
Advanced Software Protection:
Integration, Research and Exploitation

D2.01
Early White-Box Cryptography and Data Obfuscation Report

Project no.: 609734
Funding scheme: Collaborative project
Start date of the project: November 1, 2013
Duration: 36 months
Work programme topic: FP7-ICT-2013-10

Deliverable type: Report
Deliverable reference number: ICT-609734 / D2.01
WP and tasks contributing: WP 2 / Task 2.1, Task 2.2
Due date: October 2014 – M12
Actual submission date: 31 October 2014

Responsible Organization: FBK
Editor: Mariano Ceccato
Dissemination level: Public
Revision: 1.01

Abstract:
The goal of this deliverable is to report about the project activities on data protection, they are
Task 2.1 data obfuscation and Task 2.2 White-Box cryptography. We present a survey of techniques
for data obfuscation and for white-box cryptography along with an evaluation of their pros and
cons. Based on the outcome of the analysis performed, the most promising variants are selected
for implementation and integration in the ASPIRE compiler tool chain. Additionally, preliminary
implementation is subject to experimental validation to measure performance overhead due to
protection.
Keywords:
Data obfuscation, White-Box Cryptography

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

Editor
Mariano Ceccato (FBK)

Contributors (ordered according to beneficiary numbers)
Brecht Wyseur, Patrick Hachemane (NAGRA)
Mariano Ceccato, Roberto Tiella (FBK)
Jerome D’Annoville (GTO)

The ASPIRE Consortium consists of:

Ghent University (UGent) Coordinator & Beneficiary Belgium
Politecnico Di Torino (POLITO) Beneficiary Italy
Nagravision SA (NAGRA) Beneficiary Switzerland
Fondazione Bruno Kessler (FBK) Beneficiary Italy
University of East London (UEL) Beneficiary UK
SFNT Germany GmbH (SFNT) Beneficiary Germany
Gemalto SA (GTO) Beneficiary France

Coordinating person: Prof. Bjorn De Sutter
E-mail: coordinator@aspire-fp7.eu
Tel: +32 9 264 3367
Fax: +32 9 264 3594
Project website: www.aspire-fp7.eu
Disclaimer The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 609734. The infor-
mation in this document is provided as is and no guarantee or warranty is given that the infor-
mation is fit for any particular purpose. The user thereof uses the information at its sole risk and
liability.

ASPIRE D2.01 PUBLIC ii

mailto:coordinator@aspire-fp7.eu
http://www.aspire-fp7.eu

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

Revision History

Version 1.0 - 31 Oct 2014
Original deliverable submitted to the EC.

Version 1.01 - 10 Dec 2014
Corrected references: the project-internal, draft versions of D2.04 are numbered WD2.04 and
WD2.04b, not D2.04 and D2.04b.

ASPIRE D2.01 PUBLIC iii

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

Executive Summary

This deliverable is the first report on the approaches to data protection within the ASPIRE frame-
work. There are two major contributions of this deliverable, they are (1) results about the data
obfuscation achieved in Task 2.1 and (2) results about white-box cryptography achieved in Task
2.2.
We started filling a taxonomy of the most promising data obfuscation transformations available in
the state of the art. A feature grid analysis has been conducted, by listing peculiarities, strong and
weak points of several obfuscations. Based on this feature evaluation, we selected four obfusca-
tion schemes to be implemented within ASPIRE. They are xor integer encoding, residue number
coding, merge scalar variable and convert static to procedural data.
To understand what are the most appropriate variables to obfuscate, we elaborated the notion
of data distance. Those variables that concur to define the value of a sensitive variable are said
to be proximate to such sensitive variable. Based on this notion of distance, we define the Data-
Proximity-Graph DPG, a data structure that we use to define sets of variables to obfuscate (obfus-
cation configurations).
The four selected obfuscations have been implemented in TXL as source-to-source rewriting rules.
Implemented obfuscations have been assessed on a case study C program, a license check routine.
Obfuscated code has been compared with clear code in terms of obfuscation cost and improved
security. Obfuscation cost is estimated by the impact on runtime overhead (obfuscated code takes
longer to run), on memory overhead (obfuscate code requires more memory) and number of en-
code/decode operations occurred at runtime (obfuscated code executes additional operations).
The improved security brought by obfuscation is approximated by the number of program vari-
ables that are subject to data obfuscation.
As expected, the most advanced obfuscation (i.e., residue number coding) involves higher cost
than the most simple obfuscation schemes. However, memory overhead and execution time over-
head grow linear with the number of obfuscated variables.
In the second part of this deliverable, we present the activities on white-box cryptography as con-
ducted in Task 2.2. This comprises three parts as described in the ASPIRE Description of Work:
(1) the development of a White-Box Tool that manages the process of generating white-box imple-
menations, (2) the research on new white-box schemes with strong (provable) security properties,
and (3) the research and development of more practical white-box schemes such as dynamic or
time-limited white-box implementations. The first two parts have received most attention in the
first year of the project, the practical white-box implementation are the main activity that remains
for the remainder of the Task – as planned in the ASPIRE Description of Work.
NAGRA has been contributing a framework that manages the generation process of white-box
code to the consortium. This is denoted as the White-Box Tool (WBT). This tool has been further
developed as an activity in Task 2.2. to support additional features that are desired for ASPIRE,
such as the support for dynamic white-box implementation and generation management for sup-
porting renewability. To ease the integration of the WBT in the ASPIRE Compiler Tool Chain
(ACTC), a frontend has further been developed that presents simplified interfaces to the ACTC.
This frontend is denoted as the WBT for ASPIRE (WBTA).
As a second main activity, Gemalto and NAGRA had an activity scheduled on research into new
white-box schemes with provably secure properties; based on ideas in Fully Homomorphic cryp-
tography and Multivariate cryptography respectively. The idea in the multivariate track is to rely
on the multivariate decomposition hardness problem, where a multivariate cipher can be white-
boxed by introducing annihilating multivariate maps into the implementation – similar to the idea
of introducing annihilating encodings in the original white-box approach. This research has been
conducted in three main parts: (1) investigate the existing constructions on multivariate ciphers
to figure out what kind of constructions may be adequate for white-box, (2) investigate the impact
on performance to figure out what kind of parameters for such constructions may be appropriate,
and (3) perform a thorough security analysis to figure out what level of security can be achieved.

ASPIRE D2.01 PUBLIC iv

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

Our conclusion is that multivariate WBC is a viable approach, but only for ciphers with small
block size for which low performance and large implementation size is acceptable.
With respect to WBC based on Fully Homomorphic Encryption, Gemalto presents the reasons for
not having started their work as described in the ASPIRE Description Work, as well an alternative
protection they propose to work on in ASPIRE.

ASPIRE D2.01 PUBLIC v

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

Contents

1 Introduction 1

I Data Obfuscation 2

2 Taxonomy of Data Obfuscation 2
2.1 Storage and Encoding Data Obfuscations . 3

2.1.1 Homomorphic Encoding . 5
2.1.2 Residue Number Coding . 5
2.1.3 Variable Splitting . 6
2.1.4 Convert Static to Procedural Data . 7

2.2 Aggregation Transformations . 8
2.2.1 Merge Scalar Variables . 8
2.2.2 Restructure Arrays . 9

2.3 Ordering Transformations . 11
2.3.1 Reorder Arrays . 11

3 Selection of Data Obfuscation Algorithms 13
3.1 Features Grid . 13
3.2 Features Analysis . 15
3.3 Selection . 16

4 Implementation 17
4.1 Rules for Data Obfuscation Transformation . 17

4.1.1 Declarations and initializations . 17
4.1.2 Variable Assignments and Uses . 18
4.1.3 Homomorphic Encoding Functions . 18

4.2 Constants . 19

5 Balancing Security and Performance 21
5.1 Data Proximity Graph and Data Distance . 21
5.2 Neighborhood of a variable . 22
5.3 DPG Implementation . 22

6 Experimental Assessment 24
6.1 Metrics . 24
6.2 Case study . 24
6.3 Experimental Setting . 25
6.4 Results . 25

6.4.1 Number of obfuscated variables . 25
6.4.2 Invocations . 25
6.4.3 Memory overhead . 26
6.4.4 Runtime overhead . 26

6.5 Conclusions . 27

7 Related Work 28

8 Status and Plan for Task 2.1 29

II White-Box Cryptography 30

ASPIRE D2.01 PUBLIC vi

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

9 Introduction to White-Box Cryptography 30
9.1 State of the art . 30
9.2 WBC activities in the ASPIRE project . 31

10 White-Box Tool for ASPIRE (WBTA) 32
10.1 Introduction . 32
10.2 Overview . 32
10.3 Annotations . 34
10.4 Source input . 34
10.5 Decision input . 35
10.6 Output . 35
10.7 Status . 35

11 New WBC Schemes with Provable Security 36
11.1 Multivariate WBC . 36

11.1.1 Functional Multivariate Polynomial Decomposition Problem 36
11.1.2 Our contribution . 37
11.1.3 Multivariate cipher constructions . 38
11.1.4 Implementation . 40
11.1.5 Security Analysis . 42
11.1.6 Conclusion . 45

11.2 White-Box Cryptography based on Fully Homomorphic Encryption 45
11.2.1 Work description and motivation . 46

11.3 Diversified Crypto Library . 47

12 Applied WBC 49
12.1 Dynamic white-box implementations . 49
12.2 Time-limited white-box implementations . 49

ASPIRE D2.01 PUBLIC vii

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

List of Figures

1 Data obfuscation taxonomy presented by Collberg et al. [21] 2
2 A code snippet for the XOR masking example . 4
3 A code snippet that illustrate the application of the XOR operator to an array of chars 4
4 A code snippet for a homomorphic encoding function 5
5 An example of encoding integer variables using RNC 6
6 Boolean splitting example . 7
7 Converting static to procedural data: the Mealy machine and its implementation . . 8
8 Merge scalar variables example . 9
9 Array splitting . 10
10 Array Merging . 10
11 Array Folding . 11
12 Array Flattening . 11
13 Array Permutation . 12
14 An example of C snippet and the related DPG . 21
15 Variables data distance matrix and neighbourhoods of a sensitive variable 22
16 Execution time per technique varying the number of obfuscated variables 27
17 WBTA in Aspire context, initial phase . 33
18 WBTA in Aspire context, subsequent phases (draft) 34
19 Application and crypto library downloads . 47

ASPIRE D2.01 PUBLIC viii

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

List of Tables

1 Encoding transformations used by practitioners . 4
2 Restructuring Arrays Transformations . 9
3 Feature values for each specific data obfuscation technique 14
4 Techniques for single-valued variables . 15
5 Techniques for data arrays . 16
6 Type mapping in data obfuscation transformations . 17
7 Number of obfuscated variables in a variable neighbourhood 25
8 Number of encoding/decoding operation invocations 26
9 Memory (bytes) allocated depending on the number of obfuscated variables 26
10 Average execution times by technique and number of obfuscated variables. 26
11 Pearson correlation and linear regression coefficients between NOBV and ETIM. . . 27
12 Empirical assessment results for obfuscation overhead. 27
13 Expected implementation size of systems of equations and expected performance . . 41
14 Empirical results of fixed-key 128-bit multivariate systems. 42

ASPIRE D2.01 PUBLIC ix

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

1 Introduction

Section authors:
Mariano Ceccato (FBK)

Data integrity and confidentiality represent crucial assets to protect among those that are poten-
tially threatened by man-at-the-end attacks. The objective of Task 2.1 and Task 2.2 of the ASPIRE
project is therefore to elaborate effective techniques to prevent data extraction and data tamper-
ing. This deliverable presents the outcome of these two tasks to implement solutions for data
obfuscation (Task 2.1) and white-box cryptography (Task 2.2), respectively in Part I and Part II.
For data obfuscation and for white-box cryptography, the elaboration of the first prototypes is
based on the analysis of the state of the art. The aim of reviewing the state of the art is to identify
the most appropriate candidates based on an evaluation of their advantages and disadvantages.
Preliminary working prototypes are presented and empirically assessed to quantify the perfor-
mance overhead due to protection.
This document is the first deliverable about data protection (data obfuscation and white-box cryp-
tography). The presented working prototypes will be further improved and extended during the
development of the project. Moreover, they will be adapted to fit in the ASPIRE compiler tool
chain and integrated with the other protection strategies that will be delivered by ASPIRE.

ASPIRE D2.01 PUBLIC 1

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

Part I

Data Obfuscation
This part of the document is devoted to describe activities concerning data obfuscation techniques
performed during the first year of the ASPIRE project. In Section 2 we present an overview of data
obfuscation techniques reported in literature. From this set of transformations, we have selected
four techniques to be implemented in the ACTC. The selection was based on a feature analysis
devoted to evaluate pros and cons of each transformation. Results are presented in Section 3. Se-
lected techniques were implemented in a tool that is integrated in the ACTC. The implementation
is based on a pattern/rule paradigm that is explained in Section 4. Costs and benefits of applying
data obfuscation to programs are discussed in Section 5. In this section the concept of variable
neighbourhood is introduced as a way to control the trade off between obfuscation level and per-
formance overhead. Implementations of chosen data obfuscation techniques were subjected to an
empirical evaluation and results are presented in Section 6. Finally, Section 7 comments on other
works related to data obfuscation.

2 Taxonomy of Data Obfuscation

Section authors:
Roberto Tiella (FBK)

Data obfuscation transformations change programs with the aim of hiding both variable content
and usage. In Collberg et al. data obfuscation transformations are classified as depicted in Figure
1[21]. Classes written in light gray collect techniques specific to object-oriented programming
languages such as Java or C++ and, for this reason, out of scope of the present document.
The first classification level distinguishes transformations in:

• Storage & Encoding: Transformations that change how (scalar) data are represented and
stored in memory;

• Aggregation: Transformations that alter how data, both scalar variables and arrays, are ag-
gregated;

• Ordering: Transformations that permute items in data structures as, for example, changing
the order of items in an array of integers.

Data obfuscation

Storage & Encoding

Split
variables

Change
encoding

Change
variable
lifetimes

Promote
scalars to
objects

Convert
static data
to procedure

Aggregation

Merge scalar
variables

Modify
inheritance
relations

Split,fold,
merge,
arrays

Ordering

Reorder
instance
variable

Reorder
methods

Reorder
arrays

Figure 1: Data obfuscation taxonomy presented by Collberg et al. [21]

In the following sections each transformation subclass is presented.

ASPIRE D2.01 PUBLIC 2

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

Notation and Definitions

In the following sections Z denotes the set of integers, x and y integers are said to be n-modulo
equivalent (written x ≡n y) iff ∃k ∈ Z : x − y = kn. [x]n indicates the class of integers that
are equivalent to x with respect to the n-modulo equivalence relation and Z/nZ the set of those
classes. Furthermore bxc is the largest integer not greater than x, mod (x, n) is the remainder of
x divided by n and gcd(m,n) the greatest common divisor between m and n.

2.1 Storage and Encoding Data Obfuscations

As written in Collberg et al, obfuscating storage transformations attempt to choose non conven-
tional memory layout for dynamic as well as static data [21]. Splitting a single 32 bits integer
variable in four 8 bits variables is an example of storage transformation. Similarly, encoding trans-
formations attempt to choose unnatural encodings for common data types.
Encoding a Boolean value as an integer value where any even number represents True and any
odd number represents False is an example of encoding transformation for the C programming
language where True is encoded as any non null integer number while 0 represents False. Storage
and encoding transformations often go hand-in-hand, but they can sometimes be used in isolation.
Source-to-source data obfuscation transformations change fragments of programs such as vari-
able declarations, assignments and variable/constant usages, written in a specific programming
language. In particular, the behavior of a change encoding transformation is completely specified
given how the transformation acts on variable values. Thus the transformation can be formally
defined as a set of 1-to-1 encoding functions {ev(·)}v∈V for a given set V of variables to obfuscate.
To avoid overloading the notation, where possible, variable indexes are omitted and an encoding
function is denoted simply as e(·). Furthermore, in what follows, d(·) is used to denote the in-
verse of an encoding function e(·), namely d(·) = e−1(·). The C language is assumed as reference
language in the rest of the document.

Base transformation:

Without any other assumptions, a transformation defined by an encoding function e(·) is applied
to source code as follows:

• When a value v, as a results of the evaluation of an expression exp, is assigned to an encoded
variable x, v must be encoded, i.e., a statement like x = exp; becomes x = e(exp).

• When an encoded variable x is used, the decode function d has to be applied to its value, an
expression like x+ exp becomes d(x) + exp.

For example, suppose that three variables a, b and c must be encoded using the same encoding
function e(·). If variables a and b store encoded values and the encoded value of the expression
a + b has to be assigned to an encoded variable c then c must be assigned with the value of the
expression e(d(a) + d(b)).

Parametric Encoding

Functions e and d can depend on a (multidimensional) parameter p, namely

e(·) = ep(·)

d(·) = dp(·),

where p is chosen according to a particular strategy. Examples of strategies are (a) encoding dif-
ferent variables using different values for p and (b) choosing a new value for p at every definition
point of a variable.

