced with a jump to the corresponding 
native code stub.  

Once the stubs are linked into the application, and the jumps have been inserted, Diablo will 
optimize and obfuscate the stubs in its surrounding code. The result will again be that the 
stubs are not easily recognizable code fragments.  

1.2.2 Run-time behaviour of client-side code splitting 
Figure 2 presents the basic sequence diagram, depicting the run-time behaviour of this 
protection technique. 
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Figure 2 – Client-side code splitting run-time behaviour 

 

A detailed description of each step depicted in Figure 2 is presented below. 
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Seq# Operation description 

1 The original application transfers control to the stub. 

Details: This could be implemented in a first phase as an unconditional jump into the first 
part of the stub 1 code. The jump could probably be removed by means of branch 
forwarding, so, in practice, the stub will be inlined in the application code. 

2 The stub sets up state for VM and transfers control. 

Details: The stub collects the contents of the physical ARM processor registers and calls the 
VM, passing the address of the corresponding bytecode (VM-image) as argument. 

When different stubs have different entry points into the VM, those entry points can be inlined 
in the stubs as well. 

3 The VM fetches the Bytecode and interprets it. 

Details: In case the bytecode is stored in encrypted form, the VM will need to decrypt it 
during this process. 

4 After interpretation is finished, control is transferred to second part of the stub. 

Details: The bytecode comprises code to calculate the address where the native execution 
should continue. This address and the updated register values are returned to the stub. 

5 The stub cleans up and transfers control back to the application. 

Details: The stub updates the physical ARM registers with the values the VM returned and 
jumps to the continuation address, transferring control back to the application. 

1.3 Compiler Support  
The content of this Section 1.3 is copied literally from ASPIRE deliverable D5.01 Sections 
9.1, 9.3, and 9.4. 

The overall binary code protection approach in ASPIRE consists of four major steps, as 
depicted in Figure 3. 

In the first step, BLP01, the binary code is analyzed to decide where and how to apply the 
binary-level protections that require the generation and integration of additional custom 
software components. 

For example, for the client-side code splitting by means of an embedded SoftVM (see D1.04 
Section 3.1), bytecode needs to generate to replace native code sequences in the protected 
application, and this bytecode needs to be linked into the application. Also the SoftVM itself 
needs to be linked into the application, and in the more advanced version of the client-side 
code splitting, the SoftVM internals will be customized for the application in which it will be 
embedded. Before generating the bytecode and the customized VM, the code to be 
protected needs to be analyzed, and decisions need to be made about which native code will 
be replaced by bytecode. The necessary analyses and decisions are part of the first step, the 
result of which is a set of configuration files to drive the components that will generate the 
custom software components. 

This generation of custom components in the form of object files BC03 constitutes the 
second step BLP02 of the binary-level ACTC. 
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In the third step, BLP03, the custom components of BC03 are integrated: they are compiled 
and linked in into the application, toghether with other, fixed software components BC09 that 
are also part of the protection, but that were compiled separately and independently of the 
preceding parts of the ACTC because those fixed components BC09 do not need to be 
customized for the application at hand. 

 
Figure 3 - Four steps of the binary-level part of the ACTC 

 

Furthermore, the original code of the application is rewritten to actually invoke the custom 
components as needed. For example, for client-side code splitting, the previously selected 
native code fragments are replaced by stubs that invoke the linked-in SoftVM to interpret the 
corresponding, linked-in bytecode fragments. This integration will happen protection-per-
protection. 

In the fourth step, BLP04, all rewritten code and all integrated components are further 
protected by applying obfuscation and anti-tampering protections. Furthermore, the final 
code layout is determined, and the code is assembled and relocated (when necessary), such 
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that the final binary code is finally known. At that point, placeholders that might have been 
inserted during the rewriting in steps three and four can be filled in. 

In practice, most of BLP03 and BLP04 will be performed during one invocation of a binary 
rewriting tool based on the Diablo link-time rewriting framework. For that reason, we have 
grouped these steps in Figure 3. In its initial implementation, a fixed SoftVM, which requires 
no customization, will be embedded in the code to protect. 

1.3.1 BLP01: Native Code Extraction 
As indicated in Figure 4, in BLP01.01 a Diablo rewriter will collect the code fragments that 
need to be translated from native code to bytecode. It does so on the basis of the annotation 
facts D01 assembled by the source-level component SLP04, and based on its usual inputs, 
which in this case correspond to the application BC02 to be rewritten, the corresponding map 
file (D02) and the object code (BC08) that was linked into the original application by the 
standard linker. 

 
Figure 4 - Tool flow components for chunk extraction and bytecode generation 

 

Diablo produces a description of the native code chunks in the form of JSON files (BLC02). 
The specification for this interface is presented in Appendix D. 

To select the native code fragments to be translated to bytecode, the Diablo tool will consider 
procedures marked as such in the annotation facts D01. Within these fragments, all possible 
fragments will be selected, i.e., all fragments of which the instruction selector indicates that 
the instructions in them are supported by the X-translator and the SoftVM. 
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1.3.2 BLP02: Bytecode Generation 
The second tool BLP02 in support of client-side code splitting is the X-translator. Based on 
the JSON files of BLC02 it generates bytecode, as well as stubs that will replace the selected 
native code fragments. The responsability of the stub is to invoke the SoftVM that will be 
embedded in 

the application in BLP03, to let it interpret the generated bytecode that replaces the original 
native code, as well as to pass the program state to the SoftVM before its invocation, and 
back after its invocation. 

The stubs and the bytecode will be generated as code and data sections in ELF object files, 
that can simply be linked into the application to protect. 

UGent is responsible for the code extraction in the Diablo rewriter, and SFNT is responsible 
for the X-translator (as well as the SoftVM). This separation of concerns ensures a clear 
separation of Foreground IP, and a tool flow design in which components can easily be 
replaced by alternative ones after the project to facilitate exploitation of the project results. 

However, unless special care is taken, this separation of concerns could introduce some (un- 
wanted) dependencies between the involved partners’ tools. Over time, the subset of the 
ARMv7 instruction set that is supported by the X-translator and the SoftVM will grow. So over 
time, the code fragments to be selected by the Diablo rewriter will grow. To avoid the need to 
keep the three tools spread over two partners synchronized with respect to the supported 
instruction set, we have decided to lift that responsibility from the Diablo rewriter, and to 
move it into a small dynamically linked library BLP01.02, the so-called instruction selector in 
Figure 4, that will be maintained by SFNT, and that will be invoked by UGent’s Diablo 
rewriter to select the instructions that can be translated to bytecode. 

1.3.3 BLP03: Code Integration 
In the initial implementation of the ACTC, with the fixed SoftVM, the integration of the 
generated bytecode and code stubs, as well as of the SoftVM itself is straightforward. First, 
as shown in Figure 5, the SoftVM source code SC09 is compiled with the same tool chain 
used to compile the code to be protected. The result of this compilation process consist of 
the SoftVM object code files BC09. 
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Figure 5 - Compilation of SoftVM 

Next, the originally generated object code BC08 of the original application protected at 
source level (see Figure 10 in D5.01), is relinked with the generated bytecode and the stubs 
(BC03), and with the SoftVM object code (BC09), as depicted in Figure 6. This produces a 
new application BC04, with the corresponding map file D04. We use the names c.out and 
libc.so3 to indicate that these files denote extended version of the original binary a.out or the 
original library liba.so of BC02. 

 
Figure 6 - Linking of the SoftVM 
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Figure 7 - Integration of the SoftVM and application of binary code obfuscation 

Finally, Figure 7 shows the last step, in which a second tool BLP03 based on Diablo will 
rewrite that application to finalize the protection. This tool will replace the native code 
fragments that have been translated by the X-translator in step 2 by control flow transfers to 
their corresponding stubs. UGent is responsible for all of this integration in the Diablo tool. 

1.4 Structure of the remainder of this document 
In the remainder of this document, we provide additional information and progress reports on 
the tool components that have been developed in year 1 of the project. We do so in four 
sections for the code extractor, the X-translator, the SoftVM, and the integration of the 
SoftVM in the protected software. We also show a code example, i.e., and example in which 
native code has been replaced by code to invoke the SoftVM. Finally, we added a section 
that discusses near-future extensions to the SoftVM design that will allow for more extensive 
and more stealthy protection.  
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Section 2 Code Extractor  
Chapter Authors:  

Bjorn De Sutter (UGent), Jens Van den Broeck (UGent) 

To implement BLP01, UGent developed a custom front-end on top of its Diablo link-time 
rewriting framework (see Section 9.2 in D5.01). In this section, we present this front-end, and 
the support for this front-end that was developed in the generic Diablo infrastructure. We first 
discuss their current status, and then discuss future work.  

2.1 JSON support (Diablo Framework) 
The code extractor, i.e., the Diablo frontend for BLP01.01 is configured in part by the source 
code annotations, that have been extracted in SLP04 of the ACTC and that have been stored 
in document D01, in a JSON format as specified in Appendix C of deliverable D5.01. 
Furthermore, in document BLC02, the code extractor has to export descriptions of the code 
chunks to be translated. That document also uses JSON, as specified in Appendix D of 
deliverable D5.01. For that reason, the necessary interfaces to Jansson, an open source 
JSON reader/writer/manipulator library (http://www.digip.org/jansson/), were implemented in 
Diablo.  

2.2 External Instruction Selector (BLP01.02) 
To obtain a clear separation of concerns (i.e., to optimize the development and integration 
processes in ASPIRE) and of developed IP ownership and IP rights (i.e., to optimize the 
exploitation potential of ASPIRE partners), the design decision was made to couple Diablo 
with an external instruction selector, as already discussed in Section 1.3.2.  

This external instruction selector consists of functionality from the X-translator, of which 
SFNT extended the API, and exposed that API to Diablo in the form of a shared library. In 
Diablo, functionality was added to translate an instruction's features as recorded in Diablo's 
internal data structures into the description supported by the API. That way, Diablo can query 
the external instruction selector to check whether or not some instruction is supported by the 
X-translator and the SoftVM. 

2.3 Code Extraction Functionality (BLP01.01) 
As the Diablo framework cannot yet parse DWARF debugging information correctly (this 
support will be implemented in T5.1 in year 2 of the project), it cannot yet identify binary code 
fragments by their corresponding source code line number. It can, however, identify 
procedures of which the name is linked to a symbol in the symbol information stored in the 
object files of BC08.  

We therefore developed functionality in the code extraction front-end BLP01/01 to identify the 
whole procedures in BC02 that are annotated as candidates for client-side code splitting in 
the annotation facts of D01. Within those functions, the front-end then first marks the 
instructions that can be X-translated by querying the instruction selector BLP01.02. Next, 
consecutive marked instructions are grouped into single-entry, single-exit code regions (so 
called chunks). Furthermore, an interprocedural, bi-directional context-sensitive liveness 
analysis is performed to identify the dead and live registers (and condition flags) on entry and 
exit of the code fragments. A description of each chunk is then exported in JSON format in 
BLC02, together with the relevant liveness information.  
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Section 3 X-translator  
Chapter Authors:  

Andreas Weber (SFNT) 

The core of the X-translator that implements ACTC tool BLP02 is contributed by SFNT as 
background IP because substantial parts had already been developed prior to the ASPIRE 
project. The tool is provided to the project partners as a 32-bit Linux x86 executable. 

The X-translator is a compiler that translates ARMv7 machine code fragments into functional 
equivalent bytecode interpretable by a suitable virtual machine. The virtual machine accepts 
a bytecode image and a machine context as input and calculates an updated machine 
context. The input machine context is a snapshot of the physical ARM processor state 
(registers and flags) and; the output machine context contains an updated processor state 
identical to the results the original machine code would have produced in the physical ARM 
registers. 

As depicted in Figure 4, the BLP02 tool first reads the JSON BLC02 file that specifies the 
ARMv7 machine code chunks. The tool then  generates an ARM assembly file containing for 
each chunk a native code stub in ARM assembly and an associated bytecode image as data. 
This assembly file is then assembled into the object code of BC03. 

Both the JSON-parser and the assembly writer have been specifically developed for ASPIRE 
to allow the integration of SFNT compiler technology into the ACTC. 

Internally the X-translator uses LLVM-IR as intermediate representation and relies on the 
LLVM libraries for code optimization. LLVM is an open source project building reusable 
compiler components and tools (frontends, optimizers, backends, linkers, debuggers, etc.) 
around a formally specified, strongly typed pseudo assembly language named LLVM-IR 
(LLVM-Intermediate-Representation). With LLVM-IR as its intermediate representation the X-
translator follows a traditional compiler design with a front-end, an optimizer and a back-end. 

The front-end consists of two phases. The first phase is the JSON-parser that reads the 
JSON file and constructs an in-memory representation of the code fragments defined in the 
JSON file. Each code fragment is represented by a Chunk object, which models the 
fragment’s control flow graph as a set of connected Basicblocks. Each Basicblock 
consists of a list of Instructions, where each Instruction represents a disassembled 
ARM instruction. The JSON-parser is implemented as a descending push parser using the 
event-driven yajl library (Yet Another JSON Library - https://lloyd.github.io/yajl/) as lexer. For 
disassembly the frontend uses the Capstone engine (http://www.capstone-engine.org/) 

The frontend’s second phase translates each Chunk into an equivalent LLVM-IR program. 
LLVM-IR is an intermediate representation mandating static single assignment form (SSA 
form). From a front-end perspective this means the LLVM processor (a processor capable of 
executing LLVM-IR) has an infinite number of registers and that each register is defined 
exactly once. 

Translating a Chunk into LLVM-IR requires the following steps: 

1. Create an LLVM module as a top-level container. 
2. Inside the LLVM module create a function that represents the entry point of the code 

fragment. This function takes as single parameter a pointer to a machine context 
struct. 

3. Create instructions that load the register values from the passed machine context: 
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a. For each value of the machine context create an LLVM-IR load instruction that 
makes the value available as a SSA-register. 

b. Make the arithmetic flags (N, Z, C, V) available as individual SSA-registers 
using appropriate LLVM-IR bitwise-shift and bitwise-and instructions on the 
SSA-flags-register. 

c. Track which emulated ARM registers maps to which SSA-register. 
4. For each ARM instruction create an appropriate sequence of LLVM-IR instructions 

that emulate the effects of the ARM instruction (registers and flags) while updating 
the mapping between emulated ARM registers and their associated SSA-registers. 

5. Create instructions that write the computed results back into the machine context 
struct: 

a. Combine the individual arithmetic SSA-flags into the SSA-flags-register using 
appropriate LLVM-IR bitwise shift and bitwise or instructions. 

b. Create LLVM-IR store instructions, which write the final SSA-registers back 
into their corresponding machine context slots. 

The resulting LLVM-IR is rather big and inefficient as it loads and stores every register from 
the machine context although the emulated ARM instructions do not necessarily use all of 
them. Also not every emulated ARM register might be live at all times, leading to LLVM-IR 
code that calculates results that are never used. Both problems are addressed using the 
LLVM optimizer as a library, configured to perform a standard set of optimizations effectively 
eliminating unnecessary loads and stores as well as unneeded calculations. 

The optimized LLVM-IR code is then fed into the back-end. The back-end is organized in two 
phases: The first phase goes over every Chunk and translates the optimized LLVM-IR into a 
bytecode image for the VM. The second phase generates the final assembly file containing 
the native stub code and the bytecode image for every code fragment. 

A code fragment’s native stub creates the machine context by capturing the contents of the 
physical ARM registers and then calls the VM passing the machine context and the 
associated bytecode image as parameters. After the VM returns, the stub updates the 
physical ARM registers with the values from the updated machine context and then resumes 
execution of the native application. 

The stub is created by the X-translator, rather than by the Diablo-based SoftVM integrator of 
BLP03, to allow a clear separation of concerns. Indeed, this way Diablo does not need to 
know how to invoke the VM.  

For the first phase the back-end implements a subset of LLVM’s IR specification, which is 
sufficient to lower the front-end-generated LLVM-IR to the instruction set of the VM. 

During the assembly generation, the back-end defines a text section containing all native 
code stubs labelled as vmStart<chunkNumber>. After that, it defines a data section with 
the bytecode images, each labelled as vmImage<chunkNumber>. The assembly file serves 
as input for the GNU ARM assembler to produce the ELF object file BC03, which in turn can 
be integrated into the protected application using Diablo. 

At the moment the X-translator supports the following ARM instructions: 

• adc reg, reg, reg, shift 
• adcs reg, reg, reg, shift 
• adc reg, reg, imm 
• adcs reg, reg, imm 
• add reg, reg, reg, shift 
• adds reg, reg, reg, shift 
• add reg, reg, imm 
• adds reg, reg, imm 
• and reg, reg, reg, shift 
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• ands reg, reg, reg, shift 
• and reg, reg, imm 
• ands reg, reg, imm 
• asr reg, reg, reg 
• asrs reg, reg, reg 
• asr reg, reg, imm 
• asrs reg, reg, imm 
• bfc reg, imm, imm 
• bfi reg, reg, imm, imm 
• mov reg, reg 
• movs reg, reg 
• mov reg, imm 
• movs reg, imm 
• mul reg, reg, reg 
• muls reg, reg, reg 
• sub reg, reg, ,reg 
• subs reg, reg, reg 
• udiv reg, reg, reg 
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Section 4 SoftVM 
Chapter Authors:  

Andreas Weber (SFNT) 

The SoftVM is a static virtual machine contributed by SFNT as background. It exposes the 
following function: 
void vmExecute( MachineContext* mCtx, 
                uint8_t* bytecodeImage, 
                uint32_t sizeBytecodeImage 
); 

A chunk’s native code stub is expected to call vmExecute with the correct parameters for 
this particular chunk. The mCtx is a pointer to the machine context struct containing the 
values of the physical ARM registers. It has the following structure: 
typedef struct MachineContext 
{ 
  uint32_t flags; 
  uint32_t r0; 
  uint32_t r1; 
  uint32_t r2; 
  uint32_t r3; 
  uint32_t r4; 
  uint32_t r5; 
  uint32_t r6; 
  uint32_t r7; 
  uint32_t r8; 
  uint32_t r9; 
  uint32_t r10; 
  uint32_t r11; 
  uint32_t r12; 
  uint32_t r13; 
  uint32_t r14; 
  uint32_t continuationAddress; 
} MachineContext; 

At run time vmExecute allocates a VM instance, loads the provided bytecode into the VM 
and triggers the interpretation of the bytecode with the supplied machine context as input. 
When the VM finished interpretation, the native code stub will write the updated machine 
context back into the physical ARM registers and jump to the continuation address. 

The SoftVM core is a small, general-purpose stack-based virtual machine. It supports 32-bit 
integer but not floating point arithmetic. It uses 1-byte opcodes within a variable length 
instruction encoding. The machine’s memory model supports global variables, local variables 
and heap memory with manual memory management (no garbage collection). The actual 
bytecode interpreter is a dispatch loop, which uses the opcode as index into a table of 
function pointers to retrieve the address of the corresponding opcode handler. 

For ASPIRE the existing SoftVM core had to be adapted, so it compiles in the ASPIRE build 
environment and runs correctly on the ARM processor. As portions of the core had been 
originally written in C++, the adaption mainly required porting these parts to plain C, so that 
Diablo can rewrite the compiled code of the SoftVM, and can hence apply the other 
protections to the SoftVM code as well. Additionally new interface code (essentially 
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vmExecute.c, softvm.c and softvm_test.c) had to be developed, which enables the 
usage of the existing core in the ASPIRE binary code splitting scenario. 

Currently the SoftVM runs correctly on x86 and ARM, where it produces expected results 
both with bytecode generated by the X-Translator and with bytecode of manually assembled 
test cases. At this stage care was taken solely on functional correctness, which means so far 
the SoftVM has not been benchmarked to estimate the introduced overhead. 
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Section 5 Integration of SoftVM and bytecode 
Chapter Authors:  

Bjorn De Sutter (UGent), Jens Van den Broeck (UGent) 

To implement BLP03 (combined with BLP04) another frontend of Diablo has been 
developed. The design, development and status of that frontend tool is described in this 
section.  

5.1 Chunk Recollection 
The first thing the front-end does for BLP03, is to recollect the chunks that were selected for 
X-translation in BLP01. Now this collection of chunks happens on the basis of inputs D04, 
BC04, BC08, BC03 and BC09, instead of on D02, BC02 and BC08 that were used for 
BLP01. The code that implements the selection in BLP01 is reused for that purpose in 
BLP03. As the same annotation facts D01 are used for BLP03 as for BLP01, this recollection 
is in fact limited to the code originating from BC08, i.e., the original application code. This 
recollection hence results in exactly the same chunks as were exported by BLP01.  

5.2 Chunk replacement 
Next, for each chunk the front-end looks up the corresponding stub code in BC03, and simply 
replaces the chunk with (1) a push of the return address on the stack, i.e., of the address of 
the first instruction following the chunk, and (2) a branch instruction that transfers control to 
the stub. This way, the separation of concerns is maintained: the Diablo-frontend does not 
need to know anything about the SoftVM or the stub code to insert invocations of the SoftVM 
in the binary code to be protected. 

At run time, instead of executing a native chunk 

1. The return address is pushed. 
2. Control is transferred to the stub that was linked in as part of BC03.  
3. The stub is executed. As it was generated by the X-translator (based chunk 

descriptoins and on liveness information obtained from the code extractor), this code 
is tuned to invoke the SoftVM correctly, i.e., to pass all the necessary data (live-in 
values, return address, bytecode address, ...) through the correct API.  

4. The VM is invoked and interprets the bytecode.  
5. After the VM finished, it returns to the native code by popping the return address from 

the stack.  

5.3 Providing Stealthiness 
After replacing the code chunks by branches to the stubs, the Diablo front-end can reuse 
Diablo's existing infrastructure for optimizing, obfuscating and reordering binary code to 
complete the integration of the SoftVM and the bytecode. For example, the branch 
instructions can be removed by branch forwarding, and the whole-program code layout of the 
protected binary BC05 will be such that code of the SoftVM, the stubs, and original 
application code (all of which can also be transformed using Diablo's control flow 
obfuscations) will be mixed and intertwined in one big code section. This will significantly 
improve the stealthiness of the client-side code splitting approach.  
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Section 6 Binary Code Obfuscation 
Chapter Authors:  

Bjorn De Sutter (UGent) 

In the ASPIRE DoW, and in particular in Task T2.4 of WP2, the development of binary code 
obfuscation support was foreseen to start in M13 of the project. Because opportunities 
surfaced much earlier to exploit the Foreground IP resulting from the basic infrastructure 
development foreseen in T2.4, we advanced this development in time. As a result, we have 
already been able to integrate basic control flow obfuscations in the Diablo tool that 
implements steps BLP03-BLP04 of the ACTC. We will present this work, its extensions and 
more advanced features, in detail in deliverable D2.06 at M18 of the project, as foreseen in 
the DoW.  

Here, we only summarize the current results.  

• The existing Diablo support for opaque predicates for the x86 architecture in Diablo 
has been ported to the ARMv7 architecture.  

• Similarly, the existing Diablo support for code flattening has been ported to the 
ARMv7 architecture. 

• Similarly, the existing Diablo support for branch functions has been ported to the 
ARMv7 architecture. 

• All of the above obfuscations can now be implemented in position independent code, 
such that they can be applied to dynamically linked libraries.  

• The necessary functionality has been developed to control the deployment of the 
above obfuscations by means of source code annotations.  

• The x86 code layout randomization functionality in Diablo has been ported to the 
ARMv7 architecture.  

As we show in Section 7.2, this basic support already enables interesting combinations of 
different types of protections, in line with the ASPIRE approach of combining different lines of 
defence in which different protections reinforce each other.  
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Section 7 Example Results 
Chapter Authors:  

Bjorn De Sutter, Jens Van den Broeck, Bart Coppens (UGent) 

7.1 SoftVM code rewriting 
As a testing example, consider the following procedure, named asmFunction, which was 
written manually in assembler to test the whole approach:  

asmFunction:	
  

stmfd	
   sp!,	
  {fp,	
  lr}	
  
ldr	
  	
  	
  	
   r0,	
  m1Addr	
  
bl	
  	
  	
  	
  	
   puts	
  
bl	
  	
  	
  	
  	
   dumpRegs_entry	
  
mov	
  	
  	
  	
   r0,	
  #15	
  
mov	
  	
  	
  	
   r1,	
  #25	
  
add	
  	
  	
  	
   r2,	
  r0,	
  r1	
  
bl	
  	
  	
  	
   dumpRegs_entry	
  
ldr	
   r0,	
  m2Addr	
  
bl	
  	
  	
  	
   puts	
  
ldmfd	
   sp!,	
  {fp,	
  pc}	
  

 

The bl instructions are calls to the puts and dumpRegs_entry functions that were inserted to 
allow us to check the correct execution of the protected program. The mov and add 
instructions in between are the instructions that in this example should be replaced by an 
invocation of the SoftVM and the interpretation of corresponding bytecode.  

The Diablo framework can export control flow graphs (CFGs, exported in the .dot format) of 
the procedures in the software it rewrites, before and after the transformations. Figure 8 
shows the CFG of the above procedure. This CFG uses alternative mnemonics (stmfd = 
push, ldr = adr,, ldmfd = pop) and alternative register names (sp = r13, fp = r11, lr = r14, pc = 
r15), but the corresponding instructions can easily be identified. For each basic block and 
instruction in the CFG, the addresses of the instructions in the original binary (BC02) are 
shown. Red arrows model call edges, blue arrows model the corresponding return edges, 
and black arrows model intra-procedural control flow. The four procedure calls are clearly 
visible, as is the fact that this asmFunction is called from within the main function.  The 
chunk of three instructions to be replaced by bytecode are clearly visible in the left-most 
block in the CFG. Note that the instructions from the assembly file are all put at consecutive 
addresses. So when that program is disassembled by an attacker, the simple control flow in 
this procedure is manifest.  

Figure 9 shows the corresponding CFG after that chunk has been replaced by instructions 
that push the return address 0x9e14 onto the stack, i.e., the address of the instruction 
following the chunk, and a branch to the chunks stub. These instructions can be found in the 
block that has not been assigned an address yet (indicated by the temporary address 0x0). 
That block contains an additional push and pop to temporarily free the register r1 that is 
needed to hold the return address before it can be pushed onto the stack.  

The stub itself is not shown here, as Diablo considers it part of another procedure in the 
program.  
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To model the return from the SoftVM after the bytecode has been executed, an edge from 
the so-called hell node has been added to the basic block at address 0x9e14. With this 
conservative model, Diablo will correctly perform data flow analyses as needed for applying 
further protections, such as control flow obfuscations. In this example, this modelling also 
already hints to the fact that Diablo will be able to put the code executed right before the 
SoftVM invocation at a location in the program's code section that is completely independent 
of the location of the code that will be executed immediately after the return from the SoftVM. 
This feature, in combination with Diablo's capability to effectively randomize the code section 
layout, indirectly provides another level of obfuscation: not only the X-translated bytecode 
itself is obfuscated, but also its surrounding control flow.  

 
Figure 8 - Example control flow graph before client-side code splitting 

 

bbl at 0x91c8 
0x91c8 :  PUSH       {r11,r14}
0x91cc :  ADR        r0 91a0
0x91d0 :  BL         0xded4 abs: 170ac

bbl at 0x91d4 
0x91d4 :  BL         0x4cc abs: 96a8

puts (0x170ac)

bbl at 0x91d8 
0x91d8 :  MOV        r0,#0xf
0x91dc :  MOV        r1,#0x19
0x91e0 :  ADD        r2,r0,r1
0x91e4 :  BL         0x4bc abs: 96a8

dumpRegs_entry (0x96a8)

bbl at 0x91e8 
0x91e8 :  ADR        r0 91b0
0x91ec :  BL         0xdeb8 abs: 170ac

bbl at 0x91f0 
0x91f0 :  POP        {r11,r15}

RETURN

bbl at 0x9184 
 in main

bbl at 0x9180 (in main at 0x9160) in main
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Figure 9 - Corresponding control flow graph after client-side code splitting 

 

7.2 Combination of SoftVM with binary code obfuscations  
As a second example, we applied the binary-level ACTC tools to bzip2, one of the 
SPECint2006 benchmarks. From within two major procedures of the benchmark (main and 
compressStream), we translated 40 native code fragments to bytecode. Furthermore, we 
applied our basic control flow obfuscations to the majority of the benchmark procedures.  We 
then applied basic-block-level code factoring as well as code layout randomization.  

The result is visualized in Figure 10. In this figure, each pixel represents one instruction of 
the benchmark's code section. Its colour indicates the origin of the instruction, according to 
the following legend: 

• red: original application code; 
• blue: SoftVM code; 
• white: 40 stubs inserted to invoke the SoftVM;  

bbl at 0x91c8 
0x91c8 :  PUSH       {r11,r14}
0x91cc :  ADR        r0 91a0
0x91d0 :  BL         0xded4 abs: 170ac

bbl at 0x91d4 
0x91d4 :  BL         0x4cc abs: 96a8

puts (0x170ac)

bbl at 0x0 
0x0 :  PUSH       {r0,r1}
0x0 :  ADR        r1 91e4
0x0 :  STR        r1,[r13,#0x4]
0x0 :  POP        {r1}
0x0 :  B          0xffffffffffffffec abs: 4

dumpRegs_entry (0x96a8)

bbl at 0x91e8 
0x91e8 :  ADR        r0 91b0
0x91ec :  BL         0xdeb8 abs: 170ac

bbl at 0x91f0 
0x91f0 :  POP        {r11,r15}

RETURN

bbl at 0x91e4 
0x91e4 :  BL         0x4bc abs: 96a8

0xb650364

bbl at 0x9184 
 in main

bbl at 0x9180 (in main at 0x9160) in main

HELL
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• black: code that was factored out; 
• green: code that was inserted to implement control flow obfuscations (i.e., opaque 

predicates, code flattening, and branch functions). 

The most interesting aspect of this visualization is that the SoftVM code is truly spread 
throughout the whole code section. Moreover, the number of blue instruction sequences is 
far higher than the number of SoftVM procedures. The reason is of course that procedure 
bodies are not stored consecutively as in unprotected binaries, but spread throughout the 
binary. It is also visible that the SoftVM stubs, even though they are injected into only two 
procedures (main and compressStream), are spread over the whole binary.  

This clearly demonstrates that even in its current basic implementation, the code layout 
randomization code is effective in mixing application code and SoftVM code. To the best of 
our knowledge, the ASPIRE tools are the only existing tools with this capability, which helps 
with hiding the functionality of the SoftVM, thus making the protection more stealthy. 

For demonstrating and visualizing that the code factoring combined code fragments from the 
application and the SoftVM, our initial prototype still lacks the necessary support. When we 
first report the work of Task T2.4 (in deliverable D2.06 at M18), we will be able to evaluate 
and report this aspect in detail.  

 
Figure 10 - Visualization of code origin in a protected benchmark 
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Section 8 Future Work  
Chapter Authors:  

Bjorn De Sutter (UGent) 

In year two, and regarding the SoftVM client-side code splitting approach, we plan to work on  

1. Complete the support for single-entry, multi-exit code chunks that might also contain 
internal control flow transfers. 

2. Extending the set of supported instructions, i.e., instructions that can be translated 
from native code to bytecode.  

3. Support for more fine-grained extraction of instructions, i.e., support for line-number 
based identification of extraction candidates by means of DWARF debugging 
information. 

4. Support for considering profile information while selecting candidates, to balance 
performance and provided protection. Profiling support is already available in the 
Diablo framework, but is not used yet.  

5. Set up a research collaboration with FBK, which was so far not involved in Task 2.3, 
to use their techniques based on barrier slicing to determine the code to translate 
from native to bytecode.  

Furthermore, we will design and develop the necessary interfaces to the ADSS as its 
development continues in T5.2.  

For multi-exit chunks, the VM, when it has finished the bytecode interpretation of a chunk, by 
default has to be able to continue execution of native code at different program points, 
corresponding to the multiple exit points of the chunk. For that reason, it will no longer suffice 
to simply push a return (i.e., continuation) address onto the stack before invoking a stub. To 
replace this, we have designed a technique based on passing symbolic information between 
the different tools of the ACTC. This technique will be implemented during year 2 of the 
project.  

As presented in Appendix D of D5.01, the chunks described in BLC02, can contain multiple 
basic blocks. Each of them will get a label, and control flow transfers within a chunk, i.e., 
from one block to another in the chunk, will be described as edges between the basic blocks 
as identified with their labels. This will allow the X-translator to implement the necessary 
control flow within chunks.  

To support multiple exits, the Diablo frontends will also assign labels to the multiple 
continuation points corresponding to all exits. The X-translator will then be adapted to 
generate bytecode that, upon exit of the chunk, transfers control directly to the address of the 
label of that exit. So the multiple continuation addresses will be hardcoded in the bytecode, 
rather than pushed onto the stack before invoke a stub (as described in Section 5.2).  

To make the hardcoded continuation addresses stealthy, we foresee that they may be 
encrypted or encoded in many different ways. To achieve a clean separation of concerns, 
and sufficient renewability of the encryption or encoding used, the Diablo frontends should 
not need to know which precise forms of encryption or encoding are used. However, only 
Diablo knows the final continuation addresses, and it only knows so after all protections have 
been applied, and the final layout of the protection application is determined.  

To solve this phase-ordering, separation-of-concerns problem, we will add a small additional 
processing step to the ACTC, which we call a fix-up step. Before it generates the final binary, 
Diablo will invoke the X-translator again, now providing it also the chunks' final continuation 
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addresses, as well as the final addresses of all bytecode fragments in the protected 
application.  

In sub-step BLP05, shown in Figure 11, the X-translator will use this information to encrypt or 
encode the continuation addresses, thus obtaining the values that need to be hardcoded into 
the bytecode. It will generate the bytecode again, and return it to Diablo, which will overwrite 
the previously generated bytecode fragments (from BC03) with the new ones. This effectively 
will mean that the bytecode in BC03, generated during the invocation of the X-translator in 
BLP02 (see Figure 4), only serves as a placeholder for the final bytecode. We will still keep 
the existing step BLP02, however, as it is needed to compute the size of the (placeholder) 
bytecode fragments before they are linked into the program, and as that separate phase will 
later also be useful to generate custom SoftVMs.  

 
Figure 11 - Extra fix-up step in the ACTC 

 

In addition to the discussed future work on the operation and capabilities of the SoftVM and 
its compilation support, we will also start researching the use of the SoftVM in support of 
other protection techniques, i.e., techniques other than client-side code splitting itself.  

Furthermore, we will research how to integrate the custom SoftVMs of SFNT into the ACTC, 
i.e., SoftVMs of which the code (and hence the supported bytecode instruction set) is not 
fixed a priori, but dependent on the chunks that need to be interpreted in the code to protect 
at hand. 
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Section 9 List of Abbreviations  

 

ACTC  ASPIRE Compiler Tool Chain 

ADSS  ASPIRE Decision Support System 

API  Application Program Interface 

ASPIRE Advanced Software Protection: Integration, Research and Exploitation  

BCxx  Binary code document nr. xx 

BLCxx  Binary-level configuration file nr. xx 

BLPxx  Binary-level software processing step nr. xx 

CFG  Control Flow Graph 

DWARF Debugging With Attributed Record Formats 

Dxx  Datum produced or used by the ASPIRE ACTC identified with nr. xx 

Dx.y  ASPIRE deliverable # y in work package  x, y is a two digit number 

GUI  Graphical User Interface 

IP  Intellectual Property  

IR  Intermediate Representation 

JSON  JavaScript Object Notation 

LLVM  Low Level Virtual Machine 

RTD  Research and Technology Development 

SB  (ASPIRE) Steering Board  

SSA  Static single assignment 

SVN  Subversion  

QAP  Quality Assurance Plan 

URL  Uniform Resource Locator  

VM  Virtual Machine 
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