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Executive Summary 
This deliverable presents the ASPIRE Reference Architecture. It defines the components of ASPIRE 
protected applications and their server-side support, and how these interact with each other. In other 
words, this reference architecture presents which components are introduced by ASPIRE protection 
techniques and how these techniques operate during the run-time of the protected application. 

As a basis for the reference architecture, a multi-tier architecture is defined. This captures an 
architecture where a multitude of client-applications can connect to the ASPIRE portal infrastructure, 
which will manage the connections with a multitude of backend services. In Section 1 of this deliverable, 
a detailed view of this high level architecture is presented and motivated. Within the context of this multi-
tier architecture, the ASPIRE protection techniques are defined. The architecture of each of these 
techniques is detailed in the subsequent sections. Note that this only applies for techniques that 
introduce additional components to the protected applications. Protection techniques that are solely 
related to the operational behaviour of the application and as such do not introduce new assets or new 
dependencies are not included; they have no architectural impact. 

Section 2 of this deliverable presents the ASPIRE protocol. This defines how the ASPIRE protected 
applications communicate with the ASPIRE security server. This is achieved by introducing an ASPIRE 
portal – a part of the ASPIRE security server that exposes a web service – and a special-purpose 
component (the ‘ACCL’) that needs to be integrated into the protected application. This ACCL abstracts 
the communication link and should make it easier to develop the ASPIRE protection techniques. Two 
different types of protocols have been identified: a simple request protocol and a protocol based on 
WebSockets.  

The next three sections describe parts of the reference architecture, related to individual protection 
techniques: the server-side and client-side components that each technique introduces and how they 
operate during the execution of the ASPIRE protected application. 

Section 3 presents the architecture of the ASPIRE anti-reverse engineering protection techniques. 
These include obfuscation techniques and anti-debugging techniques. Three code obfuscation 
techniques are presented, which all relate to code splitting. In client-side code splitting, code that has 
been split from the original application is translated into custom bytecode that will be executed in a virtual 
machine component that has been embedded into the client-side application. In server-side code 
execution, the native code is executed server-side, while mobile code is a technique that delivers code 
chunks (that have been split from the application) to the application at run-time. The data obfuscation 
techniques that are introduced relate to the obfuscation of cryptographic keys, with techniques such as 
white-box cryptography and multi-threaded crypto. As anti-debugging technique, a technique is 
introduced which attaches an internal debugger to the protected application. 

Section 4 presents the architecture of the ASPIRE anti-tampering techniques. In contrast to Section 2, 
this does not present complete solutions as individual techniques in separate subsections. Instead, 
different types of components are individually presented: tamper detection components (attestator 
components and verifier components) and tamper response components (delay components and 
reaction components). A complete anti-tampering solution comprises these different types of 
components. As tamper detection technique, code guards, CFG tagging, call stacks check, and anti-
cloning are presented. As response components, delay data structures and software time bombs are 
presented. Some examples of compositions thereof are introduced as well: a completely offline 
combination, and remote attestation techniques. 

Section 5 presents an assessment of the composability of the many protections already supported and 
foreseen to be supported by the ASPIRE Compiler Tool Chain, i.e., to what extent multiple protections 
can be applied to protect the same code fragment. It also discusses where synergies exist between 
individual protections to let them reinforce each other, and where additional design and development 
work is foreseen to build even stronger protections out of compositions of existing ones. This specifically 
concerns adaptations to mobile code, remote attestation (and its code guards) and client-side code 
splitting to support remote attestation of mobile code & data, and of the software components 
implementing the mobility.  

Section 6 details the forms of renewability that will be developed in year 3 of the project on top of the 
Code Mobility protection. Several strategies are proposed to combine diversity in space with diversity in 
time, and to make some protections themselves renewable, such as remote attestators and their 
reaction mechanisms.  



 

D1.04 – Reference Architecture v2.1   

ASPIRE D1.04 v2.1  PUBLIC III 

Contents 

Section 1 Introduction .......................................................................................... 1 

1.1 Role of this document ....................................................................................... 1 

1.2 Approach .......................................................................................................... 1 

1.3 High-level Architecture ..................................................................................... 2 

1.3.1 Motivation ............................................................................................................. 3 

1.3.2 Detailed view ........................................................................................................ 4 

1.4 Technique-specific architectures ...................................................................... 5 

1.5 Conventions and Notations .............................................................................. 7 

1.5.1 Workflow diagrams ............................................................................................... 7 

1.6 Updates of version 2.0 compared to v1.0 ......................................................... 7 

1.7 Updates of version 2.1 compared to v2.0 ......................................................... 7 

Section 2 ASPIRE Protocol .................................................................................. 8 

2.1 Introduction ....................................................................................................... 8 

2.1.1 Application identifier .............................................................................................. 8 

2.1.2 Protocol security ................................................................................................... 9 

2.1.3 External HTTP stack ........................................................................................... 10 

2.2 Simple Request Protocol ................................................................................ 11 

2.3 WebSocket Protocol ....................................................................................... 13 

2.3.1 Protocol initialization ........................................................................................... 14 

2.3.2 Client initiated communication ............................................................................ 15 

2.3.3 Server initiated communication ........................................................................... 15 

2.3.4 Scalability and Performances ............................................................................. 15 

2.4 ACCL API ....................................................................................................... 16 

2.4.1 acclExchange ..................................................................................................... 16 

2.4.2 acclSend ............................................................................................................. 17 

2.4.3 acclWebSocketInit .............................................................................................. 17 

2.4.4 acclWebSocketExchange ................................................................................... 18 

2.4.5 acclWebSocketSend ........................................................................................... 18 

2.4.6 acclWebSocketShutdown ................................................................................... 19 

Section 3 Anti-reverse engineering techniques............................................... 20 

3.1 Client-side code splitting ................................................................................. 20 

3.1.1 Introduction ......................................................................................................... 20 

3.1.2 System requirements and assumptions .............................................................. 20 



 

D1.04 – Reference Architecture v2.1   

ASPIRE D1.04 v2.1  PUBLIC IV 

3.1.3 Client-side components ...................................................................................... 20 

3.1.4 Run-time behaviour of client-side code splitting ................................................. 21 

3.2 Anti-debugging ............................................................................................... 23 

3.2.1 Introduction ......................................................................................................... 23 

3.2.2 System requirements and assumptions .............................................................. 23 

3.2.3 Client-side components ...................................................................................... 24 

3.2.4 Anti-debugging run-time behaviour ..................................................................... 25 

3.2.5 Impact ................................................................................................................. 26 

3.3 Client-server code splitting ............................................................................. 26 

3.3.1 Introduction ......................................................................................................... 26 

3.3.2 System requirements and assumptions .............................................................. 27 

3.3.3 Architecture Overview ......................................................................................... 27 

3.3.4 Client-side components ...................................................................................... 27 

3.3.5 Server-side components ..................................................................................... 29 

3.3.6 Messages ........................................................................................................... 29 

3.3.7 Client/server code splitting splitting sequence diagram ...................................... 30 

3.3.8 Impact ................................................................................................................. 33 

3.3.9 Limitations ........................................................................................................... 33 

3.4 Code Mobility .................................................................................................. 33 

3.4.1 Introduction ......................................................................................................... 34 

3.4.2 System requirements and assumptions .............................................................. 35 

3.4.3 Client-side components ...................................................................................... 35 

3.4.4 Server-side components ..................................................................................... 36 

3.4.5 Code Mobility run-time behaviour ....................................................................... 36 

3.4.6 Impact ................................................................................................................. 37 

3.4.7 Error management .............................................................................................. 37 

3.4.8 Composability ..................................................................................................... 37 

3.5 White-box cryptography .................................................................................. 37 

3.5.1 Introduction ......................................................................................................... 38 

3.5.2 Client-side components ...................................................................................... 38 

3.5.3 Server-side components ..................................................................................... 39 

3.5.4 Offline white-box crypto workflow ....................................................................... 39 

3.5.5 Online white-box crypto workflow ....................................................................... 40 

3.5.6 Impact ................................................................................................................. 42 

3.5.7 Renewable White-Box Cryptography .................................................................. 42 

3.6 Multi-threaded cryptography ........................................................................... 44 

3.6.1 Introduction ......................................................................................................... 44 



 

D1.04 – Reference Architecture v2.1   

ASPIRE D1.04 v2.1  PUBLIC V 

3.6.2 System requirements and assumptions .............................................................. 45 

3.6.3 Client-side components ...................................................................................... 45 

3.6.4 Server-side components ..................................................................................... 45 

3.6.5 Multithreaded crypto workflow diagram .............................................................. 45 

Section 4 Anti-tampering ................................................................................... 47 

4.1 Overall Anti-Tampering Architecture .............................................................. 47 

4.1.1 Tamper detection ................................................................................................ 49 

4.1.2 Delay components and tamper response ........................................................... 54 

4.2 Tamper detection technique 1: Code guards ................................................. 59 

4.2.1 System requirements and assumptions .............................................................. 59 

4.2.2 Client-side components ...................................................................................... 60 

4.2.3 Server-side components for online code guards ................................................ 60 

4.2.4 Code guards offline techniques workflow diagram ............................................. 61 

4.3 Tamper detection technique 2: Call Stack Checks ......................................... 62 

4.3.1 Introduction ......................................................................................................... 62 

4.3.2 System requirements and assumptions .............................................................. 62 

4.3.3 Client-side components ...................................................................................... 62 

4.4 Tamper detection technique 3: Static Remote Attestation ............................. 64 

4.5 Tamper detection technique 4: CFG Tagging ................................................ 68 

4.5.1 Introduction ......................................................................................................... 68 

4.5.2 System requirements and assumptions .............................................................. 68 

4.5.3 Client-side components ...................................................................................... 69 

4.5.4 Verifier connector ................................................................................................ 69 

4.5.5 Server-side components ..................................................................................... 69 

4.5.6 CFG tagging offline technique run-time behaviour ............................................. 70 

4.5.7 CFG tagging online technique run-time behaviour ............................................. 70 

4.6 Tamper detection technique 5: Anti-cloning ................................................... 72 

4.6.1 Introduction ......................................................................................................... 72 

4.6.2 System requirements and assumptions .............................................................. 72 

4.6.3 Client-side components ...................................................................................... 72 

4.6.4 Server-side components ..................................................................................... 73 

4.6.5 Anti-cloning workflow diagram ............................................................................ 73 

4.6.6 Server status report request ............................................................................... 74 

4.6.7 Error management .............................................................................................. 75 

4.7 Delayed Tamper Response: Delay Data Structures ....................................... 76 

4.7.1 Delay data structures and their API .................................................................... 76 

4.8 Reaction: Software Time Bombs .................................................................... 79 



 

D1.04 – Reference Architecture v2.1   

ASPIRE D1.04 v2.1  PUBLIC VI 

4.8.1 Introduction ......................................................................................................... 79 

4.8.2 System requirements and assumptions .............................................................. 79 

4.8.3 Client-side components ...................................................................................... 80 

4.8.4 Software Time Bombs run-time behaviour ......................................................... 81 

Section 5 Composability .................................................................................... 84 

5.1 Composability of different protections in the ACTC ........................................ 84 

5.1.1 Code mobility combined with binary obfuscations .............................................. 84 

5.1.2 Code mobility combined with the SoftVM ........................................................... 84 

5.1.3 Code mobility combined with anti-debugging ..................................................... 85 

5.1.4 Code mobility combined with WBC ..................................................................... 85 

5.1.5 Code mobility combined with binary attestation techniques ............................... 85 

5.1.6 Code guards and remote attestation combined with the SoftVM and WBC ....... 85 

5.1.7 CFG Tagging combined with attestation techniques, SoftVM, anti-debugging and 
mobile code ........................................................................................................................ 85 

5.1.8 Remote attestation combined with anti-debugging ............................................. 85 

5.1.9 Call stack checks combined with binary obfuscations ........................................ 85 

5.1.10 Invariant Monitoring combined with all Diablo-implemented techniques ............ 85 

5.1.11 Invariant Monitoring combined with Client-Server code splitting ........................ 86 

5.1.12 Invariant Monitoring combined with data obfuscations and WBC ....................... 86 

5.1.13 Multi-threaded crypto combined with client-server code splitting ....................... 86 

5.2 Custom support for specific protection compositions ..................................... 86 

5.2.1 Composability challenges ................................................................................... 86 

5.2.2 Solutions ............................................................................................................. 87 

5.3 Server-generated bytecode ............................................................................ 88 

5.4 Synergies of protections ................................................................................. 89 

Section 6 Renewability techniques ................................................................... 94 

Section 7 List of technique identifiers .............................................................. 97 

Section 8 List of Abbreviations ......................................................................... 98 

Bibliography ............................................................................................................. 99 

 
 

 

 

 

 



 

D1.04 – Reference Architecture v2.1   

ASPIRE D1.04 v2.1  PUBLIC VII 

List of Figures 
Figure 1 – ASPIRE multi-tier architecture: high-level view. ...................................................... 3 

Figure 2 – Architecture view on a single client-server .............................................................. 4 

Figure 3 – The ASPIRE architecture with an external HTTP stack ........................................ 11 

Figure 4 – The Simple Request Protocol ............................................................................... 12 

Figure 5 – WebSocket Protocol Initialization .......................................................................... 14 

Figure 6 – Client-side code splitting run-time behaviour ........................................................ 22 

Figure 7 – Anti-debugging workflow diagram ......................................................................... 25 

Figure 8 – Reference Architecture for client-server code splitting .......................................... 27 

Figure 9 – Structure of a message ......................................................................................... 30 

Figure 10 – Sequence Diagram for Code Splitting ................................................................. 30 

Figure 11 – Code Mobility High-Level Architecture ................................................................ 35 

Figure 12 – Code Mobility workflow diagram ......................................................................... 36 

Figure 13 – Client-side white-box workflow diagram .............................................................. 40 

Figure 14 – Online dynamic-key workflow diagram ................................................................ 41 

Figure 15 - Renewable WBC workflow ................................................................................... 42 

Figure 16 – Multi-threaded Crypto Encryption Processing ..................................................... 45 

Figure 17 – Anti-tamper components ..................................................................................... 48 

Figure 18 – Code guards workflow diagram ........................................................................... 50 

Figure 20 – Remote Attestation Architecture (from D3.04) .................................................... 51 

Figure 21 – Remote attestation workflow. .............................................................................. 52 

Figure 22 – Architecture of the RA Manager (from D3.04). .................................................... 53 

Figure 23 – Architecture of the Verifier (from D3.04). ............................................................ 54 

Figure 24 – Reaction enforcement workflow diagram ............................................................ 56 

Figure 25 – Offline code guards workflow diagram ................................................................ 61 

Figure 27 – Call stack check workflow diagram ..................................................................... 63 

Figure 28 – Static remote attestation reference architecture ................................................. 64 

Figure 29 – Static remote attestation workflow. ..................................................................... 65 

Figure 30 – Attestation request format ................................................................................... 66 

Figure 31  – Attestation response format ............................................................................... 67 

Figure 32 – Offline CFG Tagging workflow diagram .............................................................. 70 

Figure 33 – Online CFG Tagging workflow diagram .............................................................. 71 

Figure 34 – Anti-cloning workflow diagram ............................................................................ 73 

Figure 35 – Request for trustworthiness status report ........................................................... 75 

Figure 36 – STB workflow diagram for Passive Operations ................................................... 81 



 

D1.04 – Reference Architecture v2.1   

ASPIRE D1.04 v2.1  PUBLIC VIII 

Figure 37 – STB workflow diagram for Active Operations ...................................................... 82 

Figure 38 – Extended Reference Architecture for Renewability ............................................. 95 
 



 

D1.04 – Reference Architecture v2.1   

ASPIRE D1.04 v2.1  PUBLIC IX 

List of Tables 
Table 1 – Code Splitting Manager API ................................................................................... 28 

Table 2 – Server-side internal code splitting API ................................................................... 29 

Table 3 – Summary of the synergies between ASPIRE protections. ..................................... 90 

Table 4 – List of technique identifiers ..................................................................................... 97 

 

 

 

 

 
 
 
 



 

D1.04 – Reference Architecture v2.1   

ASPIRE D1.04 v2.1 PUBLIC Page 1 of 99 

Section 1 Introduction  
Section Author:  

Brecht Wyseur (NAGRA) 

1.1 Role of this document 
The goal of this deliverable (see GA Annex II Description of Work (DoW) Part A p. 8-9) is to 
present a reference architecture that defines the structure of ASPIRE protected applications. 
More specifically, this deliverable presents all additional components that have been 
introduced by the ASPIRE protection techniques in WP2 and WP3 – components both at client-
side as server-side support logic – and their run-time behaviour. 

In other words, this deliverable aims to present how the ASPIRE protection techniques operate 
once they have been integrated into an application. It does not present how the integration 
itself proceeds – that will be described in the tool flow architecture deliverable (Deliverable 
D5.01). The ensemble of the introduced components results into a reference architecture that 
allows meeting the requirements elicited in Deliverable D1.03 (“Security Requirements”).  

The reference architecture aims to mitigate the attacks described in Deliverable D1.02 (“Attack 
Model”) on generic applications, by complementing the architecture of the original 
(unprotected) application with additional components that come from the ASPIRE protection 
techniques that are introduced. This will be validated on the use-cases that have been 
presented in Deliverable D1.01 (“Use-Case Specifications”). Hence, given any software 
application, the reference architecture presents what components will be added and how they 
will operate with the original application logic. 

Therefore, the role of this document is the following: 

• To establish an unambiguous understanding in the ASPIRE consortium of the run-time 
behaviour of the software protection techniques that are developed in WP2 and WP3. 

• To support the development of the protection techniques by identifying common 
components and specifying their APIs. 

• To present a view on what ASPIRE-protected applications will look like, on the basis of 
which the development in WP5 and WP6 can then be fine-tuned. 