ASPIRE D2.01 PUBLIC 3

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

Example

A simple but quite frequently used parametric encoding function involves the bitwise XOR oper-
ator. If ⊕ denotes the XOR Boolean operator, the function e(·) is defined as follows:

e(x) = x⊕ p

where p is an integer constant. From the property of the XOR operator that (x ⊕ p) ⊕ p = x, it
follows that the decoding function d = e. This encoding is usually called XOR masking. Figure 2
contains snippets of code before and after having applied the XOR masking (with p = 12).

int a = 5;
int b = 8;
int x = a+b;
...
printf("%d\n",x);

⇒

int a = 9; // 9 = 5ˆ12
int b = 4; // 4 = 8ˆ12
int x = ((aˆ12)+(bˆ12))ˆ12;
...
printf("%d\n",xˆ12);

Figure 2: A code snippet for the XOR masking example

The encoding function can be applied in a similar way to arrays as shown in Figure 3. Each
character of the array must be decoded before use.

char * message =
"A message to be hidden";

...
printf("%s\n",message);

⇒

char * message =
{ ’A’ˆp, ’ ’ˆp, ’m’ˆp, ...,
’\0’ ˆ p };

...
for (i=0; i<m_len; i++) {

putchar(message[i]ˆp);
}
putchar(’\n’);

Figure 3: A code snippet that illustrate the application of the XOR operator to an array of chars

Known Uses of Storage and Encoding Change

Table 1 lists XOR masking and other encoding techniques known to be employed by practitioners,
malware programmers in particular [17].

Method Original Encoded
XOR masking x x⊕ p
XOR masking with varying parameter x[i] x[i]⊕ pmod(i,Np)
ROT13 x ∈ {′A′, ...,′ Z ′} chr(mod(asc(x)− 65 + 13, 65) + 65)

BASE64 x[] BASE64(x) as described in RFC4648 [54]

Table 1: Encoding transformations used by practitioners

ASPIRE D2.01 PUBLIC 4

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

2.1.1 Homomorphic Encoding

A function f : X → Y defined on a setX , provided with an operation +, to a set Y , provided with
the operation +′, is called homomorphic if it satisfies, for all x1, x2 ∈ X , the following condition:

f(x1 + x2) = f(x1) +
′ f(x2). (1)

When a homomorphic encoding function e(·) is used, source code obfuscating transformations
can be simplified leveraging Eq. 1, holding:

e(d(a) + d(b)) = e(d(a)) +′ e(d(b)) = a+′ b.

The simplification avoids the need to decoding encoded values to perform the operation as in the
general case presented before in Section 2.1.
As an example of homomorphic encoding, consider the following function e : [0, b

√
Nc − 1] →

Z/NZ from the set of non-negative integers less than b
√
Nc and the set of equivalence classes

modulo N :

e(x) = [x]N represented by the element Np+ x, p randomly chosen
d(y) = y mod N

The encoding is homomorphic both for the + and the ∗ operations:

e(x) +′ e(y) = Np1 + x+′ Np2 + y = (p1 + p2)N + (x+ y) ≡N e(x+ y)

e(x) ∗′ e(y) = (Np1 + x) ∗′ (Np2 + y) = (N2p1p2 +Np2x+Np1y) + xy ≡N e(x ∗ y)

int a = 8;
int b = 3;
int x = a+b;
...
printf("%d\n",x);

⇒

int a = 108 ;
int b = 103 ;
int x = a+b; // x = 211
...
printf("%d\n",d(x)); // d(x) = d(211) = mod(211,100) = 11

Figure 4: A code snippet for a homomorphic encoding function

2.1.2 Residue Number Coding

Residue Number Coding (RNC) generalizes the homomorphic transformation presented in the
previous example [73].

Residue Number Coding:

Having chosen m1,m2, ...,mu ∈ Z so that gcd(mi,mj) = 1 if i 6= j, and n = m1 · m2 · ... · mu,
x ∈ [0, n− 1] can be encoded in the following way:

e(x) = ([x]m1 , [x]m2 , ..., [x]mu).

The decoding function d is defined such that:

d([y]m1 , [y]m2 , ..., [y]mu) = [y],

where [y] exists and it is unique by the “Chinese Remainder Theorem” and can be computed using
Euclid’s extended algorithm to compute the gcd [46].
Operations in the encoded domain are defined “per component”:

ASPIRE D2.01 PUBLIC 5

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

([x1]m1 , [x2]m2 , ...) + ([y1]m1 , [y2]m2 , ...) = ([x1 + y1]m1 , [x2 + y2]m2 , ...)

([x1]m1 , [x2]m2 , ...) ∗ ([y1]m1 , [y2]m2 , ...) = ([x1 ∗ y1]m1 , [x2 ∗ y2]m2 , ...)

Figure 5 shows an example of encoding integer variables x and y using RNC. Constants used for
the encoding are m1 = 31 and m2 = 37, representants are chosen randomly.

...
int x = 12;
int y = 7;

int z = x+y;
int w = x*y;

printf("z=%d, w=%d\n",z,w);
...

⇒

...
int x1 = 1965; // 1965 % 31 = 12
int x2 = 1973; // 1973 % 37 = 12

int y1 = 1433; // 1433 % 31 = 7
int y2 = 2634; // 2634 % 37 = 7

int z1 = x1+y1;
int z2 = x2+y2;

int w1 = x1*y1;
int w2 = x2*y2;

printf("z=%d, w=%d\n",d(z1,z2),d(w1,w2));
...

Figure 5: An example of encoding integer variables using RNC

2.1.3 Variable Splitting

Boolean variables and other variables of restricted range can be split into two or more variables
[21]. More formally, if a variable x of type T is mapped into n variables of type U by means:

• The splitting (encoding) function e : T → Un;

• Its inverse d : Un → T ;

• A set of (usually tabulated) operations on Un so that e : T → Un preserves operations.

Example

Boolean values can be split in the following way. Consider a 0/1 representation for truth values,
i.e., x ∈ {0, 1}, n = 2 and U = {0, 1}. Define e(x) so that

e(x) ∈
{
{(0, 0), (1, 1)} if x = 0
{(1, 0), (0, 1)} if x = 1

.

Define

d(y1, y2) = mod(y1 + y2, 2).

It can be easily proven that the function d(y1, y2) is the inverse of the function e(·). Consider now
the matrix AND(i, j):

AND(i, j) =

3 3 0 0
0 2 1 3
3 2 1 3
0 3 3 0

ASPIRE D2.01 PUBLIC 6

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

The ’&&’ operator can be defined in the encoded domain, namely U2, using the table AND(i, j):

e(x && y) = (bz/2c,mod(z, 2))

where z = AND(2e1(x) + e2(x), 2e1(y) + e2(y)). Similar tables can be produced for ‘||’ and ‘!’ oper-
ators.
Figure 6 shows the actual C programs for the previous example.

#include <stdio.h>

#define TRUE 1
#define FALSE 0

int main(int argc, char * argv[]) {

int x = TRUE;
int y = TRUE;

int z = x && y;

printf("z=%d\n",z);

}

⇒

#include <stdio.h>

#define TRUE 1
#define FALSE 0

int AND[][4] = {{3, 3, 0, 0},
{0, 2, 1, 3},
{3, 2, 1, 3},
{0, 3, 3, 0}};

int main(int argc, char * argv[]) {

int x1 = 0;
int x2 = 1;

int y1 = 1;
int y2 = 0;

int ez = AND[2*x1+x2][2*y1+y2];

int ez1 = ez / 2;
int ez2 = ez % 2;

printf("z=%d\n",(ez1+ez2)%2);

}

Figure 6: Boolean splitting example

2.1.4 Convert Static to Procedural Data

Convert Static to Procedural Data is an elaborate encoding function proposed for hiding static data
such as character strings. The idea is to transform a chunk of static data into some code that once
invoked produces the original data [21]. One of the possible implementations is based on Mealy
machines as illustrated in Collberg and Nagra’s book [20]. A Mealy machine is defined by a set of
states S = {s1, ..., sn}, an input alphabet X = {x1, x2, ..., xp}, an output alphabet Y = {y1, ..., yq}
and two characterizing functions fy (the output function) and fs (the transition function):

yk = fy(xk, sk) (2)

sk+1 = fs(xk, sk) (3)

A Mealy machine encodes a (partial) function from strings on the input alphabet X to strings
on the output alphabet Y and proper invocations to the procedure that implements the Mealy
machine can replace usages of static data. An example is reported in Figure 7 along with a possible
implementation based on look-up tables.
When the function gen is invoked, the formal parameter wx is bound to the input sequence. The
input is scanned so that each bit is considered a symbol from the alphabet X = {0, 1}. The current
state is held by the variable state (initially set to 0). For each state, the two-dimensional matrix

ASPIRE D2.01 PUBLIC 7

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

0 1

2 3

1/'p'

0/'a'

1/'s'
0/'s'

0/'w'

1/'d'

...
char out[][2] = {{’s’,’p’}, {’a’,’s’},{’w’,’d’}};
int next[][2] = {{2,1},{1,0},{2,3},{-1,-1}};

char * gen(int wx) {
int state = 0, in, k = 0;
char * s = malloc(16);

while(state != 3) {
in = wx & 1; wx >>= 1;
s[k++]=out[state][in];
state=next[state][in];

}
s[k] = ’\0’;
return s;

}
...

int main(...) {

char * p = gen(37);

// the string pointed by p

free(p);

}

Figure 7: Converting static to procedural data: the Mealy machine and its implementation

next[][] tabulates the transition function fs, so that the element next[state][in] defines the
next state of the state state depending on the value of the input symbol in. Correspondingly, for
each state, the two-dimensional matrix out[][] lists the function fy so that out[state][in]
defines which character must be emitted in state s when the input in is met by the machine. The
machine runs until state 3 is reached. A pointer to the produced string is provided as return value.
The example presented maps the constant 37 (1001012) to the string “passwd”.

2.2 Aggregation Transformations

Aggregation transformation change how data, both scalar variables and arrays, are arranged in
memory.

2.2.1 Merge Scalar Variables

Two or more scalar variables V1 ... Vn can be merged into one variable W , provided the combined
ranges of V1 ...Vn fit within the precision of W :

W = 2k1V1 + ...+ 2knVn

Usually n = 2 and we keep this assumption in what follows, i.e.,

W = 2kV1 + V2

Operations on the original variables can be mapped to operations on the merging variable:

ASPIRE D2.01 PUBLIC 8

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

V1 = V1 + d ⇒ W =W + 2kd
V1 = V1 ∗ d ⇒ W =W + (d− 1)(W&(2k − 1)),

where ‘&’ is the bitwise AND operator.

Two int variables (holding positive values) can be fitted into a long:

#include<stdio.h>

int main(int argc, char * argv[]) {

int x,y;
int d,e;

x = 31;
y = 24;
d = 12;
e = 5;

x = x + d;
y = y * e;

printf("x=%d, y=%d\n",x,y);

}

⇒

#include<stdio.h>

#define MASK ((((long)1) << 32)-1)

int main(int argc, char * argv[]) {

long w; // to store (x,y)
int d,e;

w = (((long)31) << 32) + 24; // w = (x,y)

d = 12;
e = 5;

w = w + ((long)d << 32); // w = (x+e,y)
w = w + (e-1)*(w & MASK); // w = (x+e,y*d)

printf("x=%d, y=%d\n",w>>32,w&MASK);

}

Figure 8: Merge scalar variables example

2.2.2 Restructure Arrays

Arrays can be reshaped to harden the task of statically determining their content. Confusing the
expressions used as indexes and, consequently, obfuscate how elements are accessed is another
application of these techniques. Transformations that can be applied to arrays are listed in Table 2.

Transformation Description
split an array is split into two or more arrays
merge two or more arrays are merged into a single one
fold increase the number of dimensions of an array
flatten decrease the number of dimensions of an array

Table 2: Restructuring Arrays Transformations

The next paragraphs will provide examples for those transformations.

Splitting

In the example in Figure 9, an array of ten integers is split into two arrays of five integers each,
putting items with even index in the first array and items with odd index in the second one.

ASPIRE D2.01 PUBLIC 9

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

#include <stdio.h>
int x [] = {1,2,3,4,5,6,7,8,9,10 };
int main(int argc, char * argv[]) {

int s = 0;
int i;
for (i=0; i<10; i++) {

s += x[i];
}
printf("sum=%d\n",s);

}

⇒

#include <stdio.h>
int x1[] = {1,3,5,7,9 };
int x2[] = {2,4,6,8,10};
int main(int argc, char * argv[]) {

int s = 0;
int i;
for (i=0; i<10; i++) {

s += (i % 2 == 0?x1[i/2]:x2[i/2]);
}
printf("sum=%d\n",s);

}

Figure 9: Array splitting

Merging

Figure 10 shows array merging, the opposite operation of splitting: Two arrays are merged so that
the elements of the first array are put in even-indexed positions while elements from the second
array are put in the odd ones.

#include <stdio.h>
int x1[] = {1,3,5,7,9 };
int x2[] = {2,4,6,8,10};
int main(int argc, char * argv[]) {

int s = 0;
int i;
for (i=0; i<5; i++) {

s += x1[i]*x2[i];
}
printf("cprod=%d\n",s);

}

⇒

#include <stdio.h>
int x[] = {1,2,3,4,5,6,7,8,9,10};
int main(int argc, char * argv[]) {

int s = 0;
int i;
for (i=0; i<5; i++) {

s += x[2*i]*x[2*i+1];
}
printf("cprod=%d\n",s);

}

Figure 10: Array Merging

Folding

Array folding takes a unidimensional array (Figure 11) and converts it in a two-dimensional array
splitting it in two rows. Note that the memory content is not changed, only index expressions to
access specific array elements are changed.

ASPIRE D2.01 PUBLIC 10

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

#include <stdio.h>
int x [] = { 1,2,3,4,5,6,7,8,9,10 };
int main(int argc, char * argv[]) {

int s = 0;
int i;
for (i=0; i<10; i++) {

s += x[i];
}
printf("sum=%d\n",s);

}

⇒

#include <stdio.h>
int x[][5] = { { 1,2,3,4,5 },

{6,7,8,9,10}};
int main(int argc, char * argv[]) {

int s = 0;
int i;
for (i=0; i<10; i++) {

s += x[i/5][i%5];
}
printf("sum=%d\n",s);

}

Figure 11: Array Folding

Flattening

Array flattening takes a two-dimensional array (Figure 12) and convert it in a unidimensional
array by joining its rows. Note that, as in the case of folding, the memory content is not changed.

#include <stdio.h>
int x[][5] = { {1,2,3,4,5 },

{6,7,8,9,10},
{11,12,13,14,15}};

int main(int argc, char * argv[]) {
int s = 0;
int i,j;
for (i=0; i<3; i++) {

for (j=0; j<5; j++) {
s += x[i][j];

}
}
printf("sum=%d\n",s);

}

⇒

#include <stdio.h>
int x[] = { 1,2,3,4,5,6,7,8,9,10,

11,12,13,14,15};
int main(int argc, char * argv[]) {

int s = 0;
int i,j;
for (i=0; i<3; i++) {

for (j=0; j<5; j++) {
s += x[i*5+j];

}
}
printf("sum=%d\n",s);

}

Figure 12: Array Flattening

2.3 Ordering Transformations

Ordering transformations permute items in data structures.

2.3.1 Reorder Arrays

One very naive technique occasionally used by practitioners to try hiding strings embedded in a
program from straightforward searches, is to reverse the order of elements in strings. In general
any permutation can be applied to array/string elements to achieve a more resilience transforma-
tion as shown in Figure 13. Array p stores the inverse of the permutation used to shuffle the string
“secret message” in the array m. As for other types of transformations on strings, a per-character
putchar must replace the original printf function. In general the original string/array must be
reconstructed in memory if it has to be passed to any external function, such as strcmp.

ASPIRE D2.01 PUBLIC 11

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

#include <stdio.h>
char * m = "secret message";
int main(int argc, char * argv[]) {

printf("%s\n",m);
}

⇒

#include <stdio.h>
char m [] = {

’t’, ’r’, ’g’, ’e’, ’e’, ’ ’, ’m’,
’c’, ’s’, ’e’, ’s’, ’s’, ’e’, ’a’ };

char p [] = {
11, 3, 7, 1, 4, 0, 5, 6, 9, 10, 8,
13, 2, 12 };

int main(int argc, char * argv[]) {
int i;
for (i=0; i<14; i++) {

putchar(m[p[i]]);
}
putchar(’\n’);

}

Figure 13: Array Permutation

ASPIRE D2.01 PUBLIC 12

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

3 Selection of Data Obfuscation Algorithms

Section authors:
Roberto Tiella (FBK)

Each technique proposed in previous sections has its own peculiarities, advantages and draw-
backs. This section presents a set of features devised to evaluate each technique, an analysis of
such features and, finally, the set of transformations selected for implementation.

3.1 Features Grid

To allow an evaluation and a comparison between presented techniques, a set of the most signifi-
cant features have been collected:

• Apply to types: Data type which the technique applies to. Presented approaches are suited
for integer types (char, int, long, etc.) and arrays of integer types.

• Execution time overhead: An approximate evaluation of loss in speed for the obfuscated
program.

• Memory overhead: A rough estimation of the memory additionally required by the obfus-
cated program.

• Preparation: Some techniques require the original code to have a specified structure to be
applicable. For example, the ‘Buffer encoding’ technique is applicable to static data only.

• Homomorphic operations: Some techniques enjoy the property of being homomorphic on
certain operations. Homomorphic operations are specified in such case.

• Manual post-process: Some techniques require changes to the source code after they have
been applied.

• Preconditions: Some techniques impose a set of requirements on the original code. For
example, the code must not contain any operation involving pointers to data structure being
obfuscated.

Feature values for each technique are reported in Table 3. Values in column ‘Preparation’ require
a further explanation:

• Points-to information: Some kind of transformations, for example change encoding, require
to know when two variables both point to the same memory location, i.e., the points-to
information. In fact, for example, if a pointer p points to the location of an encoded integer
variable x, namely p == &x then:

– The value returned by the expression ∗p must be decoded.

– The value of exp in the RHS of the assignment statement ∗p = exp must be encoded.

Static points-to analysis gives a conservative may-points-to relation among variables. It spec-
ifies when two variable may be aliases. There are programs for which precise points-to in-
formation can not be computed statically so it would be impossible to know if variables
are or are not aliases (reliable pointer analysis is intractable). However, to apply some data
obfuscation transformations, precise points-to information is required and the programmer
should inspect the output of static pointer analysis and refine it, e.g., by manually adding
code annotations with precise points-to and alias information.

• Identify range: The interval of values stored in the variable in any execution of the program
must be determined. Developers have to provide this information.

ASPIRE D2.01 PUBLIC 13

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

Te
ch

ni
qu

e
A

pp
ly

to
ty

pe
s

Ex
ec

ut
io

n
ti

m
e

ov
er

-
he

ad

M
em

or
y

ov
er

-
he

ad
Pr

ep
ar

at
io

n
H

om
om

or
ph

ic
op

er
at

io
ns

M
an

ua
l

po
st

-
pr

oc
es

s
Pr

ec
on

di
ti

on
s

X
O

R
m

as
ki

ng
In

te
gr

al
lo

w
no

ne
Po

in
ts

-t
o

in
fo

Bu
ff

er
en

co
di

ng
St

at
ic

ar
ra

y
lo

w
no

ne
Pr

ep
ar

e
st

at
ic

da
ta

R
es

id
ue

nu
m

be
r

co
di

ng
In

te
gr

al
hi

gh
#v

ar
ia

bl
es

x
2

Id
en

ti
fy

ra
ng

e
su

m
(+

),
pr

od
uc

t
(∗

)
V

ar
ia

bl
e

sp
lit

ti
ng

Sm
al

l
ra

ng
e

in
te

ge
r

(t
yp

ic
al

ly
bo

ol
ea

n)

m
ed

iu
m

#v
ar

ia
bl

es
x

2
+

1
m

at
ri

x
pe

r
op

er
-

at
io

n
(4

ra
ng

e
ˆ2

)

Id
en

ti
fy

ra
ng

e
fo

r
op

er
at

io
ns

w
it

h
m

at
ri

x

C
on

ve
rt

st
at

ic
to

pr
oc

ed
ur

al
da

ta
St

at
ic

ar
ra

y
lo

w
/m

ed
iu

m
bu

ff
er

le
ng

th
x

3
+

m
al

lo
c

si
ze

pr
ep

ar
e

st
at

ic
st

ri
ng

ne
ed

to
ca

ll
f
r
e
e
(
.
.
.
)

(t
o

pr
ev

en
t

m
em

or
y

le
ak

s)
M

er
ge

sc
al

ar
va

ri
ab

le
s

In
te

gr
al

m
ed

iu
m

no
ne

Po
in

ts
-t

o
in

fo
,

Id
en

ti
fy

si
gn

su
m

(+
),

pr
od

uc
t

(∗
)w

it
h

cl
ea

rv
al

-
ue

s
R

es
tr

uc
tu

re
ar

ra
y

(s
pl

it
ti

ng
)

St
at

ic
al

ly
al

lo
-

ca
te

d
ar

ra
y

(n
o

m
al

lo
c)

lo
w

/m
ed

iu
m

no
ne

ar
ra

y
ac

ce
ss

by
in

de
x

no
po

in
te

r
ar

it
h-

m
et

ic

R
es

tr
uc

tu
re

ar
ra

y
(m

er
gi

ng
)

St
at

ic
al

ly
al

lo
-

ca
te

d
ar

ra
y

(n
o

m
al

lo
c)

lo
w

no
ne

ar
ra

y
ac

ce
ss

by
in

de
x

no
po

in
te

r
ar

it
h-

m
et

ic

R
es

tr
uc

tu
re

ar
ra

y
(f

ol
di

ng
)

St
at

ic
al

ly
al

lo
-

ca
te

d
ar

ra
y

(n
o

m
al

lo
c)

lo
w

no
ne

po
in

te
r

ar
it

hm
et

ic
w

or
k

bu
t

pr
ev

en
t

ob
fu

sc
at

io
n

of
in

-
de

x
ac

ce
ss

R
es

tr
uc

tu
re

ar
-

ra
y

(F
la

tt
en

in
g)

St
at

ic
al

ly
al

lo
-

ca
te

d
ar

ra
y

(n
o

m
al

lo
c)

lo
w

no
ne

po
in

te
r

ar
it

hm
et

ic
w

or
k

bu
t

pr
ev

en
t

ob
fu

sc
at

io
n

of
in

-
de

x
ac

ce
ss

R
eo

rd
er

ar
ra

y
St

at
ic

al
ly

al
lo

-
ca

te
d

ar
ra

y
(n

o
m

al
lo

c)

ne
gl

ig
ib

le
le

ng
th

of
ve

ct
or

x
in

de
x

si
ze

pr
ep

ar
e

st
at

ic
st

ri
ng

no
po

in
te

r
ar

it
h-

m
et

ic

Ta
bl

e
3:

Fe
at

ur
e

va
lu

es
fo

r
ea

ch
sp

ec
ifi

c
da

ta
ob

fu
sc

at
io

n
te

ch
ni

qu
e

ASPIRE D2.01 PUBLIC 14

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

• Prepare static data: Some techniques work on static data only. If in the original code the
content of an array is initialized by an algorithm, such code must be replaced with an initial-
ization from precomputed constants.

• Array access by index: The program must access array content by index. Bulk operations,
such as memcpy are not supported.

• Pointer-arithmetic works but it prevents obfuscation of index access: Transformations
such as array folding and flattening do not change memory content or layout, but their
aim is to make it harder to understand which element is indexed. Thus, the use of pointers
does not impede the code to be obfuscated, but it makes the obfuscation useless.

Reading the first row in Table 3 it can be seen that XOR masking technique applies to integer
types only, namely char, short, int, etc. It has a low execution overhead as the transformation just
adds a XOR operation for each access or assignment to a variable. It does not impose any further
requirement in terms of memory allocation and, finally, it requires reliable points-to information.
The rest of the table describes other transformations presented previously in the section.

3.2 Features Analysis

Analysis of Table 3 reveals the following:

• There are basically two families of techniques based on the ‘Apply to types’ feature, namely
the techniques suited for single-valued variables and those applicable to statically allocated
arrays.

• ‘Execution time overhead’ and ‘Memory overhead’ features can be aggregated in a single
category ’Overhead’ with values Low, Memory, Runtime, and Memory+Runtime.

• ‘Preparation’, ‘Manual post-process’ and ‘Preconditions’ can be merged in a ’Manual effort
required’ classification with values Yes and No. Reliable points-to information is assumed
available in code annotations.

Techniques for single-valued variables

Table 4 shows how the presented techniques for single-valued variables are classified:

• The class of techniques that do not require manual intervention and have a low impact on
performance. It contains the XOR masking transformation only.

• A class for techniques that even if they do not imply manual intervention they anyway have
an impact on the execution time of the program. It consists of the ‘Merge scalar variables’
transformation only.

• A class of the more demanding techniques that not only require manual effort at transfor-
mation time but that also impose penalties at runtime in terms of memory and execution
time. This class collects ’Residue number coding’ and ’Variable splitting’ techniques.

Manual effort required

Overhead

No Yes
Low XOR masking
Memory
Runtime Merge scalar variables
Both (M+R) Residue number coding,

Variable splitting

Table 4: Techniques for single-valued variables

ASPIRE D2.01 PUBLIC 15

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

Techniques for data arrays

The classification of transformations that apply to data arrays is shown in Table 4:

• ‘Flattening’ and ’Folding’ do not require manual effort and do not penalize the execution.

• ‘Buffer encoding’, ‘Splitting’, ‘Merging’ also do not influence the performance, but they all
require some manual intervention on the code.

• ‘Convert static to procedural data’ and ‘Reorder array’ that increase memory occupation at
runtime and also require manual effort before being applied.

Manual effort required

Overhead

No Yes
Low Folding,

Flattening
Buffer encoding,
Splitting,
Merging

Memory Convert static to procedural data,
Reorder array

Runtime
Both (M+R)

Table 5: Techniques for data arrays

3.3 Selection

The implementation of all the state-of-the-art transformations presented in Section 2 goes beyond
the scope of the ASPIRE project. The feature analysis of Section 2 represents a good approach to
select what are the most promising transformations to implement and integrate in the ASPIRE
transformation tool.
The first transformation candidate for implementation is XOR masking, because it represents a
base case with very low overhead, but with also a quite limited level of protection. Dually, the
more advanced residue number coding is expected to convey more obscurity to the data, but at the
cost of higher memory and runtime overhead. Obfuscation merge scalar variable probably stays in
the middle of the spectrum, with no memory overhead and just medium runtime overhead. So
this transformation is also an interesting case for comparison.
Eventually, a transformation should be also selected among those for data arrays. The one with
the largest application scope is probably convert static to procedural data as it potentially applies to
all the static strings of a program.

ASPIRE D2.01 PUBLIC 16

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

Encoding Transformation Type NewType
XOR masking int int
Merge scalar variables int long
RNC int long [2] (i.e., an array of type long with length 2)

Table 6: Type mapping in data obfuscation transformations

4 Implementation

Section authors:
Roberto Tiella (FBK)

This section presents a high-level view of how selected data transformations will be implemented
as part of the ASPIRE Compiler Tool Chain in the “SLP05: Data Hiding Transformations” compo-
nent [2]. The state-of-the-art data obfuscation transformation that will be implemented are:

1. XOR masking

2. Variable Merging

3. Residue Number Coding (RNC)

4. Convert Static to Procedural Data

These transformations are implemented as source-to-source transformations. A source-to-source
transformation can be viewed as a function defined on the set of C parse trees. In particular a
transformation acts on a program parse tree by adding, removing or replacing subtrees. Encod-
ing transformations, specifically, involve global declarations, local declarations and expressions
subtrees.

4.1 Rules for Data Obfuscation Transformation

Transformations are written using the TXL programming language. TXL is a rule-based functional
language specifically designed for manipulating parse trees. The present section explains how the
transformation is performed using a rule-based notation. A rule is defined by two parts: (a) a
pattern to match particular subtrees and (b) a replacement for pattern’s occurrences found in the
code.

4.1.1 Declarations and initializations

Variable declarations must be changed according to the type required to store encoded values.

Rule name Change type

Transformation
Pattern Replacement
Type v; NewType v′;

Precondition v is a variable to be encoded
Description The type Type of v is changed to NewType according to the storage re-

quirements of the specific transformation applied (XOR masking, RNC,
or Merge scalar variables). Storage requirements are described in Table 6.
Encoded variables are notated with a prime.

If the definition statement for a global variable that must be obfuscated presents an initializer, the
latter must be encoded.

ASPIRE D2.01 PUBLIC 17

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

Rule name Encode initialization values for global variables

Transformation
Pattern Replacement
Type v = exp; NewType v′ = ENC(exp);

Precondition v is required to be encoded, exp is an expression involving constants only
(following C programming language specifications).

Description ENC(exp) is a constant expression obtained by applying the specific en-
coding transformation to exp.

4.1.2 Variable Assignments and Uses

Rule name Assignment to encoded variable

Transformation
Pattern Replacement
v = exp; v′ = ENC(exp);

Precondition v is a variable required to be encoded.
Description v is required to be encoded, thus the representation of v is changed to v′

and the expression exp is be encoded.

Rule name Use of encoded variable

Transformation
Pattern Replacement
v′ DEC(v′)

Precondition v′ is an encoded variable.
Description An encoded variable is involved in an expression, thus its value must be

decoded. DEC(v′) is an expression involving v′ that evaluates the inverse
function of the specific encoding used.

4.1.3 Homomorphic Encoding Functions

If the applied encoding function is homomorphic for a set of operators then a simplification pat-
tern can be applied to expressions involving such operators.

Rule name Homomorphic operator simplification

Transformation
Pattern Replacement
ENC(DEC(exp1)⊕DEC(exp2)) exp1 ⊕′ exp2

Precondition exp1 and exp2 are expressions, ⊕ is an operation in the clear domain and
⊕′ the corresponding operation in the encoded domain.

Description The rule is justified by the homomorphic property of the encoding
function. ENC(DEC(exp1) ⊕ DEC(exp2)) = ENC(DEC(exp1)) ⊕′
ENC(DEC(exp2)) = exp1 ⊕′ exp2

In particular RNC is homomorphic with respect to addition, subtraction and multiplication.

Rule name RNC Addition Simplification

Transformation
Pattern Replacement
ENC(DEC(exp1) +DEC(exp2)) exp1 +

′ exp2
Precondition exp1 and exp2 are expressions.
Description Follows directly from the general pattern stated above as RNC is homo-

morphic w.r.t. addition.

ASPIRE D2.01 PUBLIC 18

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

Rule name RNC Subtraction Simplification

Transformation
Pattern Replacement
ENC(DEC(expr1)−DEC(expr2)) expr1 −′ expr2

Precondition expr1 and expr2 are expressions.
Description Follows directly from the general pattern stated above as RNC is homo-

morphic w.r.t. subtraction.

Rule name RNC Multiplication Simplification

Transformation
Pattern Replacement
ENC(DEC(expr1) ∗DEC(expr2)) expr1 ∗′ expr2

Precondition expr1 and expr2 are expressions.
Description Follows directly from the general pattern stated above as RNC is homo-

morphic w.r.t. multiplication.

4.2 Constants

Rule name Encode constant

Transformation
Pattern Replacement
ENC(c) c′

Precondition c is a constant.
Description c′ is a constant expression that can be evaluated at compile time by the C

compiler so that the value of c is not exposed in the binary.

As an example, consider a snippet of a program consisting in the following statement:

x = a + 5*b - c/d; (4)

and suppose that the obfuscation requirements state that x, b, c and d have to be encoded us-
ing RNC while a is not encoded. The transformation applied on (4) can be decomposed in the
following steps:

1. x = a + 5*b - c/d;

2. x’ = ENC(a + 5*b - c/d);

3. x’ = ENC(a + 5*DEC(b’) - DEC(c’) / DEC(d’));

4. x’ = ENC(a) +’ ENC(5*DEC(b’)) -’ ENC(DEC(c’)/DEC(d’));

5. x’ = ENC(a) +’ ENC(5) *’ ENC(DEC(b’)) -’ ENC(DEC(c’)/DEC(d’));

6. x’ = ENC(a) +’ 5’ *’ b’ -’ ENC(DEC(c’)/DEC(d’));

because:

• In step 1 the statement matches the “Assignment to encoded variable” pattern and the RHS
of the assignment is wrapped by the ENC operator.

• In step 2 the statement matches the “Use of encoded variable” pattern for variables b′,c′ and
d′ and DEC operator is applied to those variables.

ASPIRE D2.01 PUBLIC 19

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

• In step 3 the statement satisfies the “Addition simplification” and the “Subtraction simpli-
fication” patterns so that the expression can be split due to the homomorphic property of
RNC w.r.t. addition and subtraction. In Expression 4, +′ represent the per-component sum
operator in the encoded domain presented in Section 2.1.2.

• In step 4 the statement matches the “Multiplication simplification” pattern and for the same
reason of the previous step the expression involving the multiplication is split.

• In step 5 the statement satisfies the “Constant encoding” and the “Identity” patterns. In
expression 6, 5′ stands for the constant expression that evaluates to the encoding value of 5
in RNC.

Finally, once that specific parameters for RNC are chosen (see Section 2.1.2), e.g., u = 2, m1 = 31
and m2 = 33, statement 6 is rewritten as the following two C statements (declaration of variables
are included for clarity):

long b[2], c[2], x[2];
int a;

x[0] = (a % 31) + 36 * b[0] - (dec(c)/dec(d)) % 31;
x[1] = (a % 33) + 38 * b[1] - (dec(c)/dec(d)) % 33;

where dec is a function that implements the decoding function of RNC.

ASPIRE D2.01 PUBLIC 20

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

5 Balancing Security and Performance

Section authors:
Mariano Ceccato, Roberto Tiella (FBK)

As underlined in Sections 2 and 3 data obfuscation transformations cannot be applied for free.
Gain in obscurity and loss in runtime performance must be traded and an obfuscation strategy
must be devised. The most conservative strategy to prevent code tampering is obfuscate all, i.e., to

1 //safe vars
2 int a,b,c,d;
3
4 //sensitive vars
5 int x,y,z;
6
7 a = 2;
8 b = a + 3;
9 x = a + b;

10 c = 12;
11 y = b + 1;
12 z = c + y;
13 d = 2 * c;
14 z = x;

c

z d

yx

a

b

Note: x, y and z are sensitive variables while a, b, c and d are not.

Figure 14: An example of C snippet and the related DPG

apply obfuscation to all the program variables. However, not all the variables in a program are
expected to be security critical, e.g., variables related to the GUI might not represent a security
threat in case of tampering. Thus, such an aggressive approach could cause unmotivated and
unacceptable performance degradation. The opposite strategy is obfuscate just sensitive. It con-
sists of obfuscating only the particular program variable(s) that is (are) security sensitive and is
(are) prone to attacks, e.g., those variables in strategy games that store gold and energy values.
However, other variables that are not intrinsically sensitive could be somehow related to sensitive
variables. Related variables could leak important information that could be potentially used by
the attacker to guess or tamper with the value of a sensitive variable.
With respect to the example of Figure 14, we see that at line 11 variable b is assigned to variable y.
If an attacker knows or tampers with the (clear) value of b before line 11 , the value of y is know
or tampered with when the execution reaches line 11, even if y is obfuscated. Thus, the strategy
obfuscate just sensitive is also suboptimal, in fact related variables should also be considered for
obfuscation. Intuitively, values that participate to the definition of a sensitive values should be
also obfuscated, so they should be variables that are defined using sensitive values. To capture
this intuition, we propose to consider neighbourhoods of certain size around sensitive variables
in the Data Proximity Graph as presented in the next section.

5.1 Data Proximity Graph and Data Distance

Given two variables v1 and v2, we say v1 is proximal to v2, written as v1 → v2, if v1 is used to define
the value of v2. In the example of Figure 14, because of the assignment on statement 11 y=b+1,
variable b is proximal to variable y, i.e., b→ y.
Given a program, the Data Proximity Graph (DPG) for the program is a directed graph where
nodes are the variables {vi} and there exists an edge between nodes v1 and v2 iff v1 → v2, namely

ASPIRE D2.01 PUBLIC 21

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

if v1 is proximal to v2. The complete DPG for the example is reported in Figure 14.
Informally, on the DPG, the distance between two nodes is the number of assignments that we
have to traverse to use the first variable in an assignment of the second one. Using the DPG it is
possible to define a distance, called data distance between variables in a program. More formally
the distance between two variables v1 and v2 is defined as

d(v1, v2) = min{|P | : P = pathDPG(v1, v2)} (5)

In our running example, there is an edge from z to c. For this reason data distance D(z, c) is 1.
From this graph we can see that the distance between z and b is 2, the distance between b and a is
1 and the distance between z and a is 2. In Figure 15 (on the left) a table is shown listing distances
between variables for program in Example 14.

5.2 Neighborhood of a variable

Given a (sensitive) variable v, the neighbourhood of v with radius r, Nr(v), can be defined as:

Nr(v) = {v′|d(v, v′) ≤ r ∨ d(v′, v) ≤ r}.

In other words, Nr(v) is the set of variables that reaches v or are reached by v in r assignments.
Figure 15 shows neighbourhoods of y with radius 0 (in red), 1 (in orange) and 2 (in yellow).
Remaining variables cannot reach y or cannot be reached by y. Given a sensitive variable v, its
neighbourhood will contain more and more variables as the radius increases, defining a growing
sequence of subsets of variables that could be obfuscated to increase the level of data obscurity of
the code v belongs to.

c z y d x a b
c 0 1 - 1 - - -
z - 0 - - - - -
y - 1 0 - - - -
d - - - 0 - - -
x - 1 - - 0 - -
a - 3 2 - 1 0 1
b - 2 1 - 1 - 0

c

z d

yx

a

b

On the left: the matrix of distances between variables for program in Example 14. In color distances
used to define the neighbourhoods on the graph depicted on the right side of the figure. On the right:
neighbourhoods of y with radius 0 (in red), 1 (in orange) and 2 (in yellow).

Figure 15: Variables data distance matrix and neighbourhoods of a sensitive variable

5.3 DPG Implementation

A component to compute the Data Proximity Graph was implemented as an extension of
CodeSurfer [1]. CodeSurfer is intended to support developers in program-understanding of
C/C++ code. Starting from source code, it generates a variety of graphs and views, that can
be interactively browsed and customized. CodeSurfer performs source code analysis and, among
other analyses, this tool generates the System Dependence Graph (SDG). Analysis results are ex-
posed to a Scheme API that can be used to extend the tool or to implement custom analyses as

ASPIRE D2.01 PUBLIC 22

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

batch scripts. The computed Data Proximity Graph is then passed to a graph visiting algorithm
that extracts the neighbourhood of a given radius for a given variable.

ASPIRE D2.01 PUBLIC 23

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

6 Experimental Assessment

Section authors:
Roberto Tiella (FBK)

Given a sensitive variable v, the radius r of its neighbourhood can be used as parameter to nu-
merically describe the obfuscation strategy and consequently the strength and expected overhead
for data obfuscation. This section presents an empirical investigation of the impact on the perfor-
mance of a program of changing the radius of the neighbourhood of a given variable. In particular,
we describe results of an experiment devoted to compare the performances of the three transfor-
mations devised to obfuscate integer variables, namely XOR masking, Merge scalar variables and
RNC.

6.1 Metrics

The assessment is based on a set of metrics that were collected by two main means: (a) dynamically
measuring performances at runtime and (b) statically inspecting the source code or the compiled
binary of the subject program. Each metric is described in the rest of this subsection.

IENC/IDEC:

The number of encoding/decoding function invocations (IENC/IDEC) is computed by instru-
menting the obfuscated code. Every time an encoding or decoding operator is applied a related
counter is incremented and counter values are printed before exiting the main function. Different
input can cause different execution path to be followed by the program and consequently a dif-
ferent number of invocations to encoding/decoding function. Therefore measures are averaged
across a fixed number of executions.

ETIM:

The execution time (ETIM) is measured by means of the time utility. In Unix systems, the time
used by a process to execute is accounted as system time and user time. We define ETIM as the sum
of system and user time.

SMEM:

The size of memory allocated to variables for the program (SMEM). It was computed in the fol-
lowing way: (a) all local variables are moved to the global scope; (b) the code is compiled; (c) the
executable is inspected by means of the tool objdump -s; and (d) bytes are counted for entries of
type .data (initialized static memory) and .bss (zero initialized static memory).

NOBV:

The obscurity of the code is represented by the amount of the program that is subject to data ob-
fuscation. After identifying a sensitive variable that must be obfuscated, we gradually increase the
radius of the neighbourhood to include more and more variables in the set of variables to obfuscate.

6.2 Case study

The assessment was performed on the License check subject. License check is a routine devoted
to check the validity of a license number to activate a software component. The serial number
contains the date when the license has been emitted; its validity is meant to expire 30 days after
emission. The security sensitive variable is the one that holds the difference in days between
emission date and current date. In fact, an attacker might tamper with this value to make an

ASPIRE D2.01 PUBLIC 24

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

expired license last longer. An attacker might (i) add a constant value to the current date, (ii)
subtract a constant value from the difference, or (iii) add a constant value to the date extracted
from the license number. All these examples are instances of attacks based on data tampering that
could be mitigated using data obfuscation.
Of course many other attacks are possible based on other strategies, such as tampering with the
code to skip license validation, altering the system date, or tamper with the system library that
fetches the current date. All these attacks are out of the scope of data obfuscation. Different pro-
tections are effective against these attacks, such as code obfuscation or remote attestation. The
difference between current date and date from license should be obfuscated. However, other vari-
ables involved in the computation might leak sensitive information, such as dates, days, months,
years, and they are also candidate for obfuscation according to their distance to the sensitive vari-
able.

6.3 Experimental Setting

To study the impact of obfuscation, a set of execution scenarios have been defined for the case
study. We defined 100 scenarios, corresponding to licenses emitted on different dates. Half
(50/100) of the licenses are valid, the reset (50/100) of them are expired.
As the execution of the original license check program was quite fast, we artificially modified the
program by introducing an iteration of 50 · 106 executions of the main function. This way, we
are able to have the program execution lasts for tens of seconds, improving the precision for the
measurement of ETIM.
The experimental process consists of running the original (clear) code on the execution scenarios,
to collect ETIM. Then, for increasing number of variables to be obfuscated and for each obfuscation
technique, we apply data obfuscation, we measure SMEM on the executable, and we execute
the obfuscated code to collect ETIM and INVE/D values. To make sure that data obfuscation
preserves the original semantics, on all the scenarios output of the obfuscated code is compared
to the output of clear code.
The experiment has been conducted on a Desktop with Intel Xeon 3.3 GHz CPU (4 cores), 16 GB
of memory, running Red Hat 6.5 64 bit.

6.4 Results

6.4.1 Number of obfuscated variables

Table 7 lists the number of obfuscated variables (NOBV) for different values of the radius r of the
neighbourhood around the variable chosen as sensitive. NOBV varies from 1 to 10. In particular
for any radius r greater than 3, NOBV is 10.

Radius (r) NOBV
0 1
1 3
2 8

≥ 3 10

Table 7: Number of obfuscated variables in a variable neighbourhood

6.4.2 Invocations

Table 8 reports the average number of invocations to encoding and decoding functions given
the number of obfuscated variables and obfuscating technique used. XOR masking and Merge
scalar variables requires the same number of invocations. Invocations for RNC are quite different.
In particular, the average number of invocations of the decoding operator for the RNC is much

ASPIRE D2.01 PUBLIC 25

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

smaller than the corresponding number for the other two techniques (9.4 vs. 21). This is an
empirical evidence that RNC imposes a limited number of decoding operations if homomorphic
operators, i.e., addition, subtraction and multiplication, are involved.

NOBV
1 3 8 10

Technique IENC IDEC IENC IDEC IENC IDEC IENC IDEC
XOR masking 1 1 5 6 22.4 17 26.4 21
Merge scalar variables 1 1 5 6 22.4 17 26.4 21
RNC 4 1 16 1 20 5.4 26 9.4

Table 8: Number of encoding/decoding operation invocations

6.4.3 Memory overhead

Table 9 shows the numbers of bytes statically allocated to variables for a range of obfuscated
variables. As expected, XOR masking does not present any memory overhead (57 bytes is the
memory required also by the original program). Variables merging technique requires 4 bytes
more when the number of obfuscated variables is odd. RNC consumes 12 bytes more for each
new variable that requires to be obfuscated (300 % of memory consumption).

NOBV
Technique 1 3 8 10
XOR masking 57 57 57 57
Merge scalar variables 61 61 57 57
RNC 69 93 153 177

Table 9: Memory (bytes) allocated depending on the number of obfuscated variables

6.4.4 Runtime overhead

Table 10 shows average execution time (and standard deviation in parentheses) for the set of tech-
niques used to obfuscate and the number of obfuscated variables. Execution times are also plot-
ted in Figure 16 to make trends more clear. In the plot, vertical bars show the variability of the
measure, dots correspond medians, lower small horizontal bars correspond to 0.25 quantiles and,
finally, upper small horizontal bars correspond to 0.75 quantiles.
It can be seen that the impact of XOR masking is negligible. Applying Merge scalar variables tech-
nique resolves in slowing the execution down by just a small percentage (2.4 % as a maximum).
The impact of RNC is quite evident reaching about 20% when 10 variables are obfuscated.

NOBV
Technique 0 1 3 8 10
none 42.14 (0.15)
XOR masking 42.19 (0.27) 42.24 (0.15) 42.53 (0.17) 42.57 (0.15)
Merge scalar variables 42.23 (0.15) 42.47 (0.16) 43.13 (0.15) 43.24 (0.19)
RNC 42.99 (0.22) 44.72 (0.17) 48.15 (0.27) 51.52 (0.25)

Table 10: Average execution times by technique and number of obfuscated variables.

Table 11 reports Pearson correlation and linear regression coefficients between NOBV and ETIM
per technique used. All cases are statistically significant with a p-value < 0.01. As observed on
the graph, ETIM reports a significant correlation with NOBV, ρ > 0.7 for XOR masking and close
to 1 for Merge scalar variables and RNC.

ASPIRE D2.01 PUBLIC 26

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

42.5

45.0

47.5

50.0

52.5

0.0 2.5 5.0 7.5 10.0

NOBV

E
T

IM

Technique

None

Merge scalar variables

RNC

XOR masking

Figure 16: Execution time per technique varying the number of obfuscated variables

Technique P-value Correlation (ρ) LM Coefficient
XOR masking <0.01 0.70 0.05
Merge scalar variables <0.01 0.94 0.12
RNC <0.01 0.99 0.88

Table 11: Pearson correlation and linear regression coefficients between NOBV and ETIM.

6.5 Conclusions

As expected, the experimental validation confirms that different obfuscation techniques have dif-
ferent impacts on performance both in terms of used memory and execution time. In particular,
as listed in Table 12 XOR masking has no impact on used memory and a negligible impact on
execution time. Merge scalar variables doesn’t impact on memory usage and it has an almost neg-
ligible impact on execution time (about 2.5%). RNC is the most demanding transformation with
an increase of 300% of memory consumption (for obfuscated variables) and an execution time
degradation of 20%.

Technique Memory Overhead Execution Time Overhead
XOR masking 0 negl.
Merge scalar variables almost 0 < 2.5%
RNC 300 % 20 %

Table 12: Empirical assessment results for obfuscation overhead.

ASPIRE D2.01 PUBLIC 27

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

7 Related Work

Section authors:
Mariano Ceccato, Roberto Tiella (FBK)

Data obfuscation transformations are described and qualitatively analyzed in various previous
works [22], [21]. Drape at al. describe how data obfuscation transformations can be formalized
using data refinement, a setting that allows to prove transformations correctness formally [32].
Residue Number Coding and its homomorphic properties are presented by Zhu, W. and Thom-
borson C. [73]. Their study concerns theoretical properties of the RNC transformation. The same
authors published an article on applying homomorphic data obfuscation to array indexing [74].
All these works present definitions, applications and qualitative analyses for data obfuscation
techniques in general, and homomorphic data obfuscation in particular. However, these works
do not address the actual implementation of the proposed obfuscation schemes. Consequently,
no empirical assessment has been conducted to evaluate applicability of data obfuscation in real
world programs.
In the past, the assessment of obfuscation transformations has been conducted by measuring the
complexity introduced by obfuscation mainly through code metrics. However, their objective was
mainly to measure the effect of code obfuscation on program statements, rather than the effect of
data obfuscation on data structures.

ASPIRE D2.01 PUBLIC 28

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

8 Status and Plan for Task 2.1

Section authors:
Mariano Ceccato (FBK)

During the first year of the project we focused on the implementation of four state-of-the-art
schemes to data obfuscation. These schemes are xor integer encoding, residue number coding,
merge scalar variable and convert static to procedural data. At the moment these four schemes
are implemented and fully working on a case study (i.e., license check) that has been used to
quantify overhead caused by obfuscation.
In the second year of the project, we plan to apply data obfuscation to the project case studies and
assess the obfuscation on real world code. Moreover, we will focus on the elaboration of novel
extensions of these transformations. In particular, the current transformations are vulnerable to
static attacks. In fact, obfuscation parameters (e.g., the mask for xor integer encoding and the
bases for residue number coding) are present in the code and they could be spotted by an attacker.
Once these parameters are known, the obfuscation can be easily subverted.
To overcome this limitation, in the second year, we will investigate extensions that would turn
static parameter values into dynamic values, that would be more difficult to guess. For example,
obfuscation parameters could become opaque constants, i.e., values that depend on complex alias
conditions on a pointer intensive data structure. In this way, obfuscation parameters would be dif-
ficult to guess using static analysis, because precise points-to analysis is known to be intractable.
The final version of the data obfuscation support will be delivered in D2.07 and described in D2.08
at month M24.

ASPIRE D2.01 PUBLIC 29

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

Part II

White-Box Cryptography

9 Introduction to White-Box Cryptography

Section authors:
Brecht Wyseur, Patrick Hachemane (NAGRA)

The traditional goal of cryptography is to protect communication. In the past 30 years, many
cryptographic protocols and ciphers have been designed to protect communication against eaves-
dropping and to ensure it integrity and authenticity. Examples are the TLS protocol [27], AES and
(T)DES block ciphers [24, 25], or RSA and ECC asysmmetric ciphers [58]. In their design consid-
erations, the end points are assumed trusted – the attacker only has access to the input/output
of the algorithm (black-box). For such a model to comply, the algorithm needs to be exected in a
secure environment.
In the ASPIRE project, we consider the MATE attack context, where cryptographic algorithms are
deployed in applications that are executed on open devices, as described in Deliverable D1.02
(“the ASPIRE attack model”). In literature, this is also sometimes refered to as the white-box attack
context [19]. In such a context, the implementation itself is the sole line of defense. The challenge
that white-box cryptography aims to address is to implement cryptographic ciphers in such a way
that they do not leak critical information such as cryptographic keys. We denote such implemen-
tations as white-box implementations.

9.1 State of the art

White-box cryptography has been introduced in 2002 with the seminal papers of Chow et al.,
which present a white-box DES implementation and a white-box AES implementation respec-
tively [19, 18]. They present a technique to hard-code the cryptographic key into the implementa-
tion of the block cipher, by transforming the entire block cipher representation into a sequence of
key-dependent lookup tables. The secret key is hard-coded into these lookup tables and protected
by some special-purpose randomization techniques.
The white-box DES implementation was the first that was shown to be insecure. Its vulnerability
is mainly due to the DES Feistel structure which can be distinguished in a lookup table repre-
sentation. The first white-box cryptanalysis techniques find their origin in side-channel attacks
such as fault propagation correlation [53] or guess & determine attacks [56]. However, these tech-
niques make some assumptions on the implementation that can easily be mitigated [56]. It was
only in 2007 that the whitebox DES implementation was completely broken with the truncated
differential cryptanalysis by Wyseur et al. [69]and Goubin et al. [49].
The white-box AES implementation has been broken by Billet et al. [9] using algebraic cryptanal-
ysis techniques, which was further improved to the general case of SPN ciphers by Michiels et
al. [59]. Wyseur showed how these algebraic attacks can be used to attack any implementation
that comprises lookup tables [68].
The algebraic cryptanalysis techniques led to the design of new constructions beyond the lookup
table strategy, with directions towards implementations with randomized algebraic equations [7]
and the introduction of perturbations to defeat the algebraic structure that enables to mount alge-
braic attacks [14]. The implementation by Billet and Gilbert [7] was broken due to a cryptanalysis
result of the underlying primitive that was exploited. Attempts to resolve this issue were in-
spired by Ding to include perturbation functions to destroy the algebraic structure [28]. This led
to an improved traceable block cipher scheme [13] and was eventually applied to white-box AES
implementations [14]. Nevertheless, even these new improved constructions have shown to be
insecure by De Mulder et al. [62]. The last advancements in the area include a new proposal by

ASPIRE D2.01 PUBLIC 30

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

Xiao and Lai [70] which was subsequently broken by De Mulder et al. [60], and a proposal by
Karroumi [55] based on dual ciphers that was broken by De Mulder et al. [61].

9.2 WBC activities in the ASPIRE project

In the ASPIRE project, we aim to advance the state of the art in WBC in different directions.
First, since WBC requires dedicated transformations to hard-code cryptographic keys into imple-
mentations or to enable white-box implementations that can be instantiated dynamically, tools are
required. We aim to design and implement tools that generate and manage white-box code and
that can be interfaced with the ASPIRE tool flow. The progress on this activity is reported in
Section 10.
Secondly, we investigate new directions in white-box cryptography to mitigate the attacks as de-
scribed in the state of the art. We aim to find new techniques based on multivariate cryptography
and fully homomorphic cryptography. The results of this research activity are described in Sec-
tion 11.
The third activity of Task 2.2 covers the research and development of white-box implementations
that can be of practical use for the use-cases envisioned in the ASPIRE project. This includes the
design of dynamic white-box implementations, and time-limited white-box implementation. The
latter refers to white-box implementations that have a trade-off between performance and security
that rather benefits peformance to meet those requirements that have been described in Deliver-
able D1.03 (“Security Requirements”). The results of this activity are described in Section 12.

ASPIRE D2.01 PUBLIC 31

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

10 White-Box Tool for ASPIRE (WBTA)

Section authors:
Brecht Wyseur, Patrick Hachemane (NAGRA)

10.1 Introduction

As explained in Section 9, white-box cryptography (WBC) cannot be considered as a definitive
solution against piracy. To increase security robustness and duration, WBC must be segmented
across markets, operators or even users (space diversity); moreover, it must be renewed, ideally
in anticipation of attacks (preventive action) or as a swift response to attacks (corrective action).
In order to meet these objectives, NAGRA developed a framework to replace standard (vanilla)
cryptography by WBC in a transparent and automated way. This tool, denoted as the White-Box
Tool (WBT) has been delivered to the consortium and comes with a reference guide that has been
put available to the consortum as ASPIRE working document WD2.04 [3]. The WBT comes with
many features, including performance benchmarking of generated code, testing, management
of crypto generations, insertion of tag values, generation of server support files, compilation of
client object files, templates, etc. As a result, the WBT comes with a complex interface. To ease the
integration in the ASPIRE Compiler Tool Chain (ACTC), NAGRA has developed a frontend to the
WBT that presents a simplified interfaces for the ACTC. This component is denoted as the WBT
for ASPIRE (WBTA). The WBTA has also been delivered to the consortium and a reference guid
has been put available as ASPIRE working document WD2.04b [4].
Under the hood, the WBTA uses the input data that it received from the ACTC to prepare the
appropriate input for the WBT. The WBTA functions as a front-end (or wrapper) to the WBT: it
will invoke the WBT with the appriorate input and manage its return for the ACTC. Nevertheless,
the WBT remains functional without the WBTA and can be called directly.
In the following sections, we provide more details on the WBTA elements and present the current
status.

10.2 Overview

The WBTA is a tool written in Python, that can be invoked by the ACTC via the API as described
in the internal reference guide WD2.04b [4]. The WBTA needs to be invoked by the ACTC each
time some cryptographic function needs to be replaced with a white-box cryptographic primitive.
This step is captured as step SLP03.02 in ASPIRE Deliverable D5.01 [2]. Two different inputs are
needed. The first one, called source input, is related to the cryptographic function to replace (what
to replace); it is retrieved from source annotations by the src2src tool. The second input, called
decision input, is related to the way this function must be replaced (how to replace). The ADSS
is in charge of selecting the protection to apply, given the available white-box crypto primitives,
the desired level of security, the acceptable code size, and the crypto operation speed; the exact
way these parameters are transmitted from ADSS to WBTA is not yet defined and is out of scope
of the present report. Figure 17 depicts the process flow as currently implemented with the ACTC
and the WBTA, where the decision input is hard-coded in a file used by the WBTA. Figure 18
depicts the process that is envision in subsequent releases, where the ADSS will be integrated to
provide configuration options. In both figures, what is depicted as orange boxes are the white-box
components that are developed within task 2.2.

ASPIRE D2.01 PUBLIC 32

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

WBTA

WBT

2. WBTA
source
input

6. random seed
3S config

7. white-box
code

WBC Annotation
Extraction Tool

ACTC

5. source +
decision
inputs

8. formatted
white-box

code

1. original source code

9. formatted
white-box

code

hard-
coded
config

4.decision
input

WB code generator
X

WB code generator
X

WB code generator

3. source
input WBC Source

Rewriting Tool

10. original
+ white-box

code

11. modified
source
code

Figure 17: WBTA in Aspire context, initial phase

ASPIRE D2.01 PUBLIC 33

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

WBTA

WBT

2. WBTA source input

6. random seed
3S config

7. white-box
code

WBC Annotation
Extraction Tool

ACTC

5. source +
decision
inputs

8. formatted
white-box

code

1. original source code

9. formatted
white-box

code2c. decision
input

WB code generator
X

WB code generator
X

WB code generator

3. source
+ decision

inputs WBC Source
Rewriting Tool

10. original
+ white-box

code

11. modified
source
code

ADSS available WBC
primitives

2b. source
input

Figure 18: WBTA in Aspire context, subsequent phases (draft)

The configuration input to the WBTA is provided in an XML format as specified in WD2.04b [4],
the result is a C source code fragment that is to be inserted into source files; this code needs to
replace the original cryptographic code. The WBT and WBTA produce additional operational
reporting information that can be written to stdout or to a log file.

10.3 Annotations

FBK and Nagra agreed on the format of the annotations used to identify a cryptographic function
to be replaced by a white-box crypto primitive. The format of the annotations are presented in
ASPIRE Deliverable D5.01 [2]. In addition to mark the call to the cryptographic function, the
annotations also have to mark the fixed key used during this call, since this key must be removed
from the source code. We refer to the next section for additional information.

10.4 Source input

The source input is retrieved by the src2src tool, from the annotations in the source file as described
in ASPIRE Deliverable D5.01 [2]. The source input is composed of:

• key size: the size of the key, in bytes;

• key value: the value of the key; applies only to a fixed-key implementation;

• iv: the value of the initialization vector; applies only to CBC modes;

• algorithm: the name of used crypto algorithm (aes, des, tdes, rsapriv, rsapub);

• operation: the operation performed by the algorithm (encrypt or decrypt);

ASPIRE D2.01 PUBLIC 34

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

• mode: the mode of the used algorithm (ECB, CBC, CBC INV);

• label: a label to uniquely identify this case; this label is used to build the name of the function.

10.5 Decision input

The decision input is determined by the ADSS, according to the constraints on the application
size, speed and security. It is composed of:

• random seed: a random seed of 32 bytes;

• primitive: the WBC primitive to use in replacement of the original cryptographic function;

• size: the configuration of the WBC primitive regarding code size;

• speed: the configuration of the WBC primitive regarding code speed;

• security: the configuration of the WBC primitive regarding code security.

As discussed earlier and presented in Figure 17, the decision input is at this phase in the project
hard-coded into a configuration file.

10.6 Output

The output produced by WBTA is composed of:

• client code: the code of the WBC primitive replacing the original cryptographic function;

• server code: for a dynamic-key implementation, the code used on the server side to protect a
key.

Ideally, the code should be produced as a source code fragment intended to replace the original
function. In practice however, the complexity white-box code forces the delivery to be composed
as dedicated functions that may be implemented in one or more source code files that need to be
linked with the application. This is a more pragmenatic approach than code fragments, because
white-box code may be quite large, use sub-routines, define additional constants that are defined
in dedicated header files, include macro’s, inline functions, etc. This set of produced source files
is defined as “SC04.01” in Deliverable D5.01.
In this phase of the project, we will assume that the produced code is composed of 1 source file
and comprises one public functions that needs to be invoked. This function call needs to replace
the call to the original cryptographic function. In subsequent releases of the WBTA and ACTC, we
will specify how an arbitrary number of source files can be included, and how to deal with code
that is shared by multiple white-box implementations and is thus redundant.

10.7 Status

As of today, the WBT is fully implemented and validated on the build platform that is selected
for the ASPIRE project (we often refer to the ASPIRE VM as this build platform, as it concerns a
Virtual Machine image that is shared between all consortium members). The reference guide of
the WBT and the WBTA are both available in internal ASPIRE documents [3, 4]. The delivery of
the WBTA follows with the integration into the ACTC as described in the ASPIRE Deliverable
5.03 – the report on the first ACTC implementation. Support for the integration into the ACTC is
ongoing, as well as improvements to facilitate smooth integration. The full release of the WBTA is
planned by M18, in accordance to the schedule as described in the ASPIRE Deliverable of Work.

ASPIRE D2.01 PUBLIC 35

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

11 New WBC Schemes with Provable Security

Section authors:
Brecht Wyseur, Patrick Hachemane (NAGRA)

As previously introduced, the initial white-box implementations presented by Chow et al. [18,
19] present a technique to hard-code a secret key into lookup tables and then protect these by
applying some special-purpose randomization technique. In general, the approach in WBC is to
blend together the fixed key and random data in such a way that they cannot be unblended any
more. This random data is generated at code generation time and introduced in such a way that
it preserves the overall semantic behaviour of the implementation.
The basic idea works as follows. Consider a program P that comprises a sequence of 3 lookup
tables L0, L1, and L2 that are executed subsequently (P = L2 ◦L1 ◦L0), where L1 comprises some
secret key information that needs to be hidden (e.g., L1(x) = f(x)k for some arbitrary function f).
One may obfuscate this program by generating random bijective functions F0, F1 that transform P
by randomizing each lookup table as follows:

L0 → L′0 = F0 ◦ L0

L1 → L′1 = F1 ◦ L1 ◦ F−10

L2 → L′2 = L2 ◦ F−11 .

The result is program P ′ = L′2 ◦ L′1 ◦ L′0 that is semantically equivalent to P , but becomes harder
to analyse. Looking at L′1: in order for an attacker to gain information on this lookup table that
may lead to obtaining the secret information k, he will first need to obtain knowledge of F0 and
F1. In the case where L1 is a bijective mapping, and given only information on L′1, this will be
impossible – L′1 enjoys the property of local security. This is similar to the security of the one-time
pad. To extract information the attacker will need to extract information from L′0 and L′2. The goal
of this approach is to push the adversary to an analysis that is equivalent to a black-box attack
(analysis of the semantic behaviour of P ′).
The whole idea pursued relates to the decomposition problem of lookup tables. While this prob-
lem holds for single bijective lookup tables, it does not hold for non-bijective lookup tables (as
shown by Wyseur [68]) nor for groups of lookup tables [9, 59, 68]. Therefore, it is very challeng-
ing to define more robust constructions based purely on lookup tables and its security cannot be
proven. The approach as conceived by Chow et al. remains ad hoc. Nevertheless, it does not
exclude that similar concepts on other mathematical primitives can be defined, or other related
concepts can be relied upon. This is the objective of the research on new cryptographic WBC
schemes that are provably secure. In particular, we will build on recognised hardness problems
(such as the functional multivariate polynomial decomposition problem) that mitigate algebraic
attacks as presented before and upon which we can define concrete security properties. In this
section, we report about our progress in this task.

11.1 Multivariate WBC

11.1.1 Functional Multivariate Polynomial Decomposition Problem

The new direction that we conceive in this section concerns white-box implementations whose
security relies on the functional multivariate polynomial decomposition problem, which is ex-
pressed in Definition 1 [26].

Defininition 1 (Functional Multivariate Polynomial Decomposition Problem (FDP)) If K is a
field, and f, g ∈ K[x1, . . . , xn] are multivariate polynomials, then h = f ◦ g = f(g) ∈ K[x1, . . . , xn]
is their (functional) composition. (f, g) is a (functional) decomposition of h.
The functional multivariate polynomial decomposition problem over the extension field
K[x1, . . . , xn] can be stated as follows: given h ∈ K[x1, . . . , xn], determine whether there exists a de-
composition (f, g) of h with f and g of degree greater than one, and in the affirmative case, compute one.

ASPIRE D2.01 PUBLIC 36

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

Note that when such a decomposition exists, it cannot be unique. Indeed, consider h = f ◦ g, then
any bijective linear combination A leads to a decomposition of h since h = (f ◦ A−1) ◦ (A ◦ g). It
has been shown by Dickerson in 1989 that the multivariate polynomial decomposition problem is
NP-hard [26].

Defininition 2 (Multivariate Map) A system of multivariate polynomials f is a multivariate map
mapping from K[x1, . . . , xn] to K[y1, . . . , ym], which comprises m multivariate polynomials fi ∈
K[x1, . . . , xn]:

f =

f1(x1, . . . , xn) =
∑

e1,...,en

αi · xe11 · · ·x
en
n

...
fm(x1, . . . , xn) =

∑
e1,...,en

αi · xe11 · · ·x
en
n

The degree of the multivariate mapping is the degree of the highest order term max(e1 + e2 + · · ·+ en); the
highest degree of any fi.

The composition of multivariate polynomials h = f ◦ g can be extended to the composition of
systems of multivariate polynomials h = (h1, . . . , hu) == (f1(g1, . . . , gn), . . . , fu(g1, . . . , gn)), by
replacing each ith variable in Sf by the ith multivariate polynomial in Sg. Hence, the number
of polynomials in Sg must be equivalent to the number of variables over which the multivariate
polynomials in Sf are defined.
The functional multivariate polynomial decomposition problem can be translated easily onto the
functional decomposition problem of systems of multivariate polynomials.

11.1.2 Our contribution

The main objective in our approach is to define cryptographic algorithms as a series of multi-
variate polynomials Si (e.g., where each system embodies one round of the cipher), and then to
obfuscate the cipher by including random systems of equations Ri, in such a way that from the
resulting system of equations Oi = Ri+1 ◦ Si ◦R−1i , no information on Si can be obtained.

Challenges

There are a number of challenges in this approach that need to be addressed.

• First, the cipher needs to be representable in an algebraic form to be able to define such
systems of multivariate equations that represent the same functionality.

• When the system Si gets ‘obfuscated’, the size of the system of polynomials may explode
and its performance be degraded beyond practical purposes; even if the cipher originally
could be expressed as small equations (before obfuscation). The latter is for example the
case with the AES.

• The security of the result must be evaluated. In the past few years, there has been a vast
amount of research on multivariate polynomial decomposition and algebraic cryptanalysis
techniques. We need to investigate what configurations may lead to secure implementations.

Hence, for our research to lead to practical results, we need to use ‘white-box friendly’ ciphers, or
design such ciphers. And then find parameters that lead to an optimal performance vs. security
trade-off. In our approach, we shall aim for software-friendly constructions, i.e., where a system
of multivariate polynomials can be defined over a finite field of characteristic 2, and a byte, word,
or quadword size. In other words, constructions defined over finite fields GF

(
2i·8
)
.

ASPIRE D2.01 PUBLIC 37

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

Approach

To achieve our objective, we need to define a cryptographic cipher as a system of equations, and
then propose how to obfuscate it. The construction of such cipher needs to meet several require-
ments. A cipher cannot just be a random system of multivariate equations. It needs to be an
invertible and secure system. In general, random systems are not invertible, or their inverse is hard
to compute and too complex for practical purposes. Therefore, we first search in the literature
what kind of constructions exist. We do this in Section 11.1.3. Of each of these constructions, it is
important to understand its properties; what makes them strong or weak; what makes it efficient
or what makes that these systems can be (trapdoor) inverted.
Subsequently, we analyse the practical implication of defining and implementing such systems.
The practical impact with respect to size and performance. This depends on the field over which
the system of equations is defined, the dimension of the multivariate map, and the degree of the
multivariate equations. This investigation is executed in Section 11.1.4
The third step of our research activity is then to perform a security analysis. Given a selection
of parameters, we need to know if constructions can meet our desired level of robustness. In
Section 11.1.5, perform a thourough security analysis, which leads us to some important conclu-
sions 11.1.6.

11.1.3 Multivariate cipher constructions

Multivariate public key cryptosystems (MPKCs) are a family of cryptosystems based on multi-
variate equations. Unlike conventional public key cryptosystems such as RSA, they are expected
secure against quantum computers and their operation are expected to be quicker since they do
not need exponentiation operations. The downside however is the size of their public key.
MPKC was introduced by Matsumoto and Imai in 1983 [52]. Their MI cryptosystem [57] builds
around the function F (X) = Xqθ+1, in the finite field GF (qn). F (X) is a quadratic mapping and
can be described as n quadratic polynomials over (x1, . . . , xn). The inverse of F can easily be
derived: Xh, with h = (qθ+1)−1 mod qn− 1. The public key is defined as P = T ◦π−1 ◦F ◦π ◦S,
where π is an isomorphism between GF (q)n and GF (qn), and S and T are two linear bijective
maps over GF (q)n.
The MI cryptosystem was successfully cryptanalyzed by Patarin [63] in 1995, where bilinear re-
lations over GF (q) can be constructed. These bilinear relations can be constructed through dif-
ferential cryptanalysis (derivate functions). When n bilinear relations using (n + 1)2 pairs (plain-
text,ciphertext) are found, then we can derive a linear system which has an n-dimensional kernel
that can be found. The MI scheme “B” was cryptanalyzed by Patarin and Youssef [72].
At Eurocrypt 2006, Faugère and Perret describe a Gröbner basis algorithm to solve the IP problem
when B is a set of polynomials defined over a small n of variables in an extension F [39]. Their
algorithm is very efficient when the system of polynomials B is random and has small degree terms
such as in the authentication scheme proposed by Patarin [65] and some parameters of the traitor
tracing scheme of Billet and Gilbert [7]. For larger parameters proposed by Billet and Gilbert, or
for the parameters of SFLASH, the algorithm does not work. In the case of SFLASH, the system
of polynomials is too sparse. At Eurocrypt 2008, Fouque et al. present a polynomial time attack to
recover these values for SFLASH and the second parameter proposed by Billet and Gilbert [44].
SFLASH was build around the C∗ scheme of Matsutomo and Imai. The main idea is to remove
some equations from the public key (hence, not enough equations can be found to deploy the
Patarin attack). This is also called the C∗− scheme. The ground field is K = GF

(
27
)
. The secret

key comprises two invertible linear transformations over K37 and an isomorphism φ : K37 → L,
where L is an extension of degree 37 over K defined by the primitive polynomial x37+x12+x10+
x2 + 1.
Dubois et al. presented an attack on SFLASH [34, 33], based on Patarin’s attack [63]. However, the
attacks were not able to recover the secret key, as they rely on Patarin’s attack which is only able
to invert the public key.

ASPIRE D2.01 PUBLIC 38

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

Rainbow is a signature scheme, where the public key consists of 27 multivariate equations in 33
unknowns over the finite field GF

(
28
)

[30]. However, Rainbow has been broken by Billet and
Gilbert [8].
PMI+ is a doubly perturbed C∗ scheme [29]. The public key is a multivariate quadratic system
of 98 equations in 84 unknowns defined over GF (2). It comprises an exponentiation function
F : x → x2

4+1 defined over a finite field GF
(
284
)
, and two invertible linear transformations

over GF
(
284
)

and GF
(
298
)

respectively. Additionally, 14 extra quadratic polynomials in the 84
unknowns defined over GF (2) are chosen.
The stream cipher QUAD takes advantage of specific characteristics of multivariate systems of
equations in order to provide some provable security properties [5].
Several hash functions based on multivariate constructions have been presented. These include
the hash functions of Billet et al. [10], and Ding and Yang [31]. The latter presented three ap-
proaches: “dense” cubic random polynomials, “sparse” cubic random polynomials, and the com-
position of 2 quadratic random systems (i.e., degree 4 polynomials).

A(NA)? construction

The pioneering papers of Matsumoto and Imai lead to other constructions that have been pro-
posed based on different sets of quadratic multivariate systems, including one-round schemes [65].
The one-round construction comprises quadratic S-boxes (over GF (2)). In their paper, Patarin
and Goubin present four possible attack strategies on this construction [65, 63].
To strengthen these schemes, Patarin and Goubin extended the idea to a two-round family of
schemes [65]. The public key of such systems, which is given by polynomials of degree four, is ob-
tained by composing the public polynomials of two different instances of one-round schemes.
The “2R” construction comprises non-bijective S-boxes, and was cryptanalyzed by Biham [6].
Related literature includes the SASAS paper by Biryukov and Shamir [11], a generic attack in
GF(2) [12], and generalized attacks on systems that consist of two rounds of quadratic systems of
equations [71].

Hidden Field Equations (HFE)

HFE is a family of cryptosystems introduced by Patarin [64]. The cryptosystem is defined as
polynomials over finite fields; the recommendation is to implement the cipher over GF (2n) for
127 ≤ n with a univariant polynomial of degree 25 ≤ d ≤ 33 and d to be odd. While public key
operations (that is, encryption and signature verification) are quite fast, private key operations
(that is, decryption and signature generation) are much slower. Another drawback is the very
large public key size of about 100kb for n = 129. The key size grows with a complexity of O(n3)
and is for example around 1Mb for n = 257. Cryptanalysis results have been presented that
threaten the security of HFE. Nevertheless, it is possible to define variants on HFE for which
the attacks no longer apply. One of these variations (called “HFE-”) involves hiding some of the
public equations, another (called “HFEv”) introduces some more variables, the so-called “vinegar
variables”.

The IP problem (Isomorphism of Polynomials) has been used to construct public key schemes.
Via the Arthur Merline Games proof systems, it can be shown that the IP rpbolem is not NP-
complete. Yet, the more general Morphism of Polynomials (MP) problem, which does not restrict
to invertible components (more particular, non invertible matrices can be used), is proved to be
NP-complete (See Micheal Garey and David S. Johnson – computers and intractability, 1979 [45]).
IP and MP have deep links with famous problems such as the Isomorphism of Graphs problem
and the problem of fast multiplication of n× n matrices. The problem of deciding wether a poly-
nomial isomorphism exists between two sets of equations is not NP-complete, but solving IP is at
least as difficult as the Graph Isomorphism problem.

ASPIRE D2.01 PUBLIC 39

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

Polly Cracker

In 1994, Fellows and Koblitz proposed a framework for the design of public-key cryptosystems
based on multivariate algebras [43]. The polynomials generating the public ideal are derived from
combinatorial or algebraic NP problems; and the schemes are bound to be sparse: the reasons are
to render the linear algebra attack exponential time, and to allow for a reasonable-size public key.
The public key are the polynomials {fi}, generating an ideal I = (fi) in a ring; the private key is
a Gröbner basis G of an ideal J containing I . The main illustration of such a system was the Polly
Cracker cryptosystem, which is a special case in which J is a maximal ideal (a root of fi(X) = 0).
In 1998, Grant et al. presented a public key cryptosystem, where Alice’s public key comprises a set
of sparse trapdoor random multivariate polynomials [50]. The trapdoor information are the roots
of the generated public polynomials; the security is related to the difficulty of finding these roots.
In 2002, Steinwandt et al. presented several attacks on Polly Cracker; Grant’s public key system
can be seen as a special instance to which the idea of this attack can be applied [66].
The fallacy of the idea is that you don’t need to find the Gröbner basis, or a normal form; you only
need to find the gi such that c−

∑
gifi ∈ V . In general, to attack Polly Cracker algorithms:

• If the fi are dense, just use linear algebra.

• If the fi are sparse, guess the support of the computation and use sparse linear algebra.

It was shown by Hofheinz and Steinwandt that guessing is easy provided that the fi (and anything
you can derive easily) have and least 3 monomials each [51]. The only case that seems to escape
this, is the case of a binomial ideal, i.e., an ideal generated by binomials Xα−Xβ [16]. Since those
ideals are very special inside Gröbner bases theory, it might be that this case is more secure than its
predecessors. In particular, this construction can be defined as a lattice Polly Cracker algorithm,
yielding results related to NP hard lattice based problems. However, the interest in this field may
stop there, since other lattice-based constructions may result in more secure and more efficient
algorithms.

11.1.4 Implementation

To define a multivariate white-box implementation, we need to (1) define a multivariate equation
system with appropriate parameters and (2) obfuscate the system. In the Section 11.1.3 above, we
performed an analysis of cryptographic ciphers based on multivariate systems to figure out what
constructions may be appropriate. In Section 11.1.5, we perform a security analysis on Multivari-
ate WBC constructions to figure out which parameters are appropriate. I.e., over what (Galois)
fields, dimension of the multivariate mapping, and what degree of the multivariate mapping is
acceptable. This needs to define some lower bounds. In this section, we perform an analysis w.r.t.
size and performance. These three approaches (constructions, size, security) need to lead to our
conclusions for multivariate white-box cryptography.

Size and performance estimations

Table 13 presents an overview of the size and performance numbers that we would expect when
an arbitrary cipher comprising of 4 systems of equations (each representing a round) would be im-
plemented. This includes a time-memory trade-off where the polynomial terms are pre-computed
to speed up performance in return for memory usage.
The two last columns of the table present performance figures. These are theoretical numbers;
in reality, performance figures heavily depend on the platform and implementation. Cache size,
CPU speed, and CPU features such as superscalar CPU’s or SIMD instructions heavily influence
processing speed. But at least, they provide an indication that can be used as reference for upper
bounds and to help decide which ones to implement for further analysis. As a rule of thumb,
we have assumed that additions take one cycle, while multiplications take 4 cycles. The latter is
under the assumption that Galois multiplications are implemented as a combination of power and

ASPIRE D2.01 PUBLIC 40

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

Table 13: Expected implementation size of systems of equations and expected performance
Base field deg Size Additions Multiplications ms kbit /sec
GF

(
28
)16 4 302.81 kB 310,016 321,024 1.668 76.734

GF
(
28
)16 6 4.55 MB 4,775,168 5,158,272 26.508 4.829

GF
(
28
)16 8 44.89 MB 47,070,080 53,530,752 271.528 0.471

GF
(
28
)16 9 124.69 MB 130,750,336 152,901,056 770.311 0.166

GF
(
28
)16 12 1.81 GB 1,946,992,256 2,486,914,560 12272.021 0.010

GF
(
216
)8 4 30.93 kB 15,808 17,600 0.090 1426.149

GF
(
216
)8 6 187.69 kB 96,064 118,976 0.591 216.480

GF
(
216
)8 8 804.37 kB 411,808 572,000 2.771 46.191

GF
(
216
)8 9 1.48 MB 777,888 1,144,000 5.477 23.371

GF
(
216
)8 12 7.69 MB 4,031,008 6,987,136 32.420 3.948

GF
(
232
)4 4 4.38 kB 1,104 1,456 0.007 17943.547

GF
(
232
)4 6 13.12 kB 3,344 5,376 0.025 5061.000

GF
(
232
)4 8 30.94 kB 7,904 15,312 0.070 1835.983

GF
(
232
)4 9 44.69 kB 11,424 24,112 0.108 1181.661

GF
(
232
)4 12 113.75 kB 29,104 77,168 0.336 380.945

log tables. In the case of GF
(
28
)
, performance on ARM platforms (as targeted in ASPIRE) may

in reality be much faster because the XOR operations can be executed in parallell (since the target
ARM processor is a superscalar CPU), while on large fields such as GF

(
232
)

the performance may
be slower because Galois multiplications become more complex (power and log table approach
becomes inappropriate). From cycles to ms, we assume a 3 Ghz clock speed.

Empirical results

To get a grasp on more exact numbers, we have implemented a dummy cipher, comprising of four
consecutive rounds. Each round is defined as a multivariate system of equations over GF (2q)
that we generated randomly, by generating a number of random terms and coefficients for each
polynomial.
C-code for each of the random ciphers has been generated and compiled with GCC with the -O2
optimization flag enabled. Since GCC seems to fail to compile routines that exceed close to or
more than 5000 lines of code, we have split the code into a number of routines such that each
routine contains approximately 3000 lines of code. The compiled code has been benchmarked on
an Intel Dualcore 3Ghz CPU test platform. The presented performance measures are the average
of 100,000 tests on systems of random equations.
Table 14 contains the results of our tests.

Performance and Size of Concrete Constructions

The numbers presented in Table 14 relate to systems with random generated equations, with a
density of 1. In real-world cryptographic use-cases, there are a number of constraints that need
to be fulfilled. The most important one is that the system needs to be (trapdoor) invertible. In
general, this is not the case for randomly generated multivariate maps. The same holds for the
obfuscating annihilating mappings that are used: those too need to be invertible.
There are a number of ways in which invertible multivariate maps can be created. In cryptog-
raphy, a popular approach is via Feistel constructions. Alternatives include Lai-Massey, SASAS-
alike constructions, MI-based constructions, constructions based on T-functions, or HFE alike con-
structions. We refer to Section 11.1.3 for more details on these constructions. We implemented and
randomized several of these constructions. Our observation is that the obfuscated versions (where

ASPIRE D2.01 PUBLIC 41

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

Table 14: Empirical results of fixed-key 128-bit multivariate systems.
Base field deg #terms real #terms LOC binary size ms
GF

(
232
)4 6 5000 161 2,082 108.80 kB 0.173

GF
(
232
)4 8 5000 299 3,596 204.85 kB 0.306

GF
(
232
)4 9 5000 374 4,453 260.85 kB 0.382

GF
(
232
)4 12 1000 521 5,393 312.85 kB 0.454

GF
(
232
)4 12 10000 627 7,605 440.90 kB 0.673

GF
(
216
)8 6 1000 1,720 22,947 1.39 MB 0.341

GF
(
216
)8 6 5000 1,984 45,757 2.79 MB 0.683

GF
(
216
)8 6 10000 2,021 51,742 3.16 MB 0.784

GF
(
216
)8 8 1000 3,598 29,990 1.81 MB 0.466

GF
(
216
)8 8 5000 5,572 88,740 5.56 MB 1.690

GF
(
216
)8 8 10000 6,150 121,604 7.64 MB 2.450

GF
(
216
)8 9 1000 4,440 32,544 1.94 MB 0.512

GF
(
216
)8 9 5000 8,298 106,738 6.67 MB 2.128

GF
(
216
)8 9 10000 9,567 157,651 9.95 MB 3.134

GF
(
216
)8 12 1000 6,164 41,764 2.35 MB 0.634

GF
(
216
)8 12 5000 17,263 151,995 9.18 MB 3.091

GF
(
216
)8 12 10000 23345 252,806 15.54 MB 5.154

subsequent rounds are obfuscated with annihilating systems of random multivariate equations)
tends to have a density close to 1. Therefore, the performance and size results for specific con-
structions are comparible with the performance and size results presented in Table 13, for the
case of GF

(
216
)8. We did not perform a comparable analysis for the case of GF

(
28
)

or GF
(
232
)

due to lack of time, and chose to focus on GF
(
216
)

as it seemed most appropriate w.r.t. size and
performance.

11.1.5 Security Analysis

The decomposition of random system of equations over GF (2) is NP-hard [26]. Moreover, in
contrast to Discrete Logarithm or RSA-based systems, no polynomial-time quantum algorithm is
known.
This intractability theorem however, does not apply to multivariate equation systems that are
the composition of specific structures, which is what we aim to construct in our approach. In
this subsection, we make a security analysis of generic MWBC constructions, mainly based on
academic papers from the domain of cryptanalysis of multivariate systems and algebraic analysis
techniques. The goal is to find adequate parameters for which the security level can be considered
adequate.
Analysis techniques include Rank attacks, Distinghuiser attacks, attacks tailored to specific con-
structions such as SASAS [11], Gröbner basis attacks, or Derivative Attacks. We have been looking
into all of these attacks; given our experience, we will briefly introduce Gröbner basis attacks, and
more extensively discusss Derivative Attacks.

Gröbner basis

In his 1965 thesis, Buchberger developed the theory of Gröbner bases which allow computations
in multivariate polynomial rings analogous to those we are used to in single variable polynomial
rings. This theory can be seen as a generalization of Gaussian elimination or of integer program-
ming. Hence, Gröbner bases are a fundamental tool of commutative algebra.

ASPIRE D2.01 PUBLIC 42

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

Defininition 3 (Buchberger 1965 [15]) G = {g1, . . . , gt} ⊂ K[x1, . . . , xn] is a Gröbner basis of a poly-
nomial ideal I , if

∀ ∈ I, ∃g ∈ G s.t. LM(g) divides LM(f) ,

where LM denotes the leading terms of a polynomial.

Note that this depends on the monomial ordering.
Gröbner bases are a useful tool in polynomial algebra. In particular to solve the problem
to find roots for systems of equations over polynomial algebras. The problem where given
fi(x1, . . . , xn) ∈ K[x1, . . . , xn], find z = (z1, . . . , zn) ∈ Kn such that fi(z) = 0.
The challenge is to efficiently compute Gröbner bases, since existing algorithms are of exponential
complexity in time/space. Several Gröbner bases exist such as Lexicographic Gröbner basis (LEX)
or degree reverse lexicographical Gröbner bases (DRL). Faugère et al. showed that computing LEX
is much slower than computing DRL [38].
Several algorithms exist to compute a DRL Gröbner basis. First Buchberger’s algorithm, which
is based on the Buchberger normal form algorithm [15], which is a Gaussian-like linear algebra
reduction. Given a finite set F and an element f , it returns the normal form g of f w.r.t. F and a
strong Gröbner representation of f − g in terms of F .
Improved algorithms are the F4 [35], F5 [36] and Fast FGLM [37] algorithms of Faugère et al.
Unfortunately, time did not permit to investigate F5 in sufficient detail to figure out its limitations.

Derivative Attacks

Derivative attacks are generic attacks on the functional decomposition problem (FDP). These at-
tacks are in particular interest for us as it directly targets the approach we conceive: it are attacks
that can be used to attempt to distinguish the obfuscating multivariate map from our multivariate
cryptographic cipher.
Surprisingly, the very first technique addressing multivariate functional decomposition was only
in 1999 by Ye et al. who proposed an efficient algorithm for decomposing a set of n multivariate
polynomials of degree four into two sets of n quadratic polynomials [71]. This technique has been
used to attack the “2R” cryptosystem and exploits techniques used in linear algebra. However,
it is limited to the special case where the number of variables equals the number of polynomials
(which is the case in our approach), and only for polynomials of degree four.
Faugère and Perret proposed a new algorithm allowing to decompose polynomials of the same
arbitrary degree [40]. This was further improved by the same authors by using high order partial
derivatives [41]. This new approach results in a simple, natural way of decomposing multivariate
polynomials. Finally, this is further extended by Faugère et al. [42] for the decomposition of generic
multivariate polynomials. The complexity of the attack depends on the degree of the polynomials,
and on the ratio between the number of variables (n) and the number of polynomials (u). We will
now dive into the details of these attacks, since it is important to understand how it works and up
to what extent it can be applied.

Consider the multivariate mappings f = (f1, . . . , fu) and g = (g1, . . . , gn)) of degree df , dg respec-
tively and its composition

h = (h1, . . . , hu) = (f1(g1, . . . , gn), . . . , fu(g1, . . . , gn)) ∈ K[x1, . . . , xn]
u .

We shall say that (f, g) is a (df , dg) decomposition of h.
The FDP challenge is to find a non-trivial decomposition of a given multivariate map h. If one
solution exists, then this solution can not be unique; indeed, for any bijective linear A ∈ GLn(K),
it holds that h = (f ◦ A−1) ◦ (A ◦ g). Therefore, it suffices to compute the space span{gi}, since
any basis for this space is a candidate solution for g. Once such a system g has been found, it is
straightforward to compute the corresponding f .

Quadratic Derivative Attacks

ASPIRE D2.01 PUBLIC 43

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

The attack presented by Ye et al. was designed to attack the 2R− schemes, and is limited to decom-
pose degree 4 mappings (combination of quadratic mappings), where the number of polynomials
equals the number of variables (u = n) [71]. The attack was extended by Faugère and Perret [40] to
polynomials of arbitrary degree and the case where u 6= n. Their algorithm allows to decompose
polynomials of degree four in O(n12) if n/u < 1/2 and O(n9) if u = n. The algorithm is divided
in two parts. First, to recover the vector space L(g) = Span(g1, . . . , gn). This linear span will be
recovered from the DRL Gröbner bases of suitable ideals. Secondly, deduce a decomposition (f, g)
of h from L(g).
The first step – recovering the linear span – is the most important step. In the (2, 2)-case, observe
that

∂hi
∂xj

=
∑
k,l

f
(i)
k,l

(
∂gk
∂xj

gl +
∂gl
∂xj

gk

)
,

where the partial derivatives ∂gk
∂xj

are of degree one. Hence,

∂Ih =

〈
∂hi
∂xj

〉
⊆ 〈xkgl〉 .

This ideal usually provides enough information for recovering a basis of L(g).

Higher Order Derivative Attacks

Let us observe the (3, 2) case; that is, where the degree of f is 3, and the degree of g is 2. Then
hi = fi(g1, . . . , gn) =

∑
k,l,m f

(i)
k,l,mgkglgm, and hence

∂hi
∂xj

=
∑
klm

f
(i)
klm

[
∂gk
∂xj

glgm +
∂gl
∂xj

gkgm +
∂gm
∂xj

gkgl

]
.

By considering the second order partial derivatives, we get

∂2hi
∂xjxr

=
∑
klm

f
(i)
klm

[
∂gk
∂xj

∂gl
∂xr

gm +
∂gl
∂xj

∂gm
∂xr

gk +
∂gk
∂xj

∂gm
∂xr

gl+

∂gk
∂xr

∂gl
∂xj

gm +
∂gl
∂xr

∂gm
∂xj

gk +
∂gk
∂xr

∂gm
∂xj

gl +

∂2gk
∂xj∂xr

glgm +
∂2gl

∂xj∂xr
gkgm +

∂2gm
∂xj∂xr

gkgl

]
.

Define the ideal ∂2Ih =

〈
∂2hi
∂xj∂xr

〉
, which will provide enough information to recover L(g).

Observe that each xkxlgm can be expressed as a linear combination of polynomials in the ideal.
Hence, computing a reduced DRL Gröbner bases leads to a bases for L(g): let G be the Gröbner
bases of ∂(df−1)Ih, and Bg = {g ∈ G|deg(g) = dg}, then L(g) ⊆ spanK{Bg}. The equality holds
if its dimension is n. If the rank of the matrix that represents the ideal is not sufficiently large, we
can consider a bigger vector space by stretching the matrix.
From L(g) = span(g1, . . . , gn), a candidate decomposed multivariate polynomial g is any non-zero
g ∈ L(g). The corresponding f such that h = f ◦g can then be recovered by solving a linear system
of equations.

This approach can be generalized for each df ≥ 2, by defining the ideal

∂(df−1)Ih =

〈
∂(df−1)hi

∂xj1 . . . ∂xj(df−1)

〉
.

ASPIRE D2.01 PUBLIC 44

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

Each polynomial of this ideal will be of the form

n∑
l=1

Hl(x1, . . . , xn)gl ,

where each Hf is 0 or a polynomial of degree (dg − 1)(df − 1). Solving the corresponding matrix
with a DRL Gröbner bases will then lead to L(g), and ultimately to the decompostion (f, g). If
the algorithm works correctly, it will return a unique decomposition with respect to the “normal
form” of a multivariate decomposition.

Limitations.

For the algorithm to work, there needs to be sufficient data to run the Gröbner reduction algo-
rithm. For small values of n, the algorithm often fails (independently of the fact that a decompo-
sition exists or not). For example, let h = (h1, . . . , hn) be generic polynomials of degree four. The
algorithm will always return Fail if

|M(3)| − 2 · n < n2 ,

where M(δ) is the set of monomials of degree δ ≥ 0 in x1, . . . , xn, and | · | denotes the cardinality
of the set. In a (3, 2) decomposition (u = n), the algorithm will always return Fail if n < 6.

11.1.6 Conclusion

In our research, we have focused on

• The analysis of existing constructions to figure out which constructions are appropriate.

• Subsequently, we have investigated upper bounds on size and performance from both an
exercises on paper, as weel as by implementing some empirical tests on random system of
equations. On some selected concrete implementations (based on Feistel constructions), we
have observed that these constructions tend to be close to the estimated upper bounds.

• Last but not least, to figure out which parameters (size of the multivariate map, degree of
the equations) are appropriate, we have conducted a thorough security analysis.

From this research, we conclude that this direction of constructing white-box implementations
based on multivariate equations is indeed viable. But only for ciphers with small block size and for
which a low performance and large implementation size is acceptable. Indeed, from the security
analysis it becomes clear that the degree of the multivariate equations needs to be sufficiently
high to ensure that derivate attacks cannot be applied. For such equations, as soon as the block
size becomes too large; the performance and size impact becomes quickly unacceptable.

11.2 White-Box Cryptography based on Fully Homomorphic Encryption

Section authors:
Jerome d’Annoville (GTO)

The purpose of this section is to explains why Gemalto could not work on the Fully Homomorphic
Encryption (FHE) as it was initially planned at the beginning of the project. A replacement work
is described in the next section.

ASPIRE D2.01 PUBLIC 45

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

11.2.1 Work description and motivation

As part of the description of the task T2.2 Gemalto committed to the use of constructions of FHE in
WBC solutions. FHE is used to evaluate arbitrary functions over encrypted data without decrypt-
ing the data. The motivation of working on this topic is ultimately to deploy software protection
techniques for mobile devices and in this sense FHE schemes are not computationally practical for
use on handheld and mobile devices. Various research works (cf. [47], [67], [23], and [48]) have
reported the hardware computational power that would be required to keep an implementation
into an acceptable processing timescale. Somewhat homomorphic encryption schemes (SWHM)
provide a compromise. With SWHM techniques, it is not possible to evaluate arbitrary functions,
and SWHM functions need to be explicitly written to perform a very specific type of operation (e.g.
standard deviation, average of n terms, etc) but still, the research work was planned to explore
this lead for the context of mobile devices.
It happens that this work did not run through for the various reasons explained hereafter:

• Personal issue and backup plan

The main contributor for this research task resigned in 2013 and no other person was tech-
nically able to work on the topic in Gemalto Europe due to the specific skill that is required.
The backup plan was to hire a PhD to work full time on WBC to do the actual research work.
Part of the result would be provided as Gemalto ASPIRE contribution in T2.2 and an ex-
ternal sub-contractor that has the required background would have steered and technically
managed the researcher. With this new plan the deliverable milestone would need to be
shifted in M24 for early results and M30 for final results while contribution was expected
at M18 in the DoW. Then the process to hire the researcher has been initiated at its own
speed but it has been blocked by the management and eventually rejected in Q2 because an
interrelated project within Gemalto has been started in the meantime. This decision should
be considered in the light of the availability of new technologies such as the one described
below.

• Google Host Card Emulation

Google Host Card Emulation (HCE) is part of Android 4.4 available since Q4, 2013. Devices
running this system release are commonly available since Q1, 2014. HCE brings a new be-
havior: when a device has an embedded Near Field Communication (NFC) controller in the
device and when the device is tapped on a card reader or a Point Of Sale the system may
route commands sent by a physical card reader/POS to an Android service. Until Android
Jelly Bean (4.3) the Contactless frontend (CLF) of the device directly send commands to the
SIM card chip exclusively. This new feature weakens the NFC-SIM Market of Gemalto with
clients that tend to question the secure hardware approach, which force the company to ac-
celerate the development of pure software security on mobile devices. In a way it can be seen
as if the main motivation that initiates the ASPIRE project has been endorsed by a market
fact just few months after the project has started.

• Management arbitration

A pure software library product is designed in Gemalto to support the implementation of
HCE. It brings another way to secure the cryptography code in Android applications. This
technology is based on WBC to secure the keys used to secure the library. The WBC layer is
licensed to Gemalto because there is no time to develop this layer internally and effort must
be put on higher layers of the library. The management has arbitrated in Q2 that the WBC
layer has to be bought because designing and implementing it within the company would
delay the availability of the solution in such way that it would compromise its commercial
success. This decision impacts ASPIRE because the research task as proposed in ASPIRE
has been re-assessed in light of the decision to buy WBC layer license. It has been decided
not to duplicate effort in various directions and even if long term research on the SWHM

ASPIRE D2.01 PUBLIC 46

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

approach would be more profitable for the company it conflicts with the decision of buying
the technology. There is no time left for the internal research activity and an already avail-
able implementation is preferred otherwise the marketing window would be missed. The
negative consequence is the withdrawal of Gemalto on this WBC contribution in ASPIRE.
The other consequence is that the library currently developed could be used in ASPIRE to
provide a cryptography library secured by pure software. This alternative, the Diversified
Crypto Library, is described in the next section.

11.3 Diversified Crypto Library

Section authors:
Jerome d’Annoville (GTO)

Purpose of this protection is to provide a library that combines the WBC techniques together with
a server based diversification technique. Features provided by the library are those of a classi-
cal cryptography interface except that secret and private keys are kept within the library. With
this protection, the application downloaded from Google Play only embeds the minimal library
component called the initial crypto library. A library bootstrap module is part of the initial crypto
library as shown in figure 19. When the application is launched for the first time, the library boot-
strap module initiates a provisioning request to the Crypto Library Provisioning Server. A secure
communication is set with the Provisioning Server to download the library. This crypto library
is a personalized library for a dedicated Android mobile device. Provisioning Server generates
unique keys and embeds these keys to the personalized library binary.

Application

1. User asks for

Application download

Android

Mobile

Device

Google

Play

Application
Application

Application

2. Application is downloaded

from Google Play server

Initial Crypto

library

Application

code Provisioning

Server

Crypto lib

Secure

Storage lib

WBC lib

3. Provisioning

request

Crypto lib

Secure

Storage lib

WBC lib

4. Provisioned

Library download

Initial Crypto

library

Application

code

Figure 19: Application and crypto library downloads

Another design would be to have the Application together with a complete crypto library inte-
grated in the Android package to avoid the provisioning step when the application is launched
for the first time. Because the crypto library binary is generated on purpose with the appropriate
keys for both a dedicated application and a dedicated device there is no other option than to have
some mobile code that has to be downloaded after the application has been installed on the de-
vice. The library bootstrap module provides a way to provision and download a personalized key

ASPIRE D2.01 PUBLIC 47

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

material binary of the crypto library to a mobile device. It contains minimum set of crypto APIs,
the public key of the provisioning server and the necessary implementation of cryptographic al-
gorithms to initiate the secure connection with the Provisioning Server.
When the provisioning of the library is finished the crypto library provides application with a full
crypto API. The crypto library can store securely data thanks to a WBC library that is provisioned
with root keys. Based on these crypto and secure storage services the application can start its
application data provisioning.
There are two root keys. A unique Key Encryption Key (KEK) is used to protect the secure storage
containers. Application keys are stored in secure storage containers. Another key, the Key Mask-
ing Key (KMK) is used to obfuscate application keys. Both KEK and KMK keys are generated on
the provisioning server and embedded into one occurrence of the WBC library. These two keys
are unique for a library occurrence for a device. Again, the full crypto library with its services
is not part of the Android package (.apk) when downloaded from Google Play. When the soft-
ware application is first launched after download, it communicates with the provisioning server
to retrieve the customised library that is installed locally on the device.
Features can be summarized as follows:

• The library provides standard encryption algorithms with application keys embedded in the
library.

• The application keys are protected by a secure storage service

• Some specific keys - the root keys- are managed internally in the secure storage service of
library and protect the application keys.

• These specific keys are protected themselves by WBC.

• The key generation, diversification and key management are moved out of the handset.

More details on the architecture of the library will be given during the first project review.
This Diversified Crypto protection better fits in the WP3 of the ASPIRE project because it is an
online protection that relies on servers. Nevertheless, it is described in this deliverable for consis-
tency as it is a replacement work. It will be described in WP3 in the project amendment.

ASPIRE D2.01 PUBLIC 48

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

12 Applied WBC

Section authors:
Brecht Wyseur, Patrick Hachemane (NAGRA)

Task 2.2 comprises three large activities: (1) the R&D on new white-box schemes with provably
secure properties as presented in Section 11, (2) the implementation of a tool to generate and
manage white-box code as presented in Section 10, and (3) R&D on weaker algorithms which
lower overhead than the provably secure ones.
So far, our activities mainly focused on (1) and (2). In the remainder of the task execution – year
2 of the ASPIRE project – we will focus on (3) and improve the WBTA tool to accomodate the
applied WBC schemes. We envision two steps to complete this activity, which we brielfy discuss
in this section.

12.1 Dynamic white-box implementations

So far, the state of the art in WBC comprises fixed-key white-box implementations – where the
cryptographic key is hard-coded into the implementation. These are of limited use in practice.
Dynamic WBC allow to instantiate a (pre-generated) white-box implementation after it has been
deployed in the field. This is similar to traditional use-cases where for example an AES implemen-
tation is compiled into an application, and then later on, the AES key is provided to the application
when needed.
Similarly, dynamic white-box implementations are generated at compile-time and linked into the
target application. This generation process comes without a cryptographic key (in constract to
fixed-key white-box implementations). The key is not known at the time of generation, and the
implementation needs to be instantiatable with arbitrary keys. Obviously, the key cannot be pro-
vided ‘in the clear’ (unprotected) to the application when needed. Instead, the key needs to be
transformed into a specific form that protects it from analysis and that allows the white-box im-
plementation to process it in a secure way. We denote this transformation as key obfuscation.
This requires additional support at server-side: to obfuscate cryptographic keys in such a way
that the client-side white-box implementation is able to process it. As presented in Section 10.6,
we have been extending the WBTA tool to support the generation of relevant sever-side code.
The remainder of this activity will comprise the design and implementation of such white-box
schemes.

12.2 Time-limited white-box implementations

Another direction that we are investigating is towards time-limited implementations. The idea is to
generate white-box implementations that are tuned towards performance. This would mean that
they are less secure, but we would compensate this by renewing the implementation frequently.
The renewal process means that we would generate new instances at server-side, and then exploit
renewability techniques (as investigated in Work Package 3) to deliver and deploy these new
instances at server-side.
In contrast to dynamic white-box implementations, these time-limited implementations would be
fixed-key implementations. In general, fixed-key implementations achieve a significantly better
performance versus security trade-off. Instantiating a new key would require to renew the com-
plete instance. The remainder of this activity will comprise the design and implementation of such
white-box schemes.

ASPIRE D2.01 PUBLIC 49

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

List of abbreviations

ACTC Aspire Compiler Tool Chain.
ADSS Aspire Decision Support System.
AES Advanced Encryption Standard.
CBC Cipher Block Chaining.
CLF Contactless Front End.
DES Data Encryption Standard.
ECB Electronic Code Book.
FDB Functional Decomposition Problem.
FHE Fully Homorphic Encryption.
GCD Greatest common divisor.
HCE Host Card Emulation.
IV Initialization Vector.
MWBC Multivariate White-Box Crypgraphy.
POS Point Of Sale.
RNC Residue Number Coding.
SIM Subscriber Identity Module.
SWHM Somewhat Homomorphic.
VM Virtual Machine.
WB White-Box.
WBC WB Cryptogrraphy.
WBT WBC Tool.
WBTA WBT for Aspire.

ASPIRE D2.01 PUBLIC 50

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

References

[1] Paul Anderson and Tim Teitelbaum. Software inspection using codesurfer. In Proceeding of
the First Workshop on Inspection in Software Engineering, Paris, France, july 2001.

[2] ASPIRE Consortium. ASPIRE Compiler Tool Chain and Decision Support System Design -
Document D5.01b, 2014.

[3] ASPIRE Consortium. White-box tool - Reference Guide - Document D2.04, 2014.

[4] ASPIRE Consortium. White-box tool for Aspire - Reference Guide - Document D2.04b, 2014.

[5] Côme Berbain, Henri Gilbert, and Jacques Patarin. QUAD: A multivariate stream cipher with
provable security. J. Symb. Comput., 44(12):1703–1723, 2009.

[6] Eli Biham. Cryptanalysis of Patarin’s 2-Round Public Key System with S Boxes (2R). In
Advances in Cryptology - EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science,
pages 408–416. Springer-Verlag, 2000.

[7] Olivier Billet and Henri Gilbert. A Traceable Block Cipher. In Advances in Cryptology - ASI-
ACRYPT 2003, volume 2894 of Lecture Notes in Computer Science, pages 331–346. Springer-
Verlag, 2003.

[8] Olivier Billet and Henri Gilbert. Cryptanalysis of rainbow. In Security and Cryptography for
Networks Conference – SCN 2006, volume 4116 of Lecture Notes in Computer Science, pages 336–
347. Springer, 2006.

[9] Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Cryptanalysis of a White Box AES Im-
plementation. In Proceedings of the 11th International Workshop on Selected Areas in Cryptography
(SAC 2004), volume 3357 of Lecture Notes in Computer Science, pages 227–240. Springer-Verlag,
2004.

[10] Olivier Billet, Matthew J. B. Robshaw, and Thomas Peyrin. On building hash functions from
multivariate quadratic equations. In Information Security and Privacy Conference – ACISP 2007,
volume 4586 of Lecture Notes in Computer Science, pages 82–95. Springer, 2007.

[11] Alex Biryukov and Adi Shamir. Structural cryptanalysis of sasas. In Advances in Cryptology -
EUROCRYPT 2001, volume 2045 of LNCS, pages 394–405. Springer, 2001.

[12] Julia Borghoff, Lars Knudsen, Gregor Leander, and Soren S. Thomsen. Cryptanalysis of
PRESENT-like block ciphers with key dependent components. 2010.

[13] Julien Bringer, Hervé Chabanne, and Emmanuelle Dottax. Perturbing and Protecting a Trace-
able Block Cipher. In Proceedings of the 10th Communications and Multimedia Security (CMS
2006), volume 4237 of Lecture Notes in Computer Science, pages 109–119. Springer-Verlag, 2006.

[14] Julien Bringer, Herve Chabanne, and Emmanuelle Dottax. White box cryptography: Another
attempt. Cryptology ePrint Archive, Report 2006/468, 2006. http://eprint.iacr.org/.

[15] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem
nulldimensionalen Polynomideal. PhD thesis, 1965.

[16] Massimo Caboara, Fabrizio Caruso, and Carlo Traverso. Gröbner bases for public key cryp-
tography. In J. Rafael Sendra and Laureano González-Vega, editors, ISSAC, pages 315–324.
ACM, 2008.

[17] Joshua Cannell. Obfuscation: Malware’s best friend, March 2013.

ASPIRE D2.01 PUBLIC 51

http://eprint.iacr.org/

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

[18] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. White-Box Cryp-
tography and an AES Implementation. In Proceedings of the 9th International Workshop on
Selected Areas in Cryptography (SAC 2002), volume 2595 of Lecture Notes in Computer Science,
pages 250–270. Springer, 2002.

[19] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. A white-box DES
implementation for DRM applications. In Proceedings of the ACM Workshop on Security and
Privacy in Digital Rights Management (DRM 2002), volume 2696 of Lecture Notes in Computer
Science, pages 1–15. Springer, 2002.

[20] Christian Collberg and Jasvir Nagra. Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection. Addison-Wesley Professional, 1st edition, 2009.

[21] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfuscating trans-
formations, 1997.

[22] Christian S. Collberg and Clark Thomborson. Watermarking, tamper-proofing, and obfusca-
tion: tools for software protection. IEEE Trans. Softw. Eng., 28:735–746, August 2002.

[23] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Batch fully homomorphic
encryption over the integers. IACR Cryptology ePrint Archive, 2013.

[24] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard.
Information Security and Cryptography. Springer, 2002.

[25] Des. Data encryption standard. In In FIPS PUB 46, Federal Information Processing Standards
Publication, pages 46–2, 1977.

[26] Matthew T. Dickerson. The Functional Decomposition of Polynomials. PhD thesis, Ithaca, NY,
USA, 1989.

[27] T. Dierks and E. Rescorla. RFC 5246 - The Transport Layer Security (TLS) Protocol Version
1.2. Technical report, August 2008.

[28] Jintai Ding. A New Variant of the Matsumoto-Imai Cryptosystem through Perturbation. In
Proceedings of the 7th International Workshop on Theory and Practice in Public Key Cryptography
(PKC 2004), volume 2947 of Lecture Notes in Computer Science, pages 305–318. Springer-Verlag,
2004.

[29] Jintai Ding and Jason E. Gower. Inoculating multivariate schemes against differential attacks.
In Public Key Cryptography – PKC 2006, volume 3958 of Lecture Notes in Computer Science, pages
290–301. Springer, 2006.

[30] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polynomial signature scheme.
In Applied Cryptography and Network Security Conference – ACNS 2005, volume 3531 of Lecture
Notes in Computer Science, pages 164–175, 2005.

[31] Jintai Ding and Bo-Yin Yang. Multivariates polynomials for hashing. In Information Security
and Cryptology Conference – Inscrypt 2007, pages 358–371. Springer-Verlag, 2008.

[32] Stephen Drape, Clark Thomborson, and Anirban Majumdar. Specifying imperative data ob-
fuscations. In Information Security, pages 299–314. Springer, 2007.

[33] Vivien Dubois, Pierre-Alain Fouque, Adi Shamir, and Jacques Stern. Practical cryptanalysis of
sflash. In Alfred Menezes, editor, CRYPTO, volume 4622 of Lecture Notes in Computer Science,
pages 1–12. Springer, 2007.

ASPIRE D2.01 PUBLIC 52

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

[34] Vivien Dubois, Pierre-Alain Fouque, and Jacques Stern. Cryptanalysis of sflash with slightly
modified parameters. In Moni Naor, editor, EUROCRYPT, volume 4515 of Lecture Notes in
Computer Science, pages 264–275. Springer, 2007.

[35] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure
and Applied Algebra, 139(1–3):61–88, June 1999.

[36] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to
zero (F5). In Proceedings of the 2002 international symposium on Symbolic and algebraic computa-
tion, ISSAC ’02, pages 75–83, New York, NY, USA, 2002. ACM.

[37] J.-C. Faugère and C. Mou. Fast Algorithm for Change of Ordering of Zero-dimensional
Gröbner Bases with Sparse Multiplication Matrices. In Proceedings of the 36th international
symposium on Symbolic and algebraic computation, ISSAC ’11, pages 115–122, New York, NY,
USA, 2011. ACM.

[38] Jean-Charles Faugère, Patrizia M. Gianni, Daniel Lazard, and Teo Mora. Efficient computa-
tion of zero-dimensional gröbner bases by change of ordering. J. Symb. Comput., 16(4):329–
344, 1993.

[39] Jean-Charles Faugère and Ludovic Perret. Polynomial equivalence problems: Algorithmic
and theoretical aspects. In Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT
2006, 25th Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings, volume 4004 of Lecture Notes
in Computer Science, pages 30–47. Springer, 2006.

[40] Jean-Charles Faugère and Ludovic Perret. An efficient algorithm for decomposing multi-
variate polynomials and its applications to cryptography. J. Symb. Comput., 44(12):1676–1689,
2009.

[41] Jean-Charles Faugère and Ludovic Perret. High order derivatives and decomposition of mul-
tivariate polynomials. In ISSAC ’09: Proceedings of the 2009 international symposium on Symbolic
and algebraic computation, pages 207–214, New York, NY, USA, 2009. ACM.

[42] Jean-Charles Faugère, Joachim von zur Gathen, and Ludovic Perret. Decomposition of
generic multivariate polynomials. In ISSAC ’10: Proceedings of the 2010 International Sympo-
sium on Symbolic and Algebraic Computation, pages 131–137, New York, NY, USA, 2010. ACM.

[43] Michael Fellows and Neal Koblitz. Combinatorial cryptosystems galore! In Proceedings of the
Second International Symposium on Finite Fields, Las Vegas, Nevada, August, 1993, volume 168 of
Contemporary Mathematics, pages 51–61. American Mathematical Society, 1994.

[44] Pierre-Alain Fouque, Gilles Macario-Rat, and Jacques Stern. Key recovery on hidden mono-
mial multivariate schemes. In Nigel P. Smart, editor, EUROCRYPT, volume 4965 of Lecture
Notes in Computer Science, pages 19–30. Springer, 2008.

[45] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[46] Harvey L. Garner. The residue number system. Electronic Computers, IRE Transactions on,
EC-8(2):140–147, June 1959.

[47] Craig Gentry. Fully homomorphic encryption using ideal lattices, June 2009.

[48] Craig Gentry, Shai Halevi, Chris Peikert, and Nigel P. Smart. Ring switching in bgv-style
homomorphic encryption. Cryptography for Networks, SCN’12, 2012.

ASPIRE D2.01 PUBLIC 53

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

[49] Louis Goubin, Jean-Michel Masereel, and Michaël Quisquater. Cryptanalysis of White Box
DES Implementations. In Proceedings of the 14th International Workshop on Selected Areas in
Cryptography (SAC 2007), volume 4876 of Lecture Notes in Computer Science, pages 278–295.
Springer-Verlag, 2007.

[50] David Grant, Kate Krastev, Daniel Lieman, and Igor Shparlinski. A public key cryptosystem
based on sparse polynomials. In Proceedings of an Internatianl Conference, pages 114–121, New
York, April 1998. Springer, Berlin Heidelberg. Available at http://www.comp.mq.edu.
au/˜igor/GKLS.ps.

[51] Dennis Hofheinz and Rainer Steinwandt. A “differential” attack on polly cracker. In Proceed-
ings of 2002 IEEE International Symposium of Information Theory ISIT, page 211, 2002. extended
abstract.

[52] Hideki Imai and Tsutomu Matsumoto. Algebraic methods for constructing asymmetric cryp-
tosystems. In Jacques Calmet, editor, AAECC, volume 229 of Lecture Notes in Computer Science,
pages 108–119. Springer, 1985.

[53] Matthias Jacob, Dan Boneh, and Edward W. Felten. Attacking an Obfuscated Cipher by In-
jecting Faults. In Proceedings of the ACM Workshop on Security and Privacy in Digital Rights Man-
agement (DRM 2002), volume 2696 of Lecture Notes in Computer Science, pages 16–31. Springer,
2002.

[54] S. Josefsson. Rfc 4648 - the base16, base32, and base64 data encodings, October 2006.

[55] Mohamed Karroumi. Protecting White-Box AES with Dual Ciphers. In ICISC, volume 6829
of Lecture Notes in Computer Science, pages 278–291. Springer, 2010.

[56] Hamilton E. Link and William D. Neumann. Clarifying Obfuscation: Improving the Security
of White-Box DES. In Proceedings of the International Conference on Information Technology: Cod-
ing and Computing (ITCC 2005), volume 1, pages 679–684, Washington, DC, USA, 2005. IEEE
Computer Society.

[57] Tsutomu Matsumoto and Hideki Imai. Public quadratic polynomial-tuples for efficient
signature-verification and message encryption. In Christoph G. Gunther, editor, Advances
in cryptology — EUROCRYPT ’88: Workshop on the Theory and Application of Cryptographic Tech-
niques, Davos, Switzerland, May 25–27, 1988: proceedings, volume 330, pages 419–453, 1988.
Sponsored by the International Association for Cryptologic Research.

[58] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied Cryptog-
raphy. CRC Press, Inc., Boca Raton, FL, USA, 1996.

[59] Wil Michiels, Paul Gorissen, and Henk D.L. Hollmann. Cryptanalysis of a Generic Class of
White-Box Implementations. In Proceedings of the 15th International Workshop on Selected Areas
in Cryptography (SAC 2008), Lecture Notes in Computer Science. Springer-Verlag, 2008.

[60] Yoni De Mulder, Peter Roelse, and Bart Preneel. Cryptanalysis of the Xiao - Lai White-Box
AES Implementation. In Lars R. Knudsen and Huapeng Wu, editors, Selected Areas in Cryptog-
raphy, 19th Annual International Workshop, SAC 2012, volume 7707 of Lecture Notes in Computer
Science, pages 34–49, Windsor,Ontario,Canada, 2012. Springer-Verlag.

[61] Yoni De Mulder, Peter Roelse, and Bart Preneel. Revisiting the BGE Attack on a White-Box
AES Implementation. Cryptology eprint archive, 2013.

[62] Yoni De Mulder, Brecht Wyseur, and Bart Preneel. Cryptanalysis of a Perturbated White-
box AES Implementation. In Kishan Chand Gupta and Guang Gong, editors, Progress in
Cryptology - INDOCRYPT 2010, volume 6498 of Lecture Notes in Computer Science, pages 292–
310, Hyderabad ,IN, 2010. Springer-Verlag.

ASPIRE D2.01 PUBLIC 54

http://www.comp.mq.edu.au/~igor/GKLS.ps
http://www.comp.mq.edu.au/~igor/GKLS.ps

D2.01 — Early White-Box Cryptography and Data Obfuscation Report

[63] Jacques Patarin. Cryptoanalysis of the matsumoto and imai public key scheme of euro-
crypt’88. In Don Coppersmith, editor, CRYPTO, volume 963 of Lecture Notes in Computer
Science, pages 248–261. Springer, 1995.

[64] Jacques Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two
New Families of Asymmetric Algorithms. In Advances in Cryptology - EUROCRYPT 1996,
volume 1070 of Lecture Notes in Computer Science, pages 33–48. Springer-Verlag, 1996.

[65] Jacques Patarin and Louis Goubin. Asymmetric cryptography with S-Boxes. In Proceedings of
the First International Conference on Information and Communication Security (ICICS 1997), pages
369–380, London, UK, 1997. Springer-Verlag.

[66] Rainer Steinwandt, Willi Geiselmann, and Regine Endsuleit. Attacking a polynomial-based
cryptosystem: Polly cracker. Int. J. Inf. Sec., 1(3):143–148, 2002.

[67] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic
encryption over the integers, June 2010.

[68] Brecht Wyseur. White-Box Cryptography. PhD thesis, Katholieke Universiteit Leuven, 2009.

[69] Brecht Wyseur, Wil Michiels, Paul Gorissen, and Bart Preneel. Cryptanalysis of White-Box
DES Implementations with Arbitrary External Encodings. In Proceedings of the 14th Interna-
tional Workshop on Selected Areas in Cryptography (SAC 2007), volume 4876 of Lecture Notes in
Computer Science, pages 264–277. Springer-Verlag, 2007.

[70] Yaying Xiao and Xuejia Lai. A Secure Implementation of White-Box AES. In Proceedings of the
2nd International Conference on Computer Science and its Applications (ICCSA 2009), pages 1–9.
IEEE, 2009.

[71] DingFeng Ye, Kwok-Yan Lam, and Zong-Duo Dai. Cryptanalysis of “2R” Schemes. In Ad-
vances in Cryptology - CRYPTO 1999, volume 1666 of Lecture Notes in Computer Science, pages
315–325. Springer-Verlag, 1999.

[72] Amr M. Youssef and Guang Gong. Cryptanalysis of imai and matsumoto scheme B asymmet-
ric cryptosystem. In C. Pandu Rangan and Cunsheng Ding, editors, Progress in Cryptology -
INDOCRYPT 2001, Second International Conference on Cryptology in India, Chennai, India, Decem-
ber 16-20, 2001, Proceedings, volume 2247 of Lecture Notes in Computer Science, pages 214–222.
Springer, 2001.

[73] William Zhu and Clark Thomborson. A provable scheme for homomorphic obfuscation in
software security. In The IASTED International Conference on Communication, Network and In-
formation Security, CNIS., volume Vol. 5., 2005.

[74] William Zhu, Clark D Thomborson, and Fei-Yue Wang. Obfuscate arrays by homomorphic
functions. In GrC, pages 770–773, 2006.

ASPIRE D2.01 PUBLIC 55

	Introduction
	I Data Obfuscation
	Taxonomy of Data Obfuscation
	Storage and Encoding Data Obfuscations
	Homomorphic Encoding
	Residue Number Coding
	Variable Splitting
	Convert Static to Procedural Data

	Aggregation Transformations
	Merge Scalar Variables
	Restructure Arrays

	Ordering Transformations
	Reorder Arrays

	Selection of Data Obfuscation Algorithms
	Features Grid
	Features Analysis
	Selection

	Implementation
	Rules for Data Obfuscation Transformation
	Declarations and initializations
	Variable Assignments and Uses
	Homomorphic Encoding Functions

	Constants

	Balancing Security and Performance
	Data Proximity Graph and Data Distance
	Neighborhood of a variable
	DPG Implementation

	Experimental Assessment
	Metrics
	Case study
	Experimental Setting
	Results
	Number of obfuscated variables
	Invocations
	Memory overhead
	Runtime overhead

	Conclusions

	Related Work
	Status and Plan for Task 2.1

	II White-Box Cryptography
	Introduction to White-Box Cryptography
	State of the art
	WBC activities in the ASPIRE project

	White-Box Tool for ASPIRE (WBTA)
	Introduction
	Overview
	Annotations
	Source input
	Decision input
	Output
	Status

	New WBC Schemes with Provable Security
	Multivariate WBC
	Functional Multivariate Polynomial Decomposition Problem
	Our contribution
	Multivariate cipher constructions
	Implementation
	Security Analysis
	Conclusion

	White-Box Cryptography based on Fully Homomorphic Encryption
	Work description and motivation

	Diversified Crypto Library

	Applied WBC
	Dynamic white-box implementations
	Time-limited white-box implementations