The presented ASPIRE reference architecture should not be considered as the final version. 
At this early phase in the project, some choices have been made towards the definition of the 
architecture, taking the known constraints and assumptions in mind. These may however 
change during the course of the project as the research on the different protection techniques 
proceeds, and as a result impact the definition of the reference architecture. Therefore, a 
revised version of the reference architecture is envisioned at M24 (Deliverable D1.05 – 
“Intermediate Validation, Requirements & Architecture Update”). Additionally, for some 
techniques the design phase still needs to start. This in particular applies for renewability 
techniques (Task 3.3), whose conception and design only starts in M19. The architecture of 
these techniques will be specified in the Reference Architecture revision deliverable. 

1.2 Approach 
The ASPIRE reference architecture is obviously a client-server architecture. This has already 
been presented in the Annex I DoW, where at client side additional components would be 
integrated into the ASPIRE protected application, and server-side logic needs to support the 
network-based protection techniques such as remote attestation and mobile code. Defining 
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more fine-grained details to support the design and development of protection techniques is 
subject to the activity conducted in Task 1.4. This activity has been organised as follows: 

• At the kick-off of this activity, a preliminary high-level architecture has been presented 
to the consortium. This preliminary architecture consolidates the expertise and 
concerns expressed by the industrial partners (e.g., on the need of scalability and 
server infrastructure constraints) and the expertise of academic and industrial partners 
on the design of protection techniques. This preliminary high-level view is described in 
Section 1.3 of this document and has been accepted by the consortium as a basis for 
the reference architecture definition. 

• Based on the presented architecture, a first evaluation round on the protection 
techniques has been organised. The main objective of this round was to evaluate if the 
reference architecture is able to support the protection techniques that are envisioned 
in WP2 and WP3. Additionally, this evaluation allowed to further fine-tune the 
architecture and to present a first set of common components. For example, the client-
side communication logic has been identified in this phase. 

• The major part in the reference architecture definition was subsequently conducted: 
the detailed definition of each of the protection techniques based on the presented 
high-level architecture and common components. To support this activity and ensure 
that the definition for each of the techniques would proceed in a uniform format, a 
template was presented by the task leader. Based on this template, each partner has 
described the details of their techniques: each component that is introduced, and the 
run-time behaviour of the protection technique. The latter was a very important step, 
because the constraints that were imposed by the high-level architecture description 
often imposed additional reflections on the design of the protection techniques. Prior to 
this phase, protection techniques were described within their own context and with their 
proper architecture assumptions – this activity was the first step towards unifying the 
different approaches. The result of this part is described in Section 3 and Section 4 of 
this document. 

• In the last phase, given the technique-specific descriptions, the overall reference 
architecture has been further fine-tuned and the common logic specified, as well as the 
identification of anti-tampering support blocks in Section 4. 

1.3 High-level Architecture 
As a basis for the ASPIRE reference architecture, a multi-tier architecture structure was 
selected, as depicted in Figure 1. This captures an architecture where a multitude of client 
applications connect to a portal infrastructure, which manages the connection to a multitude of 
backend servers. The ensemble of the portal infrastructure and backend servers, one per 
security service (i.e., implemented online protection) we denote as the ASPIRE security server. 
We adopt such infrastructure for the client-server communication of the ASPIRE network-
based protection techniques, and deploy this in parallel to the client-server communication that 
the original application might already use.  
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Figure 1 – ASPIRE multi-tier architecture: high-level view. 

1.3.1 Motivation 
This approach was selected for many practical reasons.  

Firstly, the co-existence of the ASPIRE client-server communication and the original client-
server communication was selected to avoid too much impact on existing application services. 
This was expressed by the industrial partners in the project, who seek to deploy ASPIRE 
protection techniques, but cannot do so when it would impact existing services too much. 
Additionally, given that ASPIRE aims to be as generic as possible; it cannot make too many 
assumptions on the client-server communication that may already be in place. That 
communication may come in a too large variety to leverage it as a building block for generic 
protection services. In some cases it can even be impossible to exploit that communication. 
For example, one-directional satellite communication serving live video cannot be exploited for 
remote attestation. Last but not least, the application service and the ASPIRE protection 
service may be the responsibility of different entities and may be running in different server 
infrastructure facilities. 

While we strive for minimal impact on the original client-server communication, we 
nevertheless allow some impact on the original client-server communication. For example, 
instead of sending keys from the server to the client, the server might first ask some ASPIRE 
backend service to obfuscate the keys for a particular protected client instance, and send that 
as payload instead. Or the original client-server communication might be exploited to signal 
some request from the client to an ASPIRE backend service. For this purpose, we also allow 
communication directly between the application service, and the ASPIRE portal. This can then 
also be exploited by the application server for other means, e.g., to request a trustworthiness 
status on particular clients, upon which the application service can decide if it wants to proceed 
or not. 

Secondly, a multi-tier architecture to support the ASPIRE protection techniques was selected 
because its flexibility, scalability, and reusability. A portal service is in place as a terminator for 
the secure link between protected applications and the server-side – as such the individual 
protection services do not need to take the communication protocol details into account. This 
portal would be a lightweight service that re-directs messages between protected applications 
and the relevant protection services. As such, protection services can be scaled onto different 
devices. This supports the adoption of the ASPIRE results in an industrial context. Additionally, 
this also facilitates concurrent development of protection techniques within the ASPIRE 
consortium, as protection services can run completely independently and even be embodied 
in any given form, such as a script, a local process, or a service on a different physical machine 
– as long as the ASPIRE portal knows how to communicate with them. 
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Alternative options, such as for example a monolithic server infrastructure, were considered. 
But given the advantages of multi-tier architecture that we just presented, we did not opt for 
them. Nevertheless, a review of the architecture and alternative options will be executed for 
the reference architecture review that will be reported in M24. 

In conclusion, this basis for the reference architecture design has been selected for both 
practical reasons to support the development during the project as well as for potential future 
adoption in an industrial context. This addresses the requirements that were elicited in 
Deliverable D1.03 (“Security Requirements”) – in particular on the impact of network-based 
protection techniques – and extends beyond that with respect to additional architecture 
recommendations elicited by the industrial partners. 

1.3.2 Detailed view 
For the sake of clarity, in the remainder of the document we will represent the reference 
architecture with a single client and assume that the server-side logic of each protection 
technique is implemented as independent services. This is depicted in Figure 2, where at the 
server-side the ASPIRE portal interfaces with individual protections services, each service 
depicted by a dashed box and potentially comprising several components. Additionally, a 
database is present at the server-side that is shared by the protection services. In the 
remainder of this deliverable, we shall refer this database (-infrastructure) as the ASPIRE 
database or ASPIRE DB. At the client side, we depict the different components of protection 
techniques. Components that correspond to the same protection techniques are depicted 
together in a single dashed box.  

 
Figure 2 – Architecture view on a single client-server 

To facilitate the communication between the client-side protection technique components and 
the corresponding server-side support components via the ASPIRE portal, we introduce a 
special-purpose communication logic: the ASPIRE Client-side Communication Logic (ACCL). 
This logic abstracts the communication for the protection techniques. A more detailed 
description is provided in Section 2. This abstraction facilitates easier development of the 
individual protection techniques. Additionally, it also allows us to reduce the focus of the 
protocol details. As we stated in the DoW and repeated in the Attack Model, man-in-the-middle 
attacks are out of scope in the ASPIRE project, as these can be solved by implementing state-
of-the-art cryptographic protocols. 

What is of importance in the definition of the protocol, however, is its high-level behaviour, and 
in particular how different communications and services are initiated and invoked. From a 
practical point of view, the best approach would be one in which the individual protected 
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applications take the initiative to query the portal, and where the server-side response then 
depends on a stateless computation. Indeed, this approach can support many business 
models as it easily scales (due to its statelessness) and is independent of the client-side 
network infrastructure (e.g., clients can easily communicate with an HTTP portal while being 
behind a firewall or while hopping between different networks such as 3G and different Wi-Fi 
networks). Up to the extent possible, we do not favour any techniques where the ASPIRE 
portal solicits clients. 

Nevertheless, allowing an active bi-directional communication channel rather than a stateless 
query-response channel can in some cases be an enabler for some novel and effective 
protection techniques, or greatly improve the performance and security of other protection 
techniques. Therefore, in some cases, we shall also allow active bi-directional communication 
between the ASPIRE portal and the communication logic in protected client applications. At 
this phase in the project, we are investigating the option of using WebSockets [RFC_WS] for 
that purpose. Using this technology, clients can initiate a channel with the ASPIRE portal, 
which the portal can use at any time during the lifetime of that channel to invoke client-side 
operations when it wants. 

For example, while we would favour that the protected application initiates a request to the 
ASPIRE portal such as “could you give me a new piece of mobile code?” we would allow 
nevertheless that the ASPIRE portal can push some mobile code to clients at any given 
moment. We see in particular a big advantage in this approach if this can mitigate significant 
modifications that would else be required on the original client-server communication. We 
elaborate on this in Section 2 of this deliverable. 

Finally, we remark that obviously individual clients need to be identified. For that purpose, each 
protected application instance will be associated with an ID. This ID will be shared with the 
protection services and the application server. We shall assume that within the ASPIRE 
project, an ID is fixed for each protected application instance (e.g., as a static variable) and 
that the ASPIRE database comprises a list of valid protected application identifiers. This pre-
condition is set because account management and the establishment of such identifier is out 
of scope of the ASPIRE project; they are an engineering task for the application vendor. 

1.4 Technique-specific architectures 
In the subsequent sections of this deliverable, we shall describe the individual ASPIRE 
protection techniques that have been envisioned in the ASPIRE DoW. Each protection 
technique shall be described as a part of the architecture view presented in Figure 2. Covering 
each of these technique-specific architectures, we describe the full reference architecture of 
the ASPIRE protected application. 

The reference architecture of each of the protection techniques will comprise the following 
content: 

• An introduction to the protection techniques: the high-level objectives and concepts 
introduced. This also covers architecture-related assumptions and constraints that 
need to be taken into account. 

• Details of each of the components that are introduced. These are distinctive 
components introduced both at client side (which will be integrated into the protected 
application by the ASPIRE tool flow), and server-side components that support the 
operational aspects of the protection techniques. 

• A detailed description of the run-time behaviour of all the different ways in which the 
protection technique may operate. 
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Organized according to their objective, we elaborate on the following techniques: 

• Anti-reverse engineering techniques 
o Client-side code splitting: an obfuscation technique developed in T2.3, where 

virtual machine components are introduced to execute bytecode that is 
functionally equivalent to native code that has been split from the original 
application. 

o Anti-debugging: an anti-tampering technique developed in T2.5, which 
specifies how a debugger component serves as a debugger of the protected 
application, preventing an attacker from attaching his own debugger. 

o White-box cryptography: an obfuscation technique developed in T2.2, 
dedicated to the protection of cryptographic keys in software. We elaborate on 
fixed-key implementations as well as on dynamic key implementations. 

o Server-side code execution: a technique to split code from the original 
application and execute it server-side. 

o Code Mobility: an obfuscation technique developed in T3.1, where a 
binary/library is incomplete. Missing code is then downloaded at run-time before 
it is executed.  

o Multi-threaded crypto: a source-level obfuscation technique developed in 
T2.4, which introduces a multi-threaded protocol to hide a cryptographic key. 

• Anti-tampering techniques 
o Code guards: a tamper detection technique developed in T2.5, which 

introduces special-purpose integrity verification code into the client application. 
o CFG tagging: an anti-tampering technique developed in T3.2, which aims to 

detect when the execution flow graph is modified. 
o Temporal remote attestation: a technique that further extends the code 

guards approach by detecting tampering via execution time measurements. 
o Call stack checks: a technique developed in T2.5 that mitigates callback 

attacks. These are attacks where an attacker aims to inject malicious code into 
the protected application or library in the form of additional libraries.  

o Anti-cloning: a technique developed in T3.2 that introduces a method to 
enable the detection of clones via remote unique client identification. 

o Delay data structures: a technique that introduces a component which allows 
tamper verification and tamper response components to communicate the 
trustworthiness status of the protected application. 

o Software time-bombs: a technique developed in T3.2 that embodies a 
different type of delayed tamper response component. 

o Combinations of tamper detection and tamper response that result into new 
techniques 

Note that this is only a subset of the techniques that have been presented in the DoW. 
Techniques that do not introduce any new components, but merely transform application code 
(such as local obfuscation techniques) are not included here as they do not have an impact on 
the overall reference architecture. Additionally, the multi-threaded crypto technique that is 
included in the list was not explicitly described in the DoW, but it instantiates the domain-
specific implementation that is mentioned in Task 2.4. 

Renewability techniques typically build on several individual protections and extensions 
thereof. The will be discussed in a separate Section 6. 

Furthermore, a separate Section 5 is devoted to the composability of the individual protections.  
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1.5 Conventions and Notations 
1.5.1 Workflow diagrams 
In this document, we will support the description of individual techniques with workflow 
descriptions that detail the sequence of operations of the technique. This will additionally come 
with a figure to give a comprehensive overview. 

The boxes in the figure represent components of the architecture, such as individual libraries 
or individual routines, both of which can be statically linked into the protected application or 
library. Arrows between those components represent a transition from one component to 
another. This could be a jump during the program execution, or a call with some parameters. 
In this sense, arrows represent some data passing between those components too. 

1.6 Updates of version 2.0 compared to v1.0  
This document features a major revision of the original deliverable D1.04. The most important 
changes are the following: 

• Section 2.1.3: the decision not to spend engineering resources on implementing 
encryption in the ACCL has been documented.  

• Sections 2.3 & 2.4: the WebSocket-based protocol support in the ACCL is documented 
and specified. 

• Section 3.2.2: The fact has been added that we experimentally verified that the anti-
debugging technique works on (unrooted) Android 4.0, 4.4, and 5.0. 

• Section 3.3: Some vocabulary has been updated and minor design changes were 
made to the protection of Client-server code splitting, now that the technique has 
matured.  

• Section 3.4: Code Mobility has undergone a major revision: the original in-place storage 
of mobile code blocks has been replaced by heap-based (and hence randomized and 
therefore more protected) storage.  

• Section 3.5: The section has been updated, most importantly by adding time-limited 
WBC.  

• Section 3.6: The vocabulary in this section has been updated and the discussion has 
been revised lightly now that the technique's design has matured.  

• Section 4 on the anti-tampering tecniques has been restructured and has undergone a 
major revision, as the designs of several techniques have matured, and as it has 
become clearer which techniques will be supported within the limited time frame of the 
project.  

• Section 5 on the topic of composability has been added.  
• Section 6 on the topic of renewability has been added.  

1.7 Updates of version 2.1 compared to v2.0 
In response to the requests for updates in the review report of the second year technical 
review, several paragraphs have been added at the end of Section 2.1.2 regarding the security 
of the ASPIRE servers that provide the online protection support. The newly added text starts 
on top of page 10. Furthermore, a discussion of the use of WebSockets and the potential 
impact on security has been added in the introduction to Section 2.3 (i.e., before Section 2.3.1). 
This inserted discussion starts with the last paragragh on page 13. 
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Section 2 ASPIRE Protocol 
Section Author:  

Brecht Wyseur (NAGRA), Alessandro Cabutto (UEL) 

2.1 Introduction 
In this section, we present more details on the protocol and the logic to support the 
communication between ASPIRE-protected client applications and the ASPIRE server-side 
infrastructure.  

Network-based protection techniques that are developed in this project use this logic, which 
ensures that messages between the protected applications and the server-side support are 
correctly transferred. Additionally, this logic makes sure that the ASPIRE protection techniques 
can be protocol-agnostic: the logic abstracts the transport stream. The advantage is that it 
becomes trivial to mount ASPIRE protection techniques in other protocols and adapt it to other 
scenarios without impacting the design of the individual techniques. 

At the client side, the ASPIRE protocol is supported by a component that we denote as ACCL 
(ASPIRE Client-side Communication Logic). This component is implemented as a C library 
that is statically linked into the protected application or protected library. It exposes a C API 
that the ASPIRE protection techniques can use. 

For practical purposes, the communication is over HTTP, which is supported at server side 
with an ASPIRE portal that is implemented as a web service. 

Two different types of protocols are supported: 

• A Simple Request Protocol, where a protected application takes the initiative to query 
the ASPIRE portal. This is the most natural protocol and is the main protocol for our 
software protection techniques. 

• The WebSocket Protocol, where a session between the protected application and the 
server remains in place, and allows the server to take the initiative to query the 
protected application. This protocol is less favoured than the Simple Request Protocol 
because it is more complex. However, in some technique use-cases, a protocol where 
the server invokes a client-side function is inevitable or may make the protected 
application more efficient. This is for example the case with the remote attestation 
technique, described in Section 4.1.1.2.1. which is less secure if the client has to start 
the attestation process. 

2.1.1 Application identifier 
Each protected application is associated with a unique client identifier. This identifier is used 
by the server-side support of the protection techniques to keep track of different application 
instances. A list of legitimate identifiers will be stored in the ASPIRE database. 

When protected applications communicate with the server-side support, the identifier needs to 
be communicated. The ACCL will ensure this. The ACCL has access to the unique application 
identifier that is stored at the client side, and includes this identifier in the payload that it sends 
to the ASPIRE portal. 

The method by which this unique identifier is defined and integrated into the protected 
application is out of scope of the ASPIRE project. That is, personalisation of ASPIRE protected 
applications and server-side account management is out of scope. Instead, the protection 
techniques should assume that this is available, and in our prototypes we shall fix some 
identifiers into the applications and maintain the corresponding list of identifiers in the ASPIRE 
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database. This approach demonstrates the use of the application identifier (even when fixed), 
without limiting the exploitation opportunity of the ASPIRE protection techniques. Putting such 
a personalisation operation in place is a pure engineering task; software personalisation is 
common practice for the industrial partners of the project, which have already existing solutions 
upon which they can build this. 

2.1.2 Protocol security 
The goal of the ASPIRE protocol is related to both functionality and security. The functional 
goal is to support the communication between the protected application and the server-side 
support of the individual protection techniques. The security goal is to protect the ASPIRE 
protection techniques against man-in-the-middle attacks. This includes (but is not limited to) 
the following attacks: 

• Reverse engineering attack that extracts information from the client-server 
communication. This may be to extract confidential information, or to extract information 
that can be used to improve other attacks. For example, when an attacker is able to 
distinguish traffic that relates to different protection techniques, he may use this 
information to improve dynamic analysis of the protected application. 

• Tampering attacks, in which an attacker attempts to modify the communication in a way 
that would render certain protection techniques obsolete, or that would render the 
server's tamper verification verdict incorrect. 

• Replay attacks, where an attacker replays obsolete messages. For example, the 
attacker may attempt to replay messages that contain attestation reports that have 
been gathered at a moment before tampering of the protected application took place. 
In that case, he can lure the server-side remote attestation support into the perception 
that the application is still trustworthy. 

• Impersonation attacks, in which an attacker attempts to falsify the identity of the 
application. For example, to execute remote attestation techniques on an un-tampered 
protected application, while executing another tampered application. Or he could 
attempt to mislead the verification server to avoid that the service that relates to his 
account would be terminated as a response to tamper detection. 

• Proxy attacks, in which an attacker attempts to install a special-purpose service in 
between the ASPIRE portal and its protected application that interacts with the 
communication in a way that circumvents some of the software protection techniques. 
He could aim to do that to (for example) run multiple copies of the protected application. 

In the case where the communication end points (the protected application and the ASPIRE 
portal) are secure (against Man-At-The-End – MATE attacks), solutions exist to mitigate these 
attacks. For example, HTTPS has been designed as an authenticated secure channel and 
aims to mitigate most of the attacks described above. Therefore, given that solutions against 
Man-In-The-Middle attacks exist, and given that it is not the main challenge of the ASPIRE 
project (see the ASPIRE DoW and Deliverable D1.02 “Attack Model”), we consider the 
implementation of such protocol out of scope. Thus, authentication, session key agreement, 
and covert communication are out of scope. 

Since the ACCL abstracts the underlying protocol, we can safely assume that excluding the 
implementation of a secure protocol does not impact the practical exploitation of the ASPIRE 
results. Instead, to focus our resources to protecting against MATE attacks, we shall use a 
plain HTTP protocol. When the techniques need to be deployed in practice, the ACCL will need 
to implement a secure protocol, and then the ACCL library itself needs to be protected by the 
ASPIRE protection techniques to protect the protocol end-points against attacks. 
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In addition, we reiterate from the DoW and the accepted deliverable D1.02 Attack Model that 
in the scope of this project, the server side is considered secure. As we stated in D1.02:  

"The same holds for Denial of Service (DoS) attacks. Since those do not explicitly 
recover any assets, and since no software protection techniques are capable of 
protecting against DoS attacks, they are clearly out of the scope of the ASPIRE DoW. 
Preventing such attacks is rather a network infrastructure or system security challenge. 

In our survey and attack model, we also do not consider attacks on the server as a 
valid attack class. In the DoW, it was made clear (e.g., in Figure 5 of DoW Part B) that 
the server is considered trusted, and that ASPIRE aims to protect client-side 
applications. Such attacks are rather a server-side system security challenge." 

So we do not consider attacks on the server platform, such as server denial of service attacks 
or sensitive data exposure or code injection on the server side. 

Finally, we want to point out that vulnerabilities are out of the scope of the project. As was 
written in D1.02: 

"Similarly, ASPIRE does not focus on preventing attacks based on software 
vulnerabilities (i.e., bugs). Mitigating vulnerabilities is a process that should be 
deployed during the software development and testing process." 

This implies that when we opt to reuse existing third-party software for implementing the 
communication between client applications and the ASPIRE security servers, we reuse them 
as is, without worrying about vulnerabilities in their client-side or server-side implementations.  

2.1.3 External HTTP stack 
The communication protocol that we will use in ASPIRE is mounted on HTTP. We opted for 
HTTP because this facilitates easy deployment of a portal infrastructure (based on a simple 
web service infrastructure such as NGINX [Nginx]) and because there is a vast amount of 
client-side support that we can use. We chose to use the cURL C library [Curl]. This library can 
be embedded into the protected application (statically linked and protected like any of the other 
libraries that co-exist in the protected application) such that the protected application can open 
sockets and communicate directly with the ASPIRE portal. 

The ACCL interfaces with the HTTP stack, as depicted in Figure 3. The motivation for keeping 
the HTTP stack external from the protected application is mainly for simplicity. This should not 
pose any problems from a security point of view: the HTTP stack has no security sensitive role. 
It only opens connections and transfers packages between the ACCL and the ASPIRE portal. 
The packages contain payload that is properly secured by the ACCL. We finally decided to use 
a standard C library instead of the Android HTTP stack for ease of integration with all the 
protection techniques which are coded in C as well. 

With regards to payload encryption we considered the performance overhead, and estimated 
it as insignificant compared to the network. We then decided to design but do not implement 
payload encryption. we also determined that applying encryption to the channel is only an 
engineering task that can be easily performed by companies when integrating ASPIRE’s 
protection techniques into their existing frameworks. While choosing our external HTTP stack 
this concern influenced our choice, in fact the full stack supports TLS/SSL natively. 

If necessary, the additional code needed to support this encryption can be protected with the 
ASPIRE tool chain, just like any other application code and other protection code. It then 
suffices to annotate the source code of the encryption routines. Of course, the impact of 
applying these techniques on performance then needs to be considered, but that needs to be 
done as part of the performance-protection trade-off the whole client-side app.  
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Figure 3 – The ASPIRE architecture with an external HTTP stack 

2.2 Simple Request Protocol 
The Simple Request Protocol captures a very simple protocol where the ACCL sends a single 
payload to the ASPIRE portal and optionally waits for an answer. In other words, the ACCL 
sends a single query to the ASPIRE portal, similar to sending a simple HTTP request. 

Most of the network-based software protection techniques that are developed in the ASPIRE 
project use this protocol for the communication between their client-side components and the 
server-side support. It is the favoured protocol because it is the most natural and simple one, 
and does not impose a significant overhead on either the client or the server. 

In this protocol, the protected application initiates the communication on a per-event base. 
Whenever a client-side component invokes the ACCL for sending a payload, the ACCL will 
interface with the HTTP stack to setup the communication and send the payload. This is 
depicted in the high-level sequence diagram in Figure 4, in which we make abstraction from 
the protocol used between the ACCL and the portal by depicting that the package is encrypted 
with a key k. 
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Figure 4 – The Simple Request Protocol 

Seq# Operation description 

1 The ACCL is invoked by some client-side protection component.  

Details: The client-side protection technique component calls the send_to_portal() 
function of the ACCL, with as argument 

• The identifier of the technique, as listed in Section 7, and 
• The payload that the component wishes to send to the technique server-side support. 

2 The ACCL packages the received payload and transfers it to the ASPIRE Portal. 

Details: The ACCL packages together the technique identifier and the payload with the 
application identifier. It protects the package in a proper way, for example by encrypting it with 
a session key, and sends the content to the ASPIRE portal. 

3 The ASPIRE portal redirects the received package to the appropriate back-end 
service. 

Details: The ASPIRE Portal, decrypts the received package and extracts the technique 
identifier then it sends the obtained (decrypted) package to the appropriate server-side 
support. 

4 The server-side component of the relevant protection technique processes the 
package. 

Details: The technique-specific server-side support receives the package, comprising the 
application identifier and the payload, and processes this. When appropriate, it sends back a 
response together with the application identifier to the ASPIRE portal 

5 A response is sent back from the ASPIRE portal. 

Details: The ASPIRE portal sends the response back to the appropriate application, in 
encrypted form.  
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6 The ACCL returns the return payload. 

Details: The ACCL receives the encrypted package, decrypts it, and sends the payload 
(without the identifier) back in response to the call that has been made in Step 1. 

2.3 WebSocket Protocol 
For some software protection techniques tat we aim to develop in the ASPIRE project, the 
Simple Request Protocol may not suffice. This is for example the case with the remote 
attestation technique, described in Section 4.1.1.2.1. which is less secure if the client has to 
start the attestation process. To enable such techniques, it does not suffice that the client takes 
the initiative to send requests to the server: The server also needs to be able to invoke certain 
actions at the client. 

In a standard setting, it is for several reasons not practically feasible for a server to invoke an 
action of the client application. The application may not have the privileges to listen onto 
network interfaces of the execution platform; the execution platform may not be reachable 
directly by the server because it might be behind a firewall; or it may be that the network 
configuration of the execution platform (which may be a mobile device) changes during the 
execution of the protected application. 

To overcome these issues, we decided to use WebSocket technology. WebSocket is a protocol 
that has been standardized in 2011 and provides full-duplex communication channels over 
TCP [WS]. WebSockets are designed to be implemented in web servers. it is fully supported 
by NGINX  since version 1.3, and there exist standard open sourced libraries for client-side 
support. We chose to rely on libwebsockets due to its lightweight footprint, robustness and its 
pure C implementation. 

This technology is actually used within the ASPIRE project by the Remote Attestation 
protection technique. At application launch time, or upon a specific instance during the 
execution of the ASPIRE protected application, a WebSocket-based channel between the 
ASPIRE protected application and the ASPIRE portal is initiated. This channel is then used by 
the protection back end to invoke client-side functions. Additionally, we decided to use this 
technology to improve certain ASPIRE protection techniques (e.g. Client-Server Code 
Splitting) reducing the impact of communication overhead introduced by the Simple Request 
Protocol. WebSocket provides scalable low latency communication between peers so it can 
be helpful in scenarios where performances matter. 

The WebSocket protocol is different from the HTTP protocol, but the WebSocket handshake 
is compatible with HTTP, using the HTTP Upgrade facility to upgrade the connection from 
HTTP to WebSocket. This allows WebSocket applications to more easily fit into existing 
infrastructures. For example, WebSocket applications can use the standard HTTP ports 80 
and 443, thus allowing the use of existing firewall rules. 

At client side a separate thread is needed to listen to the WebSocket channel and thus the 
ASPIRE-protected application inevitably becomes multi-threaded (if it wasn't already). 

A new server side component called ASCL (ASPIRE Server Communication Logic) is 
introduced in order to manage WebSocket logic at server side. 

Note that WebSockets may expose the applications to a number of security issues (both at the 
server- and client-side) and they are affected by a number of vulnerabilities. Namely, 
WebSockets are vulnerable to DOS attacks, require additional mechanisms for authenticating 
clients trying to send data and to implement authorization policies, require additional 
protections to mitigate attacks (e.g., sensitive data exposure, injection, malformed input data, 
Cross site WebSocket Hijacking), and they are vulnerable to tunnelling attacks. 
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However, we decided to use them for a set of reasons: 

• As already mentioned in Section 2.1.2, we explicitly stated in the DoW that we exclude 
the creation and securization of the communication channels from the project scope. 

• Similarly, protecting the server is not the primary focus of the ASPIRE project. 
• Web sockets are certainly imperfect from a security standpoint. However, given the 

above limitations to the project scope, the ASPIRE partners agreed that they are the 
best solution to implement a server-to-client asynchronous communication, which 
allows us to focus on software protection rather than network-level channel 
implementations and computer security issues. 

Thus our purpose here is to warn the reader that the use of Web Sockets may expose protected 
applications to security issues. Thus any party interested in exploiting the ASPIRE protections 
using WebSocket server (for remote attestation or client-server code splitting) should consider 
that administrators and application developers need to take care of the security issues or 
develop ad hoc communication channels. 

2.3.1 Protocol initialization 
Figure 5 visualizes the WebSocket protocol initialization to be initiated by a client app. It consist 
of 4 steps, that are detailed below.  
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Figure 5 – WebSocket Protocol Initialization 

 

Seq# Operation description 

1 The ACCL WebSocket is initialized by some client-side protection component. 

Details: The client-side protection technique component invokes the 
acclWebSocketInit() function of the ACCL, with as argument 

• The identifier of the technique, as listed in Section 7, and 
• The callback to be invoked when data arrives from server. 

2 The ACCL sets up a new connection to the Portal  

Details: The communication logic assigns an instance identifier (handle) to the connection and 
sets up a new connection to the Portal passing through the technique identifier and the 
application identifier encrypted with a key k. 

3 The ASPIRE Portal initializes an creates a new entry in the ASCL module  

Details: After decrypting the request, a new entry composed by technique identifier and 
application is memorized into the ASCL module in order to manage data coming from the new 
client. An instance ID for the connection is combined with the entry. 
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4 The protection backend is informed about the new client 

Details: Information about the new connection is provided to a resident service called 
Dispatcher for the given technique. From now on payloads coming from this channel will be 
forwarded by the ASCL to the dispatcher using a named pipe and identified by the instance ID 
generated at step 3. 

2.3.2 Client initiated communication 

1 The client-side component of the relevant protection technique processes a message 
to be sent to the server 

Details: The client application prepares a payload to be sent to the server and calls the 
acclWebSocketSend() function passing the handle obtained during initialization and the 
payload. The ACCL packages together the technique identifier and the payload with the 
application identifier, encrypt the package and sends it to the ASPIRE portal. 

2 Payload delivery 

Details: The ACCL sends the payload to the Portal. The ASPIRE Portal decrypts the received 
package and then, based on the technique identifier, sends the obtained package to the 
appropriate server-side support. To minimize the latency in communication the package is 
transferred directly to a resident service (protection backend dispatcher) via a named pipe. 

2.3.3 Server initiated communication 

1 The server-side component of the relevant protection technique processes a 
message to be sent to the client 

Details: The technique-specific server-side produces a package, comprising the application 
identifier, the payload and the connection instance identifier.  

2 Payload delivery 

Details: When appropriate, it sends the payload to the ASPIRE Portal via a named pipe so 
that the payload can be encrypted and delivered to the ACCL using the existing connection. 

2.3.4 Scalability and Performances 
The use of this technology raises a scalability issue: in an industrial scenario a huge amount 
of clients could request WebSockets based protection services at the same time. Possibly 
long-running connections between clients and the server will be kept active over time loading 
the  ASPIRE Portal and making it a potential bottleneck. NGINX can act as a reverse proxy 
and load balancer for WebSocket applications improving the scalability of the solution; NGINX 
supports WebSocket by allowing a tunnel to be set up between a client and a back-end server.  

According to WebSocket Performance test run by NGINX developers 
(https://www.nginx.com/blog/nginx-websockets-performance/) it requires less than 1Gb of 
memory and less than 1 core of CPU capacity to support 50.000 concurrent connections. 
Moreover, when loaded up with very busy connections, memory usage is stable and increase 
more slowly than payload size. 

Therefore the overall architecture does not need an update: in a complex real world scenario 
the solution can scale up by adding the required computational power to the ASPIRE Portal 
server. The required amount of RAM and CPU can be deterministically sized depending on 
the number of expected active clients. 
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2.4 ACCL API 
We present an API for the ACCL. This is a C API, which is used by the client-side components 
of the online protection techniques. It is an internal API that will not visible any more in the 
protected application as the API is obfuscated during the final steps of the ASPIRE tool flow 
operation. 

The following functions need to be supported: 

• acclExchange( T_ID, payload) 
• acclSend( T_ID, payload) 
• acclWebSocketInit (T_ID, callback) 
• acclWebSocketSend (handle, payload) 
• acclWebSocketExchange (handle, payload) 
• acclWebSocketShutdown (handle) 
•  

In production, we will probably need some additional functions, such as getServerState(). 
This is not currently necessary but it might be defined later if needed by some techniques. 

2.4.1 acclExchange 
Description 
Send a request to the ASPIRE portal, and wait for a return value. 

Definition 
int acclEchange (  

const int   T_ID,  

const int  payloadBufferSize, 

const char*  pPayloadBuffer,  

unsigned int  returnBufferSize, 

 char**  pReturnBuffer  

); 

Parameters 
 T_ID [in] The identifier of the technique, according to the table presented 

in Section 6. This identifier will be used by the ASPIRE portal for 
redirecting the request to the appropriate security service. 

 payloadBufferSize [in] Size of the payload char buffer in bytes. 

 pPayloadBuffer [in] A pointer to a payload char buffer. 

 returnBufferSize [out] Size of the return char buffer in bytes. 

 pReturnBuffer [out] A pointer to a return char buffer. 

Return 
 int The return status of the operation 

  ACCL_SUCCESS = 0   if the operation was successful 

  else     if the operation failed. Specific 
error codes as positive integers are defined by the API so that 
components at client-side can use for more fine-grained reaction. 
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2.4.2 acclSend 
Description 
Send a request to the ASPIRE portal, and return control as fast as possible. I.e., do not wait 
for any result from the Portal. 

 

Definition 
int acclSend (  

const int   T_ID, 

const int  payloadBufferSize, 

   char*  pPayloadBuffer 

); 

 

Parameters 
 T_ID [in] The identifier of the technique, according to the table presented 

in Section 6. This identifier will be used by the ASPIRE portal for 
redirecting the request to the appropriate security service 

 payloadBufferSize [in] Size of the payload char buffer in bytes. 

 pPayloadBuffer [in] A pointer to a payload char buffer. 

Return 
 int The return status of the operation 

  0   if the operation was successful 

  else  if the operation failed. 

2.4.3 acclWebSocketInit 
Description 
Initialize all the internal structures needed to operate on the WebSocket channel. This function 
must be called before sending or receiving any data though the channel. A dedicated thread 
is spawn in order to manage incoming data. 

The function can be called only once per technique. 

Definition 
int acclWebSocketInit (  

const int   T_ID, 

void*  (* callback) (void*, size_t) 

); 

Parameters 
 T_ID [in] The identifier of the technique, according to the table presented 

in Section 6. This identifier will be used by the ASPIRE portal for 
redirecting the request to the appropriate security service 

 (* callback) (void*, size_t)  
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  [in] Callback function to be invoked when data arrives from the Portal. 
The callback must accept a pointer to the buffer containing data and 
the buffer size as arguments. 

Return 
 int The return status of the operation 

  -1   if the operation failed 

  else  handle (numeric identifier) of the channel. This value 
must be used as reference for next WebSocket functions calls. 

 

2.4.4 acclWebSocketExchange 
Description 
Send a websocket message to the ASPIRE portal, and return control to the application when 
a response is received. 

 

Definition 
int acclWebSocketSend (  

const int   handle, 

const int  payloadBufferSize, 

   char*  pPayloadBuffer, 

unsigned int  returnBufferSize, 

char**  pReturnBuffer  

); 

Parameters 
 handle [in] The handle obtained at WebSocket initialization. 

 payloadBufferSize [in] Size of the payload char buffer in bytes. 

 pPayloadBuffer [in] A pointer to a payload char buffer. 

 returnBufferSize [out] Size of the return char buffer in bytes. 

 pReturnBuffer [out] A pointer to a return char buffer. 

 

Return 
 int The return status of the operation 

  ACCL_SUCCESS   if the operation was successful 

  else    if the operation failed. 

 

2.4.5 acclWebSocketSend 
Description 
Send a websocket message to the ASPIRE portal, and return control to the application 
immediately. 
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Definition 
int acclWebSocketSend (  

const int   handle, 

const int  payloadBufferSize, 

   char*  pPayloadBuffer 

); 

 

Parameters 
 handle [in] The handle obtained at WebSocket initialization. 

 payloadBufferSize [in] Size of the payload char buffer in bytes. 

 pPayloadBuffer [in] A pointer to a payload char buffer. 

 

Return 
 int The return status of the operation 

  ACCL_SUCCESS   if the operation was successful 

  else    if the operation failed. 

 

2.4.6 acclWebSocketShutdown 
Description 
Terminates the specified WebSocket connection. The communication with the server is closed 
and the thread associated with the channel ends. 

This function should be called when the communication with the server is no longer needed, 
e.g. when the application quits. 

Definition 
int acclWebSocketShutdown (  

const int   handle 

); 

Parameters 
 handle [in] The handle obtained at WebSocket initialization. 

Return 
 int The return status of the operation 

  ACCL_SUCCESS   if the operation was successful 

  else  if the specified handle is not valid or the 
connection was already shut down 
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Section 3 Anti-reverse engineering techniques 

3.1 Client-side code splitting 
Section Author:  

Andreas Weber (SFNT) 

3.1.1 Introduction 
Client-side code splitting is the subject of Task T2.3. In this section, we present the 
components that are introduced to the ASPIRE protected application to support this protection 
technique. The actual splitting was reported in WD2.03 and D2.03 (M12) and its basic binary-
level tool support was implemented for D2.02 (M12), in-time for integration into the ASPIRE 
tool chain in T5.1. More advanced binary-level tool support was implemented for D2.08 (M24). 

Client-side code splitting raises the bar for program analysis and tampering by statically 
removing code portions from the native app or library and by instead executing semantically 
equivalent bytecode sequences in a security-oriented virtual machine (VM) locally embedded 
in the native app or library. 

The technique takes an unprotected binary (executable or shared object) as input and 
translates suitable parts into functional equivalent bytecode, links the bytecode and an 
appropriate bytecode interpreter (i.e., the VM) into the binary and replaces the original 
instructions with glue code that, at run-time, executes the embedded bytecode inside the in-
process VM. 

The partitioning of the application code into bytecode and native code should to some extent 
be steered by the ADSS, which has to find a balance between the obfuscation goal (sensitive 
code runs inside the VM) and the performance overhead caused by security-oriented bytecode 
interpretation (which lacks, e.g., just-in-time compilation and fast dispatch mechanisms) and 
by the necessary serialization and deserialization of the physical processor state before and 
after each VM invocation. 

3.1.2 System requirements and assumptions 
• The architecture for client-side code splitting described here supports multiple ASPIRE-

protected components, be it a (dynamically or statically) linked executable or a dynamically 
linked library: Each component links their own VM. 

• Protecting multi-threaded applications is considered, including when the threads originate 
from unprotected code such as a Java VM that executes a Java application that invokes a 
native ASPIRE-protected code library.  

• The successful application of this technique on Linux-based systems requires that the 
application is written in C and built using a Diablo-aware compiler/linker. 

3.1.3 Client-side components 
The following components are added to the application to implement the protection technique. 

3.1.3.1 The embedded Virtual Machine 
The VM consists of a collection of procedures that together implement the functionality of a 
custom bytecode interpreter. This code is linked into the application binary by the ASPIRE tool 
chain. Furthermore, its code is dispersed throughout the application code by means of Diablo's 
code layout randomization support. As such, this VM component is not a single, easily 
identifiable code region. 
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During its execution, the application invokes from time to time the VM and passes it the relevant 
program state and the address of the bytecode to interpret as a replacement of some original, 
native code that was removed from the application to hide it from inspection and tampering. 
The VM then fetches the bytecode and, starting from the passed program state, interprets the 
bytecode. This includes the computation of the address at which the execution of native code 
continues after the interpretation has finished. 

The ASPIRE tool chain will customize the VM, i.e., its instruction set and/or implementation, to 
some extent, so that an attacker cannot simply reuse results such as a bytecode disassembler 
from previous analysis without modification. SafeNet will implement the diversification 
techniques as background during the project’s third year and will deliver them as an updated 
version of their cross translator. 

3.1.3.2 Bytecode to be interpreted 
For each code fragment that is removed from the application, a corresponding bytecode image 
is provided instead. All bytecode images are provided in object files that can be linked into the 
application binary by the ASPIRE tool chain linker. Again, Diablo's layout randomization 
capabilities are used to disperse the bytecode images throughout the app's own data and code. 

3.1.3.3 Mobile Bytecode 
Instead of embedding the bytecode produced to be run into the SoftVM this can be delivered 
and installed at run time using the Code Mobility technique (Section 3.4). Please see the 
Composability Section 5 for further details about this implementation. 

3.1.3.4 VM Invocation Stubs 
Each bytecode image is accompanied by a distinct native code stub. This stub is responsible 
for passing the relevant program state to the VM according to the interface accepted by this 
particular VM, for passing control to the VM, for translating the updated state computed by the 
VM back to the native app, and for passing control back to the native app at the correct 
address. More concretely, the stub captures the contents of the physical processor registers 
and then calls the VM with the captured register values and the address of the corresponding 
bytecode image. When the VM finished the execution of the bytecode, the stub writes the 
updated values back into the physical processor registers and passes control back to the 
application. The necessary continuation address is provided by the just interpreted bytecode 
image. 

Inside the application, the original instructions are replaced with a jump to the corresponding 
native code stub.  

Once the stubs are linked into the application, and the jumps have been inserted, Diablo will 
optimize and obfuscate the stubs in its surrounding code. The result will again be that the stubs 
are not easily recognizable code fragments.  

3.1.4 Run-time behaviour of client-side code splitting 
Figure 6 presents the basic sequence diagram, depicting the run-time behaviour of this 
protection technique. 
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Figure 6 – Client-side code splitting run-time behaviour 

 

A detailed description of each step depicted in Figure 6 is presented below. 

Seq# Operation description 

1 The original application transfers control to the stub. 

Details: Currently this is implemented as an unconditional jump into the first part of the stub 1 
code. Conceptually but not yet implemented this jump could be removed by Diablo by means 
of branch forwarding, so, that the stub is inlined in the application code. 

2 The stub sets up state for VM and transfers control. 

Details: The stub collects the contents of the physical ARM processor registers and calls the 
VM, passing the address of the corresponding bytecode (VM-image) as argument. 

When different stubs have different entry points into the VM, those entry points can be inlined 
in the stubs as well. 

3 The VM fetches the Bytecode and interprets it. 

Details: In case the bytecode is stored in encrypted form, the VM will need to decrypt it during 
this process. 

4 After interpretation is finished, control is transferred to second part of the stub. 

Details: The bytecode comprises code to calculate the address where the native execution 
should continue. This address and the updated register values are returned to the stub. 

5 The stub cleans up and transfers control back to the application. 

Details: The stub updates the physical ARM registers with the values the VM returned and 
jumps to the continuation address, transferring control back to the application. 
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3.2 Anti-debugging 
Section Authors:  

Bart Coppens (UGent), Stijn Volckaert, Bjorn De Sutter (UGent) 

3.2.1 Introduction 
The anti-debugging technique is part of Task T2.5 on Anti-Tampering. This section specifies 
the debugger component used for the anti-debugging requirement REQ-NFS-012 of D1.03. 

The initial work on anti-debugging is reported in deliverables WD2.08 (M18), D2.08 (M24), with 
initial tool support in time for D2.07 (M24). This initial support will be extended in the following 
months, to be delivered in D2.09 (M30) and will be reported in D2.10 (M30). 

The anti-debugging technique that will be developed in ASPIRE will be based on inserting a 
debugger component into the ASPIRE-protected application. This will allow us to reach two 
goals: 

• Anti-debugging: First, the debugger component will serve as a debugger of the 
protected application, thus preventing an attacker from attaching his own debugger. 
The debugger component is tightly integrated into the protected application to prevent 
the attacker from easily disabling or removing the debugger component. This is 
achieved by migrating and rewriting parts of the protected application such that they 
are executed in the debugger's execution context instead of their original application 
context. 

• Obfuscation: Secondly, because the transfer of control between the application 
context and the debugger context can be obfuscated, the migration of code from one 
context to the other allows us to obfuscate the application code.  

The partitioning of the application code into the debugger and application execution contexts 
should to some extent be steered by the ADSS, which has to find a balance between the anti-
debugging goal (which requires the debugger component to be launched before sensitive code 
is executed), the obfuscation goal (which requires the debugger component to be invoked 
during the execution of sensitive code), and performance overhead. 

3.2.2 System requirements and assumptions 
• The architecture for anti-debugging described here only works when the application 

contains only one ASPIRE-protected component to which the anti-debugging techniques 
has been applied, be it a (dynamically or statically) linked executable or a dynamically 
linked library. It is possible to extend the architecture to support applications comprising 
multiple ASPIRE-protected libraries on which the anti-debugging technique is applied, but 
to that end the described architecture and execution flow needs to be revised and 
extended.   

• Protecting multi-threaded applications is considered possible, including when the threads 
originate from unprotected code such as a Java VM that executes a Java application that 
invokes a native ASPIRE-protected code library. 

• While an extension towards multi-process applications is possible, in which the protected 
application process forks off a new application process that is also protected with the anti-
debugging protection, that extension is not considered in the currently described 
architecture and execution flow.  

• The successful application of this technique on Linux-based systems requires that: 
o The application can fork itself. This is the case for current Android versions, and is 

unlikely to change in future versions. 
o The forked off process can attach itself as a debugger to its parent process with 

ptrace. It is possible that in some future Android versions, not all applications will 
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have the permissions to do so. However, our current estimate based on studying 
online information sources and experimental validation is that is possible on 
(unrooted) Android 4.0, which the tool chain is required to target as per REQ-ASR-
010 of D1.03, as well as on Android 4.4 and Android 5. 

• The overhead of the protection technique can be mitigated if the target Linux-based 
platform supports reading /proc/pid/maps and /proc/pid/mem. 

3.2.3 Client-side components 
A debugger component is inserted into the application, and the original application code is 
partitioned in code to be executed in the debuggee’s execution context, and code to be 
executed in the debugger’s execution context. 

3.2.3.1 Debugger component 
Dynamically, the debugger component of the application will be a separate process, from 
hereon called debugger process. This debugger process  

• is launched by the application process to be protected; 
• runs concurrently with that application process; 
• is attached to that application process as a debugger.  

Instead of executing all code fragments in the application process, the application process will 
from times to times pass control to the debugger process by performing actions that are 
intercepted by the debugger process, and wait for control to return. The debugger process will 
then execute a code fragment that replaces the fragment to be executed in the application 
process, after which it will pass control back to the application process by letting it resume its 
execution. 

Statically, the debugger component, from hereon called debugger code, consists of the code 
that controls the execution of the debugger process. This code takes care of the proper 
initialization where needed such as launching the debugger process by cloning (forking) the 
application process during its initialization, and initializing it, attaching to the application 
process, etc. The debugger code also aids in transferring control and data between the 
application process and the debugger process.  

This debugger code is embedded in the application binary, i.e., in an executable program or in 
a dynamically linked library. The debugger code is inserted by Diablo and is based on code 
that is independent of the original application. The protected application or library initialization 
code is modified by Diablo to launch the debugger process and its initialization.  

3.2.3.2 Code for Application/Debugger Contexts 
The original program code is partitioned into code to be executed in two different execution 
contexts, corresponding to the application process and the debugger process. There is no a 
priori limitation on which code is executed in which context. However, guidelines will be made 
available that will focus on choosing a partitioning that reduces the performance overhead 
while offering the necessary obfuscation and/or anti-debugging strength.  

Whenever a program fragment is migrated from the application context to the debugger 
context, Diablo replaces the code fragment with the necessary code to transfer control to the 
debugger, e.g., by replacing it with code that raises an exception of which the debugger 
component can identify the origin. Furthermore, the migrated code is rewritten to allow it to 
execute correctly in the debugger process, e.g., by replacing memory access instructions, 
which were originally executed in the application's memory space, by memory accesses 
through the ptrace API. In the scope of the project, only single basic blocks will be migrated.  
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3.2.4 Anti-debugging run-time behaviour 
Figure 7 comprises the sequence diagram of the anti-debugging protection technique.  
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Figure 7 – Anti-debugging workflow diagram 

 

A detailed description of each step of the workflow is described in this section. 

Seq# Operation description 

1 The debugger initialization code is started from the library’s or application’s 
initialization code.   

Precondition: If the protection is applied to shared libraries, only a single dynamically linked 
library may be protected with anti-debugging. 

Overhead: There is a one-time cost per program execution, when the application starts (or the 
library is loaded). 

Details: The initialization code forks the running application process. The forking thread in the 
application process halts until receiving a resume signal. The forked off process attaches itself 
as a debugger to its parent process, i.e., the application process, and sends the resume signal.  

2 The debugger initialization process transfers control back to the application process, 
which continues execution where it previously halted.  

 

3 The application reaches a code fragment that was migrated to the debugger context 
and transfers control to the debugger, which fetches the register context from the 
application process. 

Overhead: Significant: throwing an exception, context switch. 

Details: The debugger is invoked by the application by the latter throwing an exception, for 
example by dereferencing an invalid pointer or dividing by 0. The pointer and zero value can 
be dynamically computed with opaque computations to thwart static analyses. The available 
information at that time should suffice to let the debugger decide which fragment to execute. 

 

4 The debugger transfers control to the corresponding, rewritten version of the 
migrated fragment. This code operates on the fetched register context and 
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whenever it needs to access the application process state, it invokes utility functions 
in the debugger code.  

 

5 Upon exit of the migrated code fragment in the debugger context, control is 
transferred back to the debugger code. 

Details: Unless the debugger is being debugged by the debuggee (which is a possible 
extension of this technique), it cannot throw an exception to transfer control: the code has to 
call into the debugger to explicitly transfer control. 

6 The debugger writes back the updated register context to the application process, 
and transfers control to the correct location in that process.  

3.2.5 Impact 
• Since there is no server-side component, this technique introduces no server-side 

overhead. 
• There is a small overhead to initialize the debugger. 
• For each switch between execution contexts, there is a fixed, significant overhead. 

Depending on the instruction mix of the code executing in debugger context, and in particular 
on the number of memory accesses, the overhead on that code can be significant. 

 

3.3 Client-server code splitting 
Section Authors:  

Andrea Avancini (FBK), Mariano Ceccato (FBK) 

3.3.1 Introduction 
The client-server code splitting technique in ASPIRE is part of Task T3.1. It is based on a set 
of source-to-source code transformations to modify the original application into the new 
ASPIRE-protected one.  

The goal of client-server code splitting is to remove sensitive, attackable parts from the original 
client program and to move them on a trusted server.  Let the sensitive variables of the original 
unprotected client be those variables that can be tampered by an attacker to interfere with the 
normal behavior of the application. The identification of these sensitive portions of code is 
performed by relying on a technique called barrier slicing. A barrier slicing algorithm returns 
barrier slices of code, similar to the concept of (backward) slices, as output. Let the slicing 
criterion be a set of program variables and a set of program statements. A backward slice is a 
subpart of the original program that is equivalent (assuming termination) to the original program 
with respect to the variables in the criterion, observed in the statements of the criterion. 
Practically, the slice for a given criterion includes all the statements that directly or indirectly 
(i.e., transitively) hold data or control dependencies on the variables in the criterion. 

The notion of backward slice can be extended to the barrier slice. A barrier slice is a slice 
where some statements are considered “barriers”, such that they block the backward 
propagation of control and data dependencies. Practically, variables in the criterion are those 
sensitive variables that are intended to be protected and thus should be moved on the server-
side component, while variables in the barriers are those not security critical. They define a 
non-sensitive portion of program that does not need to be moved into the server. This kind of 
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slice is computed by stopping the backward propagation of dependencies of a regular 
backward slice whenever one of the barrier statements is reached.  

When the sensitive code is correctly identified, a new (protected) client is automatically 
generated, where the sensitive code is sliced away and only the subset of those variables that 
can be considered non-sensitive remains in the client. Then, any reference to sensitive 
variables is removed from the client. The new server component contains the slices, with the 
original references to sensitive variables preserved.  

The new protected client, without sensitive variables, and the new server component execute 
synchronously and exchange data as needed by the distributed computation. Since the client 
still needs values of sensitive variables to run properly, a communication is established 
between client and server. The novel client-side component facilitates the message exchange 
between the modified client code and the ACCL (see Section 2) that will eventually take care 
of client-server network communication. 

3.3.2 System requirements and assumptions 
The portion of the application to protect must be single-threaded. The original application can 
be multi-threaded, but client/server code splitting can be applied only on single threads, i.e., 
client/server code splitting cannot be inter-thread. 

3.3.3 Architecture Overview 
The reference architecture for client/server code splitting, in case of an offline application is 
depicted in Figure 8. In the case of an on-line application, the architecture is exactly the same, 
with the only difference being the presence of the original server. However, nothing changes 
for the original client/server communication protocol and behaviour. 
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Figure 8 – Reference Architecture for client-server code splitting 

 

3.3.4 Client-side components 
3.3.4.1 Code splitting manager 
The client/server code splitting technique introduces a new client-side component that 
manages the communication between the protected client and the server-side support, such 
that both sides remain synchronised. We denote this new client-side component as the Code 
Splitting Manager. It acts as a proxy and interacts with the ASPIRE communication logic to 
send messages to the server side, and to receive responses accordingly. 

The code splitting manager exposes an API that is used by the protection technique. An 
overview of the API functions is presented in Table 1. At various places in the protected client 
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application, calls to the API  functions are introduced by the tool flow in such a way that the 
now split client application operates as intended. Note that this API is not visible in the 
protected application, as the (internal) boundaries will are obfuscated. 

Table 1 – Code Splitting Manager API 

Function Signature Parameters Payload Description 
int sync(int LABEL) int LABEL 

 

Message type (SYNC), 
LABEL, size of the 
message 

 

Synchronizes with the 
server by sending the 
current execution point 
reached (indicated by 
parameter LABEL). 
Bootstrap message is a 
special sync message 
with different message 
type. 

int send(int LABEL, 
int varLABEL) 

 

int LABEL,  
int varLABEL 

 

Message type (SEND), 
LABEL, variable value, 
size of the message 

Sends a required value 
to server. LABEL works 
as for sync, while 
varLABEL marks the 
variable value to be 
sent. 

int ask(int LABEL, int 
varLABEL) 

int LABEL,  
int varLABEL 

Message type (ASK), 
LABEL, label of the 
required variable, size of 
the message 

Sends request for value. 
Waits until server 
responds. 

int waitForValue(int 
LABEL, int varLABEL) 

int LABEL,  
int varLABEL None Checks if required value 

of variable varLABEL 
from synchronization 
point LABEL is available. 

int exit() None  None Builds and sends the 
exit message to notify 
the server to close the 
connection. 

 

Synchronization points implemented by calls to the sync function are used to keep client and 
server executions aligned. These calls replace any definition of sensitive variables that was 
present in the original code. Calls to the function sync are non-blocking, in fact the client 
communicates the server which point of the execution is reached and then continues its 
execution. 

Whenever a value of any of the sensitive variables is required by the client, calls to function 
ask are used. Calls of this type are blocking, in fact the client sends a request for a value of a 
sensitive variable that is needed for progressing in the computation, and waits for the answer 
before resuming its execution. The function ask replaces the uses of sensitive variables in the 
original code. 

Immutable statements, like user inputs, are those statements that cannot be moved to the 
server, since they represent an active and required task in the original application. This means 
that values from immutable statements need to be sent to the server in order to perform the 
correct computation of the sliced code at the server side. Calls to the function send are used 
by the client to deliver the requested values to the server, and also as synchronization points 
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like in case of sync function. Calls to function send are non-blocking, values are sent to the 
server without waiting for any confirmation of reception. 

Barrier variable values are sent to the server by using the same function send described earlier.  

While there is an exit() function, note that there is no init() function. The initialisation will 
be invoked by the server when the first message from the client application is received. 

3.3.5 Server-side components 
3.3.5.1 Slice manager 
This server-side component handles connections and messages from and to the client. It is 
also responsible to launch the correct sliced code whenever a new client connects. 

The backend dispatcher parses the payload received from the ASPIRE portal, and then 
invokes an internal server-side function. Table 2 presents an overview of the API that is 
supported. 

 
Table 2 – Server-side internal code splitting API 

Function Signature Parameters Payload Description 
void process() 

 

None 

 

 None Handles incoming 
messages and 
connections 

int sendValue(int 
LABEL, int varLABEL) 

 

int LABEL,  
int varLABEL 

 

Message type (SEND- 
VALUE), LABEL, value 
of the required variable, 
size of the message 

 

Sends a required value 
to client. LABEL 
identifies a previous 
request from client, while 
varLABEL marks the 
variable value to be sent 
(when needed)  

void * loadSlice() 

 

None None Executes the requested 
slices. 

int checkSync(int 
LABEL) 

 

int LABEL None Checks if current 
synchronization point 
(identified by LABEL) is 
reached by client. 

int waitForValue(int 
LABEL, int varLABEL) 

 

int LABEL,  
int varLABEL 

 

None Checks if required value 
of variable varLABEL 
from synchronization 
point LABEL is available. 

 

3.3.6 Messages 
The local code slice manager and the backend dispatcher at the server side exchange 
messages structured like in Figure 9. It comprises the following data fields: 

• Message Type, which represents the type (i.e., synchronization, value delivery, request 
for values) of the message itself and it is encoded as a 32 bit integer. 
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• Message Label: a label that identifies the point in the code that originated the current 
message. Messages originated by different parts of the application have different 
labels, while messages produced within loops by the same origin carry the same label.  

• Variable Label identifies a variable for which a value request has been originated by 
either the client or the server. 

• Message Size represents the total size of the message.  
• Payload contains variable values when requested. 

 
Figure 9 – Structure of a message 

3.3.7 Client/server code splitting splitting sequence diagram 
Figure 10 comprises the sequence diagram of the protection technique, followed by a detailed 
description of each step depicted. The figure depicts a prototypical execution of the protected 
application, where client:Client represents the client, while backendDispatcher:Server 
represents the slice manager that handles connections and messages, and 
slicedCode:Server is the sliced code at the server side.  

 
Figure 10 – Sequence Diagram for Code Splitting 

 

Seq# Operation description 

1 The protected client starts and sends a bootstrap message to the server. 

Details: The client (labelled client:Client in Figure 10 starts its execution and sends a 
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bootstrap message (bootstrap) to the server’s dispatcher (backendDispatcher) 

Pre-condition: The server is up and able to handle connections. The client has not sent other 
bootstrap messages. 

Post-condition: The server is ready to start execution of the sliced code. 

Data passing: Client message to server contains specific message label for bootstrap. 

2 The dispatcher at the server side loads the requested slice by invoking the 
corresponding process. 

Details: Upon receiving the bootstrap notification, the server invokes a new process 
(slicedCode:Server) that is responsible for executing the sliced code. 

Pre-condition: The server has received a bootstrap message from a client. 

Post-condition: Requested slice is running. Both client and server are running the same piece 
of code synchronously. 

 

The following operations, operation 11 excluded, can be executed multiple times in an iterative 
process 

n_1 The execution of the slice code waits for synchronization messages from client. 

Details: The process that handles the sliced code reaches a synchronization point and 
suspends its execution; it waits for a message from the client to communicate the same 
synchronization point has been reached also on the client-side. 

Pre-condition: Sliced code is running. 

Post-condition: Execution of the sliced code is suspended. 

n_2 The client sends a synchronization message to server. 

Details: The client, whenever a synchronization point is reached, sends a message to the 
server to signal the current status of the execution 

Pre-condition: The client reaches a synchronization point while executing its copy of code 
without sensitive variables. 

Post-condition: The server is ready to propagate synchronization information to sliced code. 

Data passing: Client message to server contains specific message label for synchronization. 

n_3 The server propagates the synchronization acknowledgement to the sliced code. 

Details: The serve propagates synchronization status coming from client to sliced code to 
resume execution until the next synchronization point. 

Pre-condition: The server has received a synchronization message from client; the sliced 
code is waiting for notification. 

Post-condition: The sliced code resumes its execution; the two executions (on client-side and 
on server-side) are now aligned. 

n_4 The sliced code is waiting for values coming from server. 

Details: An input value or a value of a barrier variable is required by the sliced code to 
continue its execution. Since these values do not come with the barrier slice, the sliced code 
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on server needs to be fed by the client with proper communication messages. When a value 
is needed, the sliced code stops its execution and waits that value to be available. 

Pre-condition: The sliced code requires input or barrier values to proceed. 

Post-condition: The sliced code stops to execute and waits for communication from the client. 

n_5 The client sends a value to the server. 

Details: The client sends a new message that contains the value needed by the server as 
payload. 

Pre-condition: The client reaches a synchronization point while executing its copy of code 
without sensitive variables. The synchronization point requires the client to send values to 
server. The sliced code is waiting for values from client. 

Post-condition: The server has received the required values and it is ready to notify the sliced 
code. 

Data passing: Required values, specific message label for synchronization. 

n_6 The server stores the required values to resume sliced code execution  

Details: Upon reception of message from client, the server extracts and propagates the 
value to sliced code; the execution of the slice can resume. 

Pre-condition: The server has received a message coming from the client; sliced code is 
waiting for values. 

Post-condition: The execution of the slice code is resumed; executions on client-side and 
server-side are aligned. 

n_7 The client sends a message to the server, requesting values of sensitive variables. 

Details: Whenever a protected value is required, the client prepares a message that is 
delivered to the server.  

Pre-condition: The client needs a value that is computed on the server-side.  

Post-condition: The client is ready to suspend its execution. 

Data passing: Specific message label for value request. 

n_8 Sensitive values computed by the sliced code are stored and ready for delivery. 

Details: Protected values are computed by sliced code and then stored to be accessible by 
the server. After receiving a request message, the server checks the availability of a fresh 
value for the variable requested: if the value is ready, the server started packing it; if the 
value is not ready; the server waits until the sliced code emits a fresh value and then 
proceeds as in the previous case.  

Pre-condition: The client is waiting a fresh value for a sensitive variable; the server waits for 
this value from sliced code. 

Post-condition: The value is ready and the server is about to pack and send it. 

n_9 The client is waiting for message from the server. 

Details: The client has stopped its execution since new sensitive values are required to 
continue. After having sent a request to the server, the client is waiting for answer. 

Pre-condition: The client has sent a request to server. 
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Post-condition: The client is waiting for answer. 

n_10 The server sends the requested value to the client. 

Details: When ready, the requested value is sent to the server. 

Pre-condition: The client is waiting for the value. 

Post-condition: The client resumes its execution. 

Data passing: Required values, specific message label for value request. 

11 The client sends a message to server to notify its exit. 

Details: The sliced code terminates to execute autonomously, when all the synchronization 
points are passed and no other instructions remain to execute. The client, whenever the 
computation reaches its conclusion, sends a closing message to the server and exits, while 
the server closes all the connections and also exits. 

Pre-condition: The client has concluded its execution. 

Post-condition: The client stops; the server exits if sliced code has terminated and no other 
operations are running. 

Data passing: Specific message label for exiting. 

3.3.8 Impact 
• The client-server code splitting technique introduces a new server-side component, 

and adds communication between the protected application and the server-side 
support. This introduces additional complexity and latency. 

• Sliced code runs in an Android emulator that must be available at server-side. 
• For each client connection, the server component needs to launch a a new Android 

process in the emulator to serve such client. In case this protection is applied to N 
distinct places in the same client, and they belong to N distinct threads, the server 
needs to activate up to N different Android processes per connected client (one for 
each independent slice). 

• The protected application needs to pause and resume execution when values need to 
be sent between the client and server. This introduces additional latency, and may 
cause issues when the server is not responsive. 

• Client/server connectivity is required to run client code; offline execution is not 
supported. 

3.3.9 Limitations 
• Support to C structs is limited. Whenever a field of a struct is annotated as sensitive 

variable, the computation of the barrier slice propagates the dependencies from the 
annotated field to the whole struct, which is consequently moved on the server. 
Sliced code runs in an Android emulator, that must be available at server-side. 
Moreover, a slice can be considered a distinct Android process to be executed when a 
client connects. This can pose pose concerns in terms of scalability of the approach. 
 

3.4 Code Mobility 
Section Authors:  

Paolo Falcarin, Alessandro Cabutto (UEL) 
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3.4.1 Introduction 
The Code Mobility technique that is being developed in the ASPIRE project, along with other 
online network-based techniques, aims to overcome the drawbacks of local protection 
techniques, by using a trusted server placed on the network, which is in charge of providing 
static code blocks dynamically delivered to the untrusted client. In this approach, a client 
application (or library) is stored on the user device as an incomplete executable that does not 
contain all the application's code. A Downloader component and a Binder component are 
introduced on the client-side by this technique: they are able, respectively, to fetch binary code 
blocks from a trusted server at run time, and to patch these into the running process' memory, 
allocating the dynamically delivered code in the application’s heap memory. On the server-
side a Code Mobility Server component responsible of blocks delivery is introduced. 

This approach aims for mitigating reverse engineering: instead of preventing analysis of code 
by making the code complex, we make sure that the code is not available for analysis on the 
client device as long as possible, and deliver the necessary code only when it actually needs 
to be executed on the client device.  

The Code Mobility technique can be seen as a dynamic binary obfuscation approach based 
on the deployment of an incomplete application whose code arrives from a trusted network 
entity as a flow of mobile code blocks, which are arranged in memory at run-time with a 
configurable memory layout. 

Code Mobility (T3.1) is one of the ASPIRE methodologies to perform code splitting along with 
other techniques like client-server code splitting (barrier slicing, T3.1) and VM-based client-
side code-splitting (T2.3). More in general, code mobility might be seen as the key technology 
of WP3 as it is the framework on which other online protection techniques might rely. For 
example the code attestators in remote attestation (T3.2) can be sent through the code mobility 
framework, and renewability (T3.3) will extend code mobility by allowing renewable code 
blocks.  

The initial work on this subject has been reported in deliverable D3.01 (Preliminary Online 
protections report - M12), current status is described in deliverable D3.04 (Intermediate Online 
Protections report – M18) and future work will be reported later on in deliverables D3.06 
(Remote Attestation and Server report - M30), and D3.08 (Renewability report – M33). 

Mobile Blocks granularity is actually at a function level and the amount of functions to be made 
mobile can be defined in the ASPIRE tool-chain JSON annotations input file by specifying their 
names, even using wildcard character ‘*’. The amount of functions made mobile can be tuned 
to achieve an acceptable trade-off between overhead (bandwidth consumption, execution 
delay) and protection level. Mobile blocks are downloaded by the protected application when 
needed using the ACCL API. 

In the protected application each and every call to mobile code is wrapped by an invocation to 
the Binder component (they are actually replaced by an indirect jump) and, during execution 
time, the mobile code is downloaded and installed into the heap where an appropriate amount 
of memory is allocated by the Download component. This process is better explained later on 
in Section 3.4 and fully treated in deliverable D3.02 Section 3.3. 

Further extensions to this approach might be considered to make dynamic analysis more 
complex. For instance, downloaded code blocks, can be erased from memory after use making 
harder possible dump attacks. 

The network communication between the Code Mobility server and the client can only be 
initiated unidirectionally from client to server; meaning that the client asks for a new code block 
and the server answers by sending it. These connections are short-lived and the server is not 
actually required to be keeping status about clients. 
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We will explore the possibility of a bidirectional communication with the exchange of control 
information when code mobility will be extended to integrate other online techniques such as 
remote attestation and renewability. 
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Figure 11 – Code Mobility High-Level Architecture 

3.4.2 System requirements and assumptions 
Code chunks are delivered by a remote service, and thus stable network access is strictly 
required at that point. In the current design, a continuous network connection will be required. 
Finally, when all the Mobile Code blocks are delivered, a connection is not required anymore. 

The execution of mobile code blocks from the heap requires the application to call the 
mprotect() syscall in order to change the protection of that specific memory area to execute 
only. The assumptions here are that mprotect() can be called over the heap and mobile code 
blocks are stored in dedicated page aligned memory areas. The latter requirement is imposed 
by mprotect() which can only be used with full memory pages and, of course, by the need of 
applying the PROT_EXEC permission to the code block; moreover allocating dedicated 
memory pages for each mobile code block prevents possible concurrent write-access to the 
same block. 

3.4.3 Client-side components 
3.4.3.1 Downloader 
The Downloader component invokes the ACCL API in order to obtain a specific mobile code 
block from the Code Mobility Server. It is in charge of allocating memory for the incoming code 
block and to provide a pointer to the buffer containing it. 

3.4.3.2 Binder 
When control is to be transferred in the client application to a mobile code fragment, the Binder 
relays on a set of addresses that act like a redirection table to determine whether the actual 
Mobile Code Block has to be downloaded or not. 

The Binder component needs a custom, statically allocated table that stores target addresses 
of jumps into mobile blocks, i.e., the entry points of the mobile code blocks. Initially the table is 
filled with the address of the Binder, so that upon the first jump into a mobile code block, the 
Binder is actually invoked. After loading the block (via the Downloader component), the Binder 
will then overwrite the target address of the block’s entry points with the addresses in the 
downloaded block. Then each subsequent jump into that block will directly go to the block 
rather than invoking the Binder again and again. 
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As previously discussed we will consider the option of erasing downloaded code block after 
use (or after a certain number of uses) restoring the initial indirection through the Binder.  

3.4.4 Server-side components 
3.4.4.1 Code Mobility Server 
The Code Mobility Server is responsible for sending the binary code blocks to the clients when 
they are requested. It does not keep track of existing sessions with clients. 

3.4.5 Code Mobility run-time behaviour 
Figure 12 depicts the mobile code workflow diagram, and is followed by a detailed description 
of the referenced steps. 
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Figure 12 – Code Mobility workflow diagram 

 

Seq# Operation description 

1 Binder invocation 

Details: In the protected application all jumps into mobile code have been replaced by indirect 
jumps that take their target addresses from a statically allocated table that initially contains the 
Binder address for each entry. 

2 Downloader invocation 

Details: The Binder invokes the Downloader passing it an identifier to the mobile code block 
that should be downloaded. The Downloader establishes a connection to the Code Mobility 
server, through the communication logic and the ASPIRE portal, by sending sending the 
appropriate Technique ID and Application ID. 

3 Code block delivery 

Details: The Code Mobility Server Component serves the requested mobile code block to the 
client application. 

4 Code patching 
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Details: The downloaded code block is allocated in the heap in a memory area that is made 
executable. 

The Binder will then replace the addresses in the statically allocated table with the addresses 
of the just patched entry points. Then each subsequent jump into that block will directly go to 
the block rather than invoking the Binder again for the same call.  

5 Return to original application logic 

Details: Finally the Binder transfers control back to the original application, by continuing 
execution at the target address of the jump that was diverted to the Binder. 

 

3.4.6 Impact 
The technique comes with additional server load and significant performance impact. 

The client-side performance impact mainly comes from the download latency and less 
significantly from patching process. This could be tuned by configuring the download process 
to transfer several code blocks into single packages and/or or pre-ship such packages. The 
pre-shipping could be fine-tuned using heuristics or special-purpose deterministic techniques 
that predict which code blocks the application may need for its execution. This, as well as the 
discarding of code blocks once they have been executed, introduces a trade-off between 
download latency and code hiding. 

Additionally, the code blocks may be compressed prior to sending to reduce the bandwidth 
consumption. 

A detailed report about overhead introduced by Code Mobility and performances analysis can 
be found in D3.04 Section 2. 

3.4.7 Error management 
Network access is assumed. If the server does not respond within a predefined timeout when 
the application asks for a specific code block it will be shut down gracefully. 

The Downloader will check the format of received info before providing it to the Binder. 

3.4.8 Composability 
This technique is in general orthogonal and independent from most of the other offline and 
online techniques developed in ASPIRE. Mobile code is downloaded through a secure channel 
and passed to the Binder but at this stage it could be tampered with;. therefore, it could be 
paired with other anti-tampering techniques. 

As far as we know, it might conflict with any other protection trying to access the code segment 
at run time, such as code guards, as these could try to calculate the hash of a code section 
not yet downloaded. Remote attestation could also read the code segment and conflict with 
code mobility, unless the attestators will be implemented into the Code Mobility framework as 
a special code block to be downloaded, run and then discarded from memory. 

These interactions are discussed in detail later on in this document in Section 5. 

3.5 White-box cryptography 
Section Author:  

Brecht Wyseur (NAGRA) 
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3.5.1 Introduction 
Standard cryptographic implementations such as those available in open source libraries such 
as OpenSSL and LibTomCrypt, are vulnerable to key extraction attacks. During their 
execution, they store information related to the cryptographic key in memory; memory dump 
analysis can then easily lead to the recovery of the cryptographic key. White-box cryptography 
aims to prevent key recovery attacks. It does so by replacing the original implementation with 
a special-purpose implementation. 

We distinguish two different types of white-box implementations: 

• Fixed-key white-box implementations: these are implementations that hard-code the 
cryptographic key into the code. Changing the key requires the entire implementation 
to be replaced. 

• Dynamic-key white-box implementations: these are implementations that can be 
instantiated with a key. Obviously, the cryptographic key itself cannot be presented to 
such implementation; a protected/obfuscated form needs to be presented. This 
requires an additional building block that is able to protect such key. This ProtectKey 
building block can reside at the client-side (but then needs to be well hidden) or it can 
be used at server-side. 

Task 2.2 comprises the R&D track on white-box cryptography. This comprises both the 
research for new techniques (both theoretical approaches as practical approaches) as the 
implementation thereof. This includes the implementation of a white-box tool (WBT). The WBT 
is a framework that is capable of generating fixed-key and dynamic key white-box 
implementations and any supporting functions (such as a ProtectKey function) that might be 
relevant. The details of these activities have been disclosed in deliverable D2.04 and D2.08. 
The fixed-key implementations that have been developed in Year 2 of the ASPIRE project are 
considered a trade-off between performance and security. We consider them only to have a 
limited time validity and thus they will need to be renewed in due time. This is subject of the 
research in Task 3.2 that will be executed in Year 3 of the ASPIRE project. We elaborate on 
this in Section 3.5.7. 

In Year 2 of the ASPIRE project, time-limited WBC techniques will be developed. This is an 
approach where a trade-off between fixed-key and dynamic-key white-box implementations is 
established. Fixed-key implementations have the advantage of being more secure and faster 
than dynamic key ones, but they can only instantiate a single key in their code. With time-
limited implementations, we envision to develop faster fixed-key white-box implementations, 
but compensate the security loss with renewability: updating these implementations regularly. 
The support for this will be developed in Task 3.3 and reported in deliverable D3.04. Since the 
design of these time-limited white-box implementations have not yet started, we do not 
elaborate on this in the current reference architecture. This will be reported in the revision 
version of the reference architecture in M24. 

3.5.2 Client-side components 
3.5.2.1 White-box crypto library 
The code that represents the white-box implementation itself is a library that is statically linked 
into the protected application or library. It comprises an API that can be used to invoke the 
cryptographic functions. 

For fixed-key implementations, the implementation is invoked with as argument a pointer to a 
plaintext and ciphertext buffer. In the case of a dynamic key white-box implementation, a 
pointer to a protected key buffer is provided additionally. The API of these calls is presented in 
Deliverable D2.04 as the WBGC API. 
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3.5.2.2 Encoding/decoding/protectKey function 
The client-side statically linked white-box library may optionally comprise additional supporting 
functions. 

• ProtectKey – a function that transforms a cryptographic key into a protected/obfuscated 
key that is compatible with the white-box implementation itself. 

• EncodeInput – a function that can encode the input to the white-box implementation 
(plaintext/ciphertext for an encryption/decryption function). 

• DecodeOutput – a function that can decode the output from the white-box 
implementation (ciphertext/plaintext for an encryption/decryption function). 

The EncodeInput and/or DecodeOutput functions are sometimes required, because white-box 
implementations might comprise additional functions to protect their input and output. These 
encodings aim to mitigate attacks on the first or last rounds of the cryptographic 
implementations. We refer to deliverable D2.01 and D2.08 for more technical details and 
motivation on this matter. 

Any of these three functions that is present at the client side must be well protected. Reverse 
engineering these components may make their purpose of existence, which is to improve the 
security of the white-box implementation, obsolete. 

3.5.3 Server-side components 
3.5.3.1 WBS 
The encoding/decoding/protectKey functions that have been presented as client-side 
components can also be used as server-side components in the ASPIRE protection server. 
These will be implemented into a White-Box Library Server-side (WBLS), which is part of the 
White-Box Server (WBS). Additionally, the WBS also comprises the logic to query the ASPIRE 
backend DB. 

3.5.3.2 ASPIRE Database 
White-box implementations are generated based on a set of parameters amongst which a 
cryptographic seed. Not only can the syntactical representation modify for different seeds, but 
also the functional behaviour, such as the semantic definition of the encodings. This offers a 
natural way of introducing diversity. 

To manage the fact that different instances of white-box implementations may co-exist in the 
field, the ASPIRE database will be used. 

3.5.4 Offline white-box crypto workflow 
We present the offline workflow, where an encryption function is implemented. In case of a 
decryption function, all logic stays the same, with plaintext and ciphertext swapped in the text, 
and “decryption” instead of “encryption”. 

The functions EncodeInput/DecodeOutput/ProtectKey are optional components. In the 
protected application, these components should never be present as individual components, 
but rather integrated into other components. For that reason, there has not been defined an 
API for these functions. Therefore, in Figure 13, we depicted these components in gray, 
indicating that they are only implicitly available. 
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Figure 13 – Client-side white-box workflow diagram 

 

Seq# Operation description 

1 The application logic operates with the EncodeInput function (optional). 

Details: This function transforms the plaintext into an encoded plaintext, compatible with the 
white-box encryption function that is integrated into the application. 

2 The application logic operates with the ProtectKey function (optional). 

Details: This function transforms the cryptographic key into a protected key, compatible with 
the white-box encryption function that is integrated into the application. 

Such a function is not available when it concerns the case of a fixed-key white-box 
implementation, or when the ProtectKey function is used at server-side instead. 

3 The application logic calls the encryption function. 

Details: The encryption function is called via the white-box API that has been defined in 
Deliverable D2.04, and corresponds to the wbgcClientEncrypt function defined in Section 
3.5. As arguments, pointers to the plaintext/ciphertext buffers are provided; in case of a 
dynamic-key white-box implementation, a pointer to the buffer containing the protected key is 
additionally provided. 

4 The application logic calls the DecodeOutput function (optional). 

Details: This function transforms the encoded ciphertext into the original ciphertext, compatible 
with the white-box encryption function that is integrated into the application. 

3.5.5 Online white-box crypto workflow 
We describe the case of a dynamic-key white-box implementation that is integrated into the 
protected application, and where the application server aims to deliver a protected key. For the 
delivery of the protected key, the application server can use the same transport as it used for 
the original (unprotected) key – assuming that the transport can handle the protected key 
(which might be larger than the original key). 

Figure 14 depicts the workflow of this use-case. 
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Figure 14 – Online dynamic-key workflow diagram 

 

 

Seq# Operation description 

1 The original application server connects to the ASPIRE portal, presenting the key 
that needs to be obfuscated together with the application identifier. 

Details: The original application server has a cryptographic key that it intends to send to the 
application. With the client-side cryptographic processing now replaced by a white-box 
implementation, a protected key needs to be sent to the client application rather than a ‘plain’ 
key. 

The application server will therefore present the plain key to the ASPIRE portal, along with the 
client application identifier, requesting the WBS to protect the key as such that it is compatible 
with the white-box implementation that is integrated into the client application. 

2 WBS returns the protected key. 

Details: The WBS receives the key and the application ID. It will query the ASPIRE database 
for the information it needs to be able to compute the protected key. After this computation, it 
returns the protected key. 

Note that the protected key may be larger (in size) than the plain key. 

3 The application server sends the protected key to the protected application. 

Details: The application server sends the protected key to the client application. It can use the 
original transport for doing so, under the assumption that it can deal with the (potential) larger 
size of the protected key. 

4 The application logic operates with the EncodeInput function (optional). 

Details: The application aims to encrypt a plaintext with using the protected key and the white-
box implementation. In the case where this white-box implementation is protected with some 
input encodings, the application logic will need to use the EncodeInput function to encode the 
plaintext. 

Note that this operation should be implicit: the encoding function should be hidden into another 
operation such that its definition cannot be reverse engineered. 
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5 The application logic calls the encryption function. 

Details: The application logic calls the white-box encryption function, in compliance with the 
white-box API. It will present as argument pointers to the (encoded) plaintext, the protected 
key and a buffer where the result needs to be stored. 

6 The application logic calls the DecodeOutput function (optional). 

Details: In the result buffer, the ciphertext will be stored. In the case where the white-box 
implementation comprises an output encoding, the buffer will comprise an encoded ciphertext. 
In this case, the application logic will need to use the DecodeOutput function to decode the 
ciphertext. 

Note that this operation should be implicit: the decoding function should be hidden into another 
operation such that its definition cannot be reverse engineered. 

3.5.6 Impact 
White-box cryptography induces significant impact on size and performance. A white-box 
implementation of a cryptographic function is considerably larger and slower than the original 
(non-white-box) cryptographic implementation. 

Protected keys that are used to instantiate dynamic white-box implementations are in general 
also larger than the original keys. 

3.5.7 Renewable White-Box Cryptography 
In this section, we describe the workflow of how the time-limited white-box implementations 
can be renewed at client application run-time. This leverages on the Code Mobility techniques 
that have been described in Section 3.4. 

The approach is as follows: before the usage of the white-box routine, the downloader of the 
Code Mobility technique will be triggered (via a function call that has been inserted into the 
application) and will request to the white-box server-side backend service an update of the 
white-box routine. This update will comprise the data that corresponds to new tables for the 
time-limited white-box implementation. This approach is depicted Figure 15, and each of the 
steps is detailed in the step-by-step overview below. 
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Figure 15 - Renewable WBC workflow 
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Seq# Operation description 

1 The application invokes the Binder 

Details: The original application invokes the Binder to instruct it to fetch the new information 
from the server that needs to be used to update the white-box implementation. 

 

2 The Binder invokes the Downloader which will query the WBLS server backend 

Details: The Binder invokes the Downloader passing it an identifier to the mobile block that 
should be downloaded. The Downloader establishes a connection to the ASCL, using the 
identifier related to the renewable white-box. 

 

3 The WBLS generates the new information 

Details: The WBLS receives the request for generating new white-box tables, and will send 
these back to the Downloader who will pass this information on to the Binder. 

 

4 The Binder allocates the retrieved table definitions. 

Details: The Binder allocates memory on the heap at a randomized location. 

 

5 The Binder returns control to the original application logic 

 

6 The White-Box Implementation itself is invoked 

Details: The white-box implementation itself is now invoked. This is the same workflow as the 
offline white-box workflow. The only difference is that the white-box implementation itself will 
now use the updated tables rather than the original ones. 
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3.6 Multi-threaded cryptography 
Section Author:  

Jerome d’Annoville (Gemalto) 

3.6.1 Introduction 
The multi-threaded cryptography technique is an obfuscation technique that is included in Task 
2.4 of the DoW as the domain-specific obfuscation technique. Originally, it was envisioned that 
this would be an offline binary obfuscation technique, but during the design phase, it has been 
decided that this technique can be more easily deployed at source level. Additionally, up to 
some extent this can now also be considered an online technique because it requires a server 
to generate keys that is used by the crypto processing. The multi-threaded cryptography 
protection is delivered in D2.07 (M24) and reported in deliverable D2.08 (M24). 

The use-case addressed by this protection is related to symmetric cryptography where an 
application needs to share a master key with an Application Server in order to send a 
cryptogram to this server.  

Key derivation is a cryptography function that enables to generate a derived key from a master 
key. The master key is a common secret that is shared by both sides. A non-secret data can 
be used to get the derived key from the master key. The advantage is that there is no need to 
provision the client application with a specific secret. The master key is a common secret for 
all deployed applications and is kept within the application. This master key is only used to 
produce the derived key and this derived key is to cipher the data to protect. The master key 
is stored somewhere in the application and can be found by an attacker that can either use it 
or better export it on an attacker server. 

The aim of this technique is threefold: 

• Provide a way to keep the master key in a secure place. It is not exposed in the client 
application in clear. 

• Hide the derivation key generation processing. 
• Prevent the attacker to reuse the derivation key. 

Instead of being exposed in clear within the application the master key in the client application 
is ciphered by a crypto server public key. The master key is passed to a crypto server, still 
encrypted. The key derivation is performed on this crypto server side which retrieves the 
master key thanks to its crypto server private key. Then the crypto server sends several 
derivation keys to the client application where only one is the valid key and remaining ones are 
dummy keys. A seed is returned together with the keys that enables to retrieve the valid key. 

The encryption crypto processing is done without exposing the valid secret key in the client 
application because the plain text is ciphered with several keys in parallel and all generated 
cryptograms are sent to the Application Server. Each ciphering processing is done in its own 
thread and at each round cryptograms and round keys are exchanged between threads. 
Neither the client application nor an attacker can locate which key is the valid derived key and 
as a consequence what will be the valid ciphertext. 

The multithreading crypto technique does not protect against a replacement of the plain text 
by other data prepared by an attacker. 

The implementation is done for the AES encryption for the purpose of the project. 

This protection technique can be used to encrypt data to be sent to a recipient. It has no value 
when a data needs to be decrypted like in the DRM use-case because the attacker can track 
the use of the plaintext in the logic of the application. It can be interesting if the decryption 
process can be isolated with another protection technique. 
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3.6.2 System requirements and assumptions 
The crypto server must be able to perform crypto functions such as RSA deciphering function, 
key derivation and pseudo random number generation.  

The technique needs to use the ASPIRE protocol described in Section 2, because it needs a 
strong authenticated channel between the server and the application. In the remainder of this 
section, it is assume that application authentication is taken care of. 

3.6.3 Client-side components 
The client-side components, as depicted on the right of Figure 16 are  

• A crypto library that performs all crypto operations and thread obfuscation. 
• A communication component to perform communication between the crypto-server and 

the crypto library. 

The Crypto library performs the cryptographic operations and thread obfuscation. It performs 
the computation of the various ciphertexts, and it performs the thread obfuscation as well 
during this computation process. 

As defined in the reference architecture the communication component is the interface 
between the crypto server and the crypto library. The communication protocol is implemented 
in this component. 

3.6.4 Server-side components 
The server side components are shown on Figure 16 below. The following features are 
provided: 

• Authentication token validation. 
• Derivation key generation of a master key and a seed 
• Provisioning of multiple random dummy keys to perform thread obfuscation in the client 

application. 

No direct communication is required between the Application server and the crypto server. No 
application data needs to be maintained on the crypto server.  

3.6.5 Multithreaded crypto workflow diagram 
Figure 16 presents the multi-threaded crypto processing workflow diagram, followed by an 
overview of each of the referenced steps. 
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Figure 16 – Multi-threaded Crypto Encryption Processing 

 

Seq# Operation description 
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1 AES crypto library invocation. 

Details: The application calls the crypto library with the encrypted master key, a fingerprint, 
and the plaintext as argument.  

2 Crypto server invocation 

Details: The crypto lib sends the master key to crypto server. This is a synchronous call and 
the crypto library waits for the answer. 

3 Crypto server: Master key retrieval 

Details: The Master key is retrieved: the encrypted Master key received by the server can be 
decrypted thanks to the Crypto server private key. 

4 Crypto server: key derivation step. 

Details: A derived key is generated with a PBKDF2 function. It is a standardized Password-
Based Key Derivation Function. Input arguments are the Master key and the fingerprint data. 

5 Crypto server: dummy keys generations. 

Details: The random Number Generator will produce multiple random dummy keys in order to 
be able to obfuscate the crypto process in the application. Step 4 and 5 can be called in parallel. 
These processes are independent. 

6 Crypto server: The answer to the request is sent back to the client application. 

Details: The answer is prepared. A random number generates a seed that gives the position 
of the valid key thanks to a pseudorandom number generator. Then all keys and the seed are 
returned to the client. 

7 Encryption step. 

Details: The crypto lib produces a set of cipher texts. During this process the same seed is 
used to indicate how to permute data at each rounds. The seed will enable to retrieve the 
position of the valid result.  

8 Results are returned to the application. 

Details: The application is then able to send the set of cipher text and the seed to recipient 
according to the application logic. The recipient has the Master key and is able to derive the 
same key as the crypto server thanks to the fingerprint. It retrieves the valid ciphered text to 
decrypt thanks to the seed. 
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Section 4 Anti-tampering 

4.1 Overall Anti-Tampering Architecture 
Section Author:  

Bjorn De Sutter (UGent) 

To check the integrity of a program's execution, many techniques have been proposed in 
literature. Some prevent attackers from tampering, others try to detect ongoing tampering and 
respond appropriately. In this section, we focus on such detection and response techniques, 
all of which monitor certain static program features or dynamic program behaviour. The 
monitoring happens in so-called attestation routines, that perform computations on the 
observed features or behaviour, and that produce an attestation report as a result of those 
computations. A verifier routine then checks the validity of the attestation report, and returns 
an attestation verdict. This is essentially a Boolean value marking whether the verification 
succeeded or failed, with failure indicating that (likely) tampering was detected.  

If the verification was successful, the application is allowed to continue executing. In case the 
verification fails, a response is invoked. The possible responses span a wide range, and are 
to some extent application-specific. Possible responses include halting the program, corrupting 
the program state, graceful degradation, etc. For intrinsically distributed applications, 
disconnecting from the server or temporarily limiting access is another viable solution. 
Furthermore, responses can depend on multiple verdicts, and on the time frame in which 
successes and failures occur.  

To obtain strong protection through anti-tampering techniques based on tamper detection, it is 
important to delay the response following a tampering detection, such that the attacker cannot 
easily identify (and circumvent) the cause of the response he will obviously observe. It is hence 
necessary to implement a delay mechanism as part of anti-tampering techniques.  

While in some cases there might be good reasons to deploy specific combinations of (i) 
attestation and verifier routines with specific forms of (ii) delay mechanisms and (iii) tamper 
response, these three aspects are mostly orthogonal. Moreover, the choice to implement the 
verifier locally in the client application, or remotely on a server is also mostly orthogonal to the 
other aspects.  

For that reason, we propose an overall anti-tampering architecture that composes complete 
solutions from four types of components: 

1. Attestator components: The purpose of this type of component is to collect either 
static or dynamic characteristics of the application and to prepare attestation reports 
for verifiers. Examples of Attestators are code guards or CFG tagging. 

2. Verifier components: Based on attestation reports these components control that the 
application conforms to its characteristics and does not deviate from expected 
behaviour. These components are closely linked to the Attestator components in terms 
of functionality, but may be executed locally, partially remotely, or completely remotely. 

3. Delay components: These components are the means by which verdicts made by 
verifiers are stored for later activation of response components. Delay components 
consist of data structures and of their update and query APIs that can stealthily 
encoding that tampering has been detected and that can be queried to extract that 
information.  

4. Reaction components: These components implement the actual responses in cases 
of tampering detection. These components are the reaction part that trigger adequate 
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actions to change the behaviour of the application. These actions may vary according 
the policy configured for the application.  

Conceptually, these components cooperate as depicted in the workflow diagram depicted in 
Figure 17, and further detailed in the steps following the figure. 
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Figure 17 – Anti-tamper components 

 

Seq# Operation description 

1 The attestator routine is invoked. 

Details: An attestator routine is invoked that returns the attestation report in the form of some 
data. It should be noted that the attestator can be a single monolithic routine, but it can also 
consist of a collection of smaller routines that are invoked one after the other to iteratively 
compute an attestation report. In the latter case, the routines can actually also be in-lined into 
the program and hence be indistinguishable from the application code. 

2 A verifier is invoked. 

Details: In step 2, which will typically be executed immediately after step 1, the attestation 
report is verified. This can occur locally, but it the verification can also be offloaded (completely 
or partially) onto a secure server. By offloading the verification to a server beyond the reach of 
an attacker, the attacker cannot learn how to fabricate correct responses by studying the 
verification routine. In practice, the attestator and verifier can also be combined into one 
routine. Alternatively, their invocation can be pulled apart to some degree, in order to hide the 
dependency between them. However, there always has to remain a guarantee that whenever 
the attestator routine is invoked, so is the verifier routine, and vice versa.  

3 Update the tamper detection status. 

Details: In step 3, which typically will follow immediately after step 2, the result of verification 
(the verdict) is used to encode the tamper detection status of the application. Based on the 
verdict, an update function is invoked that alters the delay data structures to encode that some 
form of tampering was or was not detected.  

It is important to note here that the update functions can also be invoked from random places 
in the original program, as long as those random invocations do not alter the information 
regarding detected tampering encoded in the data structures. This is important because such 
random updates will give the delay data structures the appearance of being integral data 
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structures of the original application, such that their true functionality is not easily identified or 
analysed by attackers.  

4 Query of delay structures. 

Details: Later in the execution of the application, in step 4, at times and places not necessarily 
linked to those where step 3 was executed, the delay data structures are queried through 
access functions. Based on the retrieved information, indicating which forms of tampering have 
been detected or not, normal program execution is continued, or step 5 is executed.  

5 Invocation of response mechanism. 

Details: A tamper response is invoked. Clearly, when step 4 and 5 would be executed 
immediately after step 3, which our architecture does not exclude, the response is immediate 
rather than delayed. So our architecture covers both versions. 

Thus, to summarize, anti-tampering comes in 2 phases: tamper detection, and tamper 
response. The detection comprises of Attestator, Verifier and update components (or a subset 
thereof); response comprises query functions and some reaction logic. In case of direct 
response (in contrast to delayed response), the verifier can directly invoke the reaction logic. 

Note that in the remote mechanisms additional logic can be available to coordinate the 
execution of attestations and verifications. 

In subsequent sections, we describe some concrete forms of the components that we will 
develop in the ASPIRE project. Furthermore, we discuss the range of functionality and 
interfaces that can be covered by the delay and response components to provide a wide range 
of delay and response tactics. Finally, we describe alternatives for implementing the 
verification step locally or remotely, and alternatives to control the invocation of the different 
mechanisms. In case a remote server handles that control, this composition is known as 
remote attestation. 

Finally, compared to the previous version of this document, the synchronous mode of remote 
attestation is no longer presented. Indeed, after the availability of the ASCL-WS, we have 
preferred the asynchronous mode, as it is more secure and closer to the theoretical case, as 
it does not allow unsolicited attestations.  

4.1.1 Tamper detection 
Section Author:  

Cataldo Basile (POLITO), Bart Coppens (UGent), Jerome D’Annoville (GTO), Alessio Viticchié 
(POLITO) 

The ASPIRE anti-tampering mechanisms can be divided in two categories: 

1. Offline code guards. Inserted invocations of hashing functions that hash part of the 
program memory are (almost) immediately followed by the verifying routine that locally 
compares the computed hash value with a value pre-computed by the ASPIRE tool 
chain.  

2. Remote techniques. We implemented completely remote anti-tampering 
mechanisms, i.e., remote attestation. In this phase the ASPIRE protection server will 
decide which code regions or application properties to attest and pass that information, 
along with, e.g., nonces to ensure protection from reply attacks.   

This section presents how the basic blocks described above can be used to implement the two 
ASPIRE code guard solutions. 
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The architecture and the workflow of these three solutions will be presented in this section 
individually. 

4.1.1.1 Completely offline combinations: offline code guards 
In case of an offline code guard, the following client-side components are required: 

• A hashing function for the Attestation component, as described in Section 4.2.2.1. 
• A hash verification function for the Verifier component, as described in Section 4.2.2.2. 
• A (possibly delayed) tamper response, such as described in Section 4.7. 

Figure 18 comprises the use-case diagram of completely offline code guards with immediate 
response, followed by a table comprising the details of each step. For delayed responses, 
additional steps like steps 3 and 4 in Figure 17 need to be added.   
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Figure 18 – Code guards workflow diagram 

 

Seq# Operation description 

1 Attestator: Hash function computes the hash of a code region. 

Details: One of the diversified hash functions spread throughout the program is executed. The 
hash function reads from a region of memory and computes a hash of this region. A hash 
bookkeeping function stores the result of this hash (or a value that depends on it) in the 
program’s data section. 

Data passing: The resulting hash value is stored to be verified in Step 2. 

2 The computed hash is verified. 

Details: The diversified hash verification code corresponding to the diversified hash function 
from Step 1 is executed. 

The verification needs to be called after the corresponding hash has been computed. 

Data passing: The verification returns a Boolean value signifying the verification status. 

3 The tamper response is activated. 

Details: As described before, the delayed tamper response is invoked depending on the result 
of the Verification step. The update functionality of the tamper response component is invoked, 
whose reaction logic can then decide when and how to respond to a verification failure. 
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4.1.1.2 Remote techniques 
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Figure 19 – Remote Attestation Architecture (from D3.04) 

In case of remote attestation, the following components as depicted in Figure 19 are needed: 

• (Client-side) an Attestator, as in Section 4.1. 
• (Client-side) a Reaction Enforcement Unit, like in Section 4.1.2. 
• (Client-side) a Delayed tamper response component, like in Section 4.1.2. 
• (Client-side) a communication logic, such as the ACCL as described in Section 2. 
• (Server-side) the ASCL, as described in Section 2. 
• (Server-side) a Reaction Manager, to request attestations to the client Attestator like in 

Section 4.1.2.1; 
•  
• (Server-side) a Verifier, able to check values provided by the attestator, like in Section 

4.1.1.2.2.1; 
• (Server-side) a Reaction Manager connected to a state DB (optionally available to the 

Verifier). 

The server side part of remote techniques must manage several clients. Therefore server-side 
components are more complex. 

4.1.1.2.1 Remote attestation workflow diagram 
This workflow, as depicted in Figure 20, describes the operations to perform a remote 
attestation. 
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Figure 20 – Remote attestation workflow.  

 

Seq# Operation description 

1,2,3 The RA  Manager  prepares and sends the attestation request to the Attestator 

Details: The RA Manager decides that the client needs to be attested and sends an attestation 
request message to the ASPIRE portal. This decision is triggered by a timeout defined, at first, 
in the ASPIRE database which can be altered at run-time according to the needs. 

The content of the attestation request depends on the technique the Attestator implements. It 
will certainly contain a nonce, which has the objective to provide anti-replay protection. 

The attestation request is then passed to the ASCL-WS (step 1), which forwards the message 
to the ACCL (step 2) exploiting the WebSocket channel, which forwards the attestation request 
to the Attestator (step 3). 

4,5,6 The Attestator performs the attestation routine and sends back the attestation report 
to the Verifier. 

Details: The Attestator prepares the attestation report according to the directives and using 
nonce and other data from the request. The Attestator then passes the attestation report to the 
ACCL (step 4), which forwards the message to the ASPIRE portal (step 5) over the standard 
HTTP channel, which forwards the message to the Verifier (step 6). 

7 The Verifier reports the verdict in the database.  

Details: The Verifier checks the report, decrees about the received attestation response and 
writes the result in the ASPIRE database. 

The result of the attestation is then available for any server side component which has to infer 
about the integrity of the client application (e.g. the Reaction Manager). 

4.1.1.2.2 Server-side component: RA Manager 
The RA Manager is the server side remote attestation component that is in charge for sending 
the attestation requests to clients. It is supposed that the Remote Attestation Manager is a bit 
more complex than in case of simple remote code guards, as it must be able to determine 
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when the right moment has arrived to force an application instance to execute the remote 
attestation. 
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Figure 21 – Architecture of the RA Manager (from D3.04). 

Therefore, the RA Manager uses one RA Manager Master, which is able to manage connection 
and disconnection of clients, and several RA Manager Slaves, which actually generate and 
send attestation requests to the clients they are assigned to by the RA Manager Master. These 
components are presented in details in D3.04. 
When the client application is reachable by the server (known because the ASCL-WS records 
the connect operations of the clients), the RA Manager (independently from the client) decides 
that a client must prove its authenticity, based on a timeout and other information from the 
Application server, like the fact that the application is connected, and the manager contacts 
the client. In both cases, the time between two consecutive requests for attestation must be 
not predictable by the client, e.g., it can be randomly chosen within a range around a fixed 
average value.  

Additionally, to optimize performance, the RA Manager may have the intelligence to force the 
use of a complex and time consuming attestation when the client is at risk, while for clients that 
have always shown a good behaviour, it can ask a fast attestation method. 
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4.1.1.2.2.1 Server-side component: Verifier 
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Figure 22 – Architecture of the Verifier (from D3.04). 

Figure 3 shows the architecture of the Verifier, which is composed of an Attestation Response 
Dispatcher and several Actual Verifiers. Actual Verifiers are needed because we support more 
than one client, and each client may be protected with different RA techniques. More precisely, 
one client may be protected with zero or more attestation techniques, and several clients may 
use the same attestation technique. Therefore, the Attestation Response Dispatcher forwards 
attestation responses to the proper Actual Verifier. 

4.1.2 Delay components and tamper response 
The tamper response is performed by a Reaction Logic, which is in charge of enforcing the 
decision of the verifier. In the end, the Reaction Logic must render tampered applications 
unusable, while still guaranteeing the correct behaviour of original un-tampered applications. 
As explained before, the Reaction Logic communicates with the Verifier, which is in charge of 
determining if an application has been tampered with or not, by means of a covert channel in 
the form of the delay data structures. 

The reaction Logic must perform two separate tasks, which are associated to two distinct 
components: 

• The Reaction Manager is the component that selects the correct reaction mechanisms 
against the tampered applications, i.e., the punishment for tampered applications. This 
decision can be made by correlating different data, e.g., the severity of the tampering, 
the frequency of verification failures as detected by the verifier, history data about the 
customer which bought the application, etc. More details on this component are 
presented in Section 4.1.2.1 

• The Reaction Enforcement Unit comprises the actual code deployed to execute the 
tamper response prescribed by the Reaction Manager. 

4.1.2.1 The Reaction Manager 
The Reaction Manager (RM) is the central component of the Reaction Logic. Its role is to 
decide if a reaction action must be taken for an application running in a device. The RM can 
run on the server side or it could also be deployed on the client side.  
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For offline protections that needs all the reaction logic to be located on the client side the 
recommendation is to implement it directly within the protection. A RM module packaged 
separately and shared by several protections could be spot by the attacker that might block it. 
Indeed, it may be difficult to transparently maintain a large history of negative and positive 
events. The RM could be kept relatively simple, e.g., the RM may enforce one reaction or a 
small set of different reactions, ordered by severity and triggered by a Tampering Severity 
Code. 

The RM on the server side is described hereafter.  

The architecture would enable sophisticated mechanisms such as an inference engine running 
on the ASPIRE DB where facts are the Attestation reports and the status of the connection 
with the Application server. For the purpose of the project the RM will run simple rules made 
of queries on the history of the Verification reports and the verdicts wrote by the Verifier in the 
database. The RM do not deduce new knowledge that would enrich the ASPIRE DB like in an 
expert system. 

From the rules decision and based on policies set for the various applications the RM Engine 
will create adequate notifications. The RM may send reaction notifications to the RA Manager, 
to the Application server and to the Reaction Waiting Unit located in the application. The 
Reaction Waiting Unit will activate the Reaction Enforcement Unit through the mean of the 
Delayed Data Structures 

The Delayed Data Structures are a covert channel between the RM and the Reaction 
Enforcement Unit. So in that case, Delay Data Structures will encode one of the different types 
of reactions the Reaction Enforcement Unit is able to enforce (or no reaction). Therefore in this 
case, the RM will use the Delay Data Structures to communicate the decision to enforce. 

4.1.2.2 Reaction Enforcement Unit 
As anticipated before, the Reaction Enforcement Unit is the component that actually contains 
the code that enforces the reaction prescribed by the Reaction Manager. 

The reactions (and the types of Reaction Enforcement Units) can be classified in two types:  

Immediate response 

Immediate responses render applications unusable right after the Reaction Enforcement Unit 
notices that the Reaction Manager has decided to punish the application. Possible Reaction 
mechanisms that implement an immediate reaction include: 

• Halting: The application code is modified in such a way that it is not executable; 
• Disconnection: Block the Application Logic of a tampered application to interact with 

the Application Server. It may be also limited in time (e.g., for 24h or one week). This 
only applies to intrinsically distributed applications – those applications that require an 
interaction with the server for their core functionality (e.g., an multi-player online game). 

Delayed response 

Delayed responses render the application unusable at some time after the Reaction 
Enforcement Unit notice that the Reaction Manager has decided to punish the application. That 
is, the Reaction Enforcement Unit starts a process of application degradation that can last 
minute, but possible also for hours or days. Possible Reaction mechanisms that implement a 
delayed reaction include: 

• Performance degradation, which consists of corrupting selected parts of the program’s 
internal state as such that the program does not fail (e.g., by entering into an unstable 
state) but shows performance degradation [Tan06]. Practically, it consists in inserting 
reaction enforcement code that changes something in the program when the detection 
routines check a fail a save failure information in the delayed structure. The reaction 
must not halt the program immediately; it is the cumulative effect of several failures that 
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must make the program unusable. For instance, some solutions proposed to place 
conditions in the loops that take more time to be satisfied. In other cases, graphical 
routines have reaction enforcement units that increase distortion of depicted 
images/draws. These techniques have been applied to games, where even a small 
delay or imprecision in movement's reaction makes the game unusable. 

• Time bombs, as described in Section 4.8. 

It is worth noting that, in case of remote guards or remote attestation code guards on an 
intrinsically distributed application, there is no need to implement at client-side a Reaction 
Enforcement Unit, as the Application server can simply stop serving application disconnect 
applications that have been identified as tampered. 

4.1.2.2.1 Reaction Enforcement unit workflow diagram 
This workflow, as depicted in Figure 23, describes how a remote RM is able to inform a local 
Reaction Enforcement Unit about its decisions. 
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Figure 23 – Reaction enforcement workflow diagram 

 

Seq# Operation description 

1 The RM queries the ASPIRE database. 

Details: The RM queries the database for application currently connected. Based on the 
current and previous verdicts the RM triggers a reaction if required. Based on the policy of the 
application the RM may or may not notify the Reaction Waiting Unit on the client side (Step 2), 
the Remote Attestation Manager (Step3) and the Application server (Step 4)  

2 The RM notifies the Reaction client side  

Details: In case the RM triggers a reaction action then a notification is sent to the Reaction 
Waiting Unit on the client side through the ASCL. 

3 The RM notifies the Remote Attestation Manager  

Details: This step is optional. In case the RM triggers a reaction action then it notifies the 
Remote Attestation Manager to enable possible adjustments in the Attestation request 
management. This notification is sent based on the policy of the application. 
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4 The RM notifies the Application Server. 

Details: This step is optional. In case the RM triggers a reaction action then it notifies the 
Application Server to enable possible adjustments in its service policy for the device where a 
reaction action has been triggered. This notification is sent based on the policy of the 
application. 

5, 6 The notification is forwarded to the Reaction client side 

Details: The notification is forwarded to the Reaction Waiting Unit on the client side by the 
communication layers on the server (ASCL) and the client (ACCL). 
 

7 Delay data structures are updated.  

Details: The Reaction Waiting Unit updates the Delay data structures to trigger 
asynchronously the Reaction Enforcement Unit. 
 

4.1.2.3 Positive reactions 
At a first glance, one may expect that the Reaction Logic will always render the application 
unusable after one or more verification failures (or other sophisticated algorithms as explained 
before). We name this behaviour or the Reaction Logic reaction to negative events, or simply 
negative reaction.  

However, we also envision an alternative, dual approach that we name reaction to positive 
events, or simply positive reaction. Intuitively, positive reaction works differently: The 
application is initially assumed as corrupted and a delayed reaction is started, but every time 
the client proves to the Verifier that it is a legitimate client, the delayed reaction is re-initialized. 
For example, every time a positive verdict is reached, the countdown of time bombs is restarted 
or the effects of the degradation are annihilated. If the verification fails only occasionally, the 
degradation or the countdown speed can be left at the same pace. If a certain amount of 
successive verifications failures has been detected, the Reaction Manager may decide to 
accelerate the pace or reset the counter, thus causing an immediate negative reaction. It is 
evident that positive reaction only works with Reaction Enforcement Units that use techniques 
that implement a delayed reaction such as time bombs, graceful degradation.  

Another possible exploitation of positive reaction is to oblige applications that are functionality-
wise able to survive without interacting with the application server for a long time, to interact 
with the security server more frequently. Applications are forced to provide an attestation within 
a given time, since they need to receive inputs from the security server to stop the code 
degradation or reset the time bombs. Of course, forcing applications to interact with the security 
server is needed in case of remote attestation or remote code guards. 

Another possible application of positive reaction is arises when applications are not intrinsically 
distributed, for instance, if the Application Logic does not require to interact with a server to 
continue its operation as discussed above. Another case may appear in case of applications 
protected with renewability, if an attacker is able to collect all the blocks that form the target 
application (even if they are not available on the client at the same time) it would be 
theoretically able to disconnect the application from the server). Positive reaction is also 
needed for applications that are designed for occasionally connected scenarios. In practice, in 
all these cases the disconnection from the services is not feasible as punishment a Reaction 
Enforcement Unit that uses positive reaction should be preferred. 
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A Reaction Enforcement Unit that implements positive response may include the following 
methods: 

• void restartReactionLogic(reactionparams) 
• void triggerReactionLogic(reactionparams) 
• void fastenReaction(reactionparams) 
• void slackReaction(reactionparams) 

The variable reactionparams is a data structure that will be used to pass additional 
information to the Reaction logic, whose type is dependent on the precise technique 
implemented.  

The Software Time Bombs reaction mechanism that is proposed in the project could be 
stopped or blocked but without absolute certainty that a degradation of the application has not 
actually started. Then no positive reaction can be implemented with this reaction mechanism. 
Still, the theoretical approach of positive reaction described above is still valid. 
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4.2 Tamper detection technique 1: Code guards 
Section Authors:  

Bjorn De Sutter, Bart Coppens, Stijn Volckaert (UGent) 

The code guards technique is part of Task T2.5 on Anti-Tampering. This section describes the 
code guards, which will be used to satisfy the code integrity requirement REQ-NFS-010 of 
D1.03. Furthermore, the response on detected tampering by this technique should have a 
delayed tamper response as per REQ-NFS-011. 

The initial work on code guards will be reported in deliverables WD2.08 (M18), D2.08 (M24), 
with initial tool support in time for D2.07 (M24). This initial support will be extended in the 
following months, to be delivered in D2.09 (M30) and will be reported about in D2.10 (M30). 

The ASPIRE tool chain will insert code guards in the protected binary. When executed, each 
guard verifies the integrity of a part of the protected binary by hashing a region in the code 
image in the application's address space in memory. 

There are two ASPIRE code guards mechanisms: offline code guards, and online code 
guards. 

4.2.1 System requirements and assumptions 
For offline code guards and online code guards we identified the following system requirements 
and assumptions: 

• By themselves, code guard computations can be identified easily by an attacker using 
dynamic techniques, and eventually be worked around [Van05]. However, when 
combined with other protection techniques, such as remote attestation, the protection 
offered by code guards increases dramatically. 

• It is easy to provide support for code guards that check other code guards, as long as 
there is no cyclical dependency between their hash values. Such dependencies can be 
avoided by excluding hash-value dependent code or data from the checked regions, 
such as when the hash values are verified on a server instead of in the client application 
itself.  

• Obviously, all expected hash values (to be embedded in the program itself or to be 
used on the server side) should be computed on the final binary, i.e., after all other 
protections have been applied.  

• Only the code of the protected library itself is guarded. External code that is invoking 
protected code can only be protected by means of call stack checks (see Section 4.3). 

For remote attestation with code guards we identified the following additional system 
requirements and assumptions: 

• Data authentication for attestator and verifier messages is mandatory to avoid simple 
black box attacks. An attacker may tamper with server-messages to trigger the 
attestator to produce a set of valid attestation reports. To avoid this, server-
authentication verification is needed. Client-side authentication is also needed, for 
example to allow the server-side verifier to univocally identify attestation report 
originators.  

• An attestation report may contain privacy-sensitive data, i.e., data that univocally 
identifies the client, or simply valid attestation reports. Therefore confidentiality is 
advisable. 

• Network access is needed, albeit not necessarily continuously. Note that this 
requirement is valid also for remote code guards. 
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4.2.2 Client-side components  
4.2.2.1 Attestator routines: Hashing functions 
Code guards are known to get their strength from protecting each other. This requires multiple 
diversified guards spread throughout the code, including multiple diversified hashing functions. 
We foresee to inject many of them into the protected binary or library, with each instance 
guarding a hard-coded region.  

At each program point where a code guard needs to be invoked, a call will be inserted to the 
linked-in hash function, as well as code that sets up the necessary arguments, like the start 
and end addresses of the code region to be guarded.  

When used with online verification or remote attestation, the hashing functions will rely on a 
nonce (to avoid replay attacks).  

Furthermore, when used with an online verifier, the computed attestation will consist of the 
hash, plus an identifier of the specific guard that was invoked, such that the online verifier 
knows which guard (i.e., hash algorithm and parameter combination) was invoked.  

4.2.2.2 Offline verifier routines: hash check functions 
For offline code guards, each hash function instance will come with a corresponding hash 
check function that performs the verification of the computed hash. This function takes as a 
parameter the return value of the hash function, and returns a verdict.  

This verdict can be a Boolean value, but it can also be a set of parameter values to pass upon 
invocation of an update function of the delay data structures. In the former case, the invocation 
of the verifier will be followed by a conditional (i.e., on the Boolean return value of the verifier) 
invocation of an update function with fixed parameters to record the verdict in the delay data 
structures. In the latter case, an unconditional invocation with the provided parameters is 
executed after the verifier routine. Such unconditional code is typically much less easily 
identified by an attacker as code passing verdicts. It is, in other words, much more stealthy.  

This hash check function will be compiled and diversified from the same library as the hash 
functions.  

4.2.3 Server-side components for online code guards 
The client-side online components require interaction with server components. We foresee 
three server components for the online code guards: a hash randomization component, a hash 
verification component, and the ASPIRE database to keep track of state.  

4.2.3.1 Hash randomization 
In the online scenario, the server selects the client’s hash function and/or hashing key. The 
client has initiated a connection with this component through the ASPIRE portal. The client 
sends to the server an ID identifying the application, and an ID identifying the specific code 
guard communicating with the server. The hash randomization component of the server 
chooses the hashing function, hashing key and hashed code regions for a client’s code guard, 
sends this information to the client. Furthermore, in the code guard database this component 
stores which nonce, hashing function, and code region should now be used by this client 
application’s code guard. 

4.2.3.2 Hash verification 
The client’s code guard sends its computed hash back to the server, together with information 
identifying the code guards. The server accesses the code guard database for information on 
this code guard, and whether or not the hash sent by the client matches the correct hash, 
based on the selected hashing function, hashing key and code regions. The server sends the 
verification result back to the client, and possibly informs the original application server about 
the failed verification. 
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4.2.3.3 ASPIRE database 
The server needs to keep track of which hash function, hash key and code region is associated 
with each code guard. This information is stored in the ASPIRE database. 

4.2.4 Code guards offline techniques workflow diagram 
Figure 24 comprises the use-case diagram of offline code guards, followed by a table 
comprising the details of each step. We only detail the Attestator and Verification components 
of the code guards, the combination of code guards with a Tamper response is further detailed 
in the Section 4.1. 

Original	Application	logic

Hash	
function

1 1

Hash	Check	
function

2 2

Tamper	
response

3 3

 
Figure 24 – Offline code guards workflow diagram 

 

Seq# Operation description 

1 Attestator: Hash function computes the hash of a code region. 

Details: One of the diversified hash functions spread throughout the program is executed. The 
hash function reads from a region of memory, and computes a hash of this region. A hash 
bookkeeping function stores the result of this hash (or a value that depends on it) in the 
program’s data section. 

Data passing: The resulting hash value is stored to be verified in a later step. 

2 The computed hash is verified. 

Details: The diversified hash verification code corresponding to the diversified hash function 
from Step 1 is executed. 

The verification needs to be called after the corresponding hash has been computed. This step 
can either be merged with the hash computation for immediate hash verification, or it can be 
executed later during the program’s execution for delayed hash verification. 

Data passing: The verification returns a Boolean value signifying the verification status. 
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4.3 Tamper detection technique 2: Call Stack Checks 
Section Authors:  

4.3.1 Introduction 
The call stack checks technique is an anti-callback technique that is part of Task T2.5 on Anti-
Tampering. It implements part of requirement REQ-NFS-013 of D1.03 that code injected by an 
attacker cannot call back into protected code. Furthermore, the response on detected 
tampering by this technique can have a delayed tamper response as per REQ-NFS-011. 

Implementing call stack checks as originally described in D1.04 v1.0 proved to be harder than 
anticipated. Therefore, we had not concrete initial work to report in M18 yet. The initial work 
on call stack checks is reported in deliverables WD2.08 (M18), D2.08 (M24), with initial tool 
support in time for D2.07 (M24). This initial support will be extended in the following months, 
to be delivered in D2.09 (M30) and will be reported about in D2.10 (M30). 

Call stack checks provide anti-tampering for protected binaries by regularly checking that 
certain features of the call stack are consistent with non-tampered execution. For the ASPIRE 
project, we will implement simple return address checks that verify that the return addresses 
of functions originate in allowed code regions. The allowed code region consists of the entire 
executable segment of the protected library or application. 

 

4.3.2 System requirements and assumptions 
• Call stack checks prevent a program under attack to execute with invalid code 

addresses on the stack. Attackers can avoid the occurrence of invalid code addresses, 
however, by allocating their malicious code at valid addresses, i.e., by overwriting 
original application code at valid addresses. To prevent such attacks, code guards 
need to be applied (See Section 4.2).  

• Call stack checks will only verify internal functions, i.e., functions that provably can only 
be called from other functions of the protected program. Functions that are exported, 
or that can be called as a call-back function from external code will not be protected. 

• Call stack checks will only verify one single caller of a function, rather than the entire 
call stack. 

• If a protected function can only be called from a single call site, the call stack checks 
will verify that, on function entry, the return address corresponds to this single call site. 
In all other cases, call stack checks will verify only that the return address originates in 
the protected library. 

• While these call stack checks could in principle be extended to interact with mobile 
code, we will not implement this in the scope of the ASPIRE project.   

4.3.3 Client-side components 
The call stack checks themselves are small code fragments that are in-lined in diverse 
locations in that application code.   

Figure 25 presents the call checks workflow, followed by a detailed description of each of the 
steps below the figure. 
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Figure 25 – Call stack check workflow diagram 

 

Seq# Operation description 

1 Call stack check is triggered and executed. 

Details: Code that has been protected with call stack checks has had small check stubs 
inserted. These check stubs perform the call checks themselves. 

Dependencies: The usefulness of this step depends on the integrity of the code located on 
the addresses in the call stack. Thus, code guards need to be used in combination with this 
technique.  

2 Control flow is redirected. 

Details:  

When the check succeeds, regular program execution continues. When it fails, for example 
because a return address is found on the stack that is not allowed there, a tamper response is 
triggered. This response can be delayed by means of the functionality provided through delay 
data structures and a range of response mechanisms. However, in case the check detects that 
sensitive code is invoked in unauthorized ways, the response should not be delayed. Instead, 
the execution of the code should be interrupted immediately to prevent the execution of 
computations or communications that leak sensitive data.  
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4.4 Tamper detection technique 3: Static Remote Attestation 
Section Authors:  

Cataldo Basile, Alessio Viticchié (POLITO) 

 
Figure 26 – Static remote attestation reference architecture 

 

Static remote attestation is an instantiation of remote anti-tampering technique.  

The purpose of static remote attestation is to attest selected code areas of the application in 
memory that need to be protected for integrity. One of the main design constraints is that static 
remote attestation techniques are not vulnerable to replay attacks (i.e., reusing previously 
generated attestation data that can be resent by a man-in-the-middle attacker). Therefore, 
attestations are computed using a random nonce that is sent by the RA Manager. Moreover, 
the value of the nonce drives the attestation process: the area to attest and how areas’ data 
are processed  

Compared to the general architecture, in the static remote attestation in Figure 26 an additional 
component is present, the Extractor, whose purpose is to pre-compute attestation data, as will 
be described later in Section 5.2.2.4. 
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Figure 27 – Static remote attestation workflow. 

Figure 27 presents the up-to-date workflow for remote attestation: 

• When the RA Manager retrieves a new fresh nonce to prepare an attestation request 
for a client, it also verifies how many remaining nonces are available for a given user  

• The server-side RA Manager sends an attestation request to the client Attestator using 
the ASCL. The format of an attestation request is described in Section 4.4.1.4.1. 

• The client-side Attestator computes an attestation response and sends it to the server-
side verifier. The format of an attestation response is described in Section 4.4.1.4.2. 

The M24 remote attestation prototype implements exactly this protocol. 

4.4.1.1 Attestator 
This client-side component is in charge for processing attestation requests received by the RA 
Manager. It produces the attestation response, with an ad hoc attestation data generation 
algorithm, and the attestation response, by hashing the attestation data and other client 
identification information. Afterwards, the Attestation sends the Verifier the attestation Reply 
by means of the ACCL. 

The Attestator is executed when an attestation request is received by the client communication 
logic and directed to the Attestator. Due to the characteristics of the current implementation of 
the ACCL based on web sockets, the Attestator is executed in a separate thread. 

There are several variants of the attestator (and corresponding Actual Verifier) depending of 
four components: 

• Random walk algorithm, which defines how the memory area to protect is processed 
to obtain the attestation data; 

• Nonce interpretation, which defines how the nonce are split and processed to derive 
the parameters used by the random walk algorithm; 

• Representation of the memory areas to protect, which encodes the memory block that 
form all the memory areas to protect; 
Hash functions, which are used to digest the attestation data. 
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4.4.1.2 Static RA Actual Verifier 
The Actual Verifier is the server-side component that checks the correctness of attestation 
responses. To perform this verification it compares the attestation response with the result of 
the same computation performed on the same attestation data obtained from an untampered 
version of the application to protect. There is no direct communication between this Actual 
Verifier and the RA Manager. When the Verifier receives a new attestation response, it collects 
all the needed information about the request that solicited the response in the ASPIRE DB. 

The attestation data may be generated after a response is received or pre-computed and 
stored on the ASPIRE DB.  

The Verifier logs on the DB the result of the attestation according to the following codes: 

• PENDING, if no answer has been received yet, the timeout has not expired; 
• SUCCESS, if the request has been received on time and the Verifier has verified it as 

correct; 
• FAILED, if the requests has been received on time and the Verifier has verified it as 

incorrect; 
• EXPIRED_SUCCESS, if the request has been received late and the Verifier has 

verified it as correct; 
• EXPIRED_FAILED, if the request has been received late and the Verifier has verified 

it as incorrect; 
• EXPIRED_NONE, if no answer has been received and the timeout has expired. 

4.4.1.3 Extractor 
The Extractor is the server-side component that pre-computes and stores in the ASPIRE DB 
the attestation data associated to the nonces. 

Practically, it randomly generates a set of nonces. Starting from an untampered version of the 
application to protect, it then computes the attestation data. To permit the reuse of the same 
nonces with different clients, the extractor does not compute attestation responses, only 
attestation data. As presented in Section 4.4.1.1, attestation responses are obtained by 
concatenating client-specific to the attestation data before computing the hash, thus attestation 
data can be shared among clients.  

The presence of an Extractor allows the reduction of the verifications’ time and load at run-
time, even if the same computations need to be performed off-line. However, from our 
experience, the Extractor is very efficient, hundreds of nonces and related attestation data can 
be produced in seconds on an off-the-shelf laptops. The nonce generation can be easily 
parallelized. 

The Extractors is a helper component that is neither exposed as an ASPIRE service nor directly 
reachable by clients, it is only invoked by the RA Manager when the number of remaining 
nonces is less than a predefined threshold. 

4.4.1.4 Static RA Messages 
This section presents the current attestation request and response message format. These 
format is being rearranged to support, in Y3, the use in the same clients more variants 
attestators in the same client to attest the same memory areas. 

4.4.1.4.1 Attestation request 

 
Figure 28 – Attestation request format 
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The attestation request uses the following format (see Figure 28): 

• REQUEST_ID, 8 bytes used (together with the client ID) to univocally identify the 
attestation request (in the ASPIRE DB) 

• NONCE_LENGTH, 4 bytes used to indicate the length in bytes of the nonce, in our 
case NONCE_LENGTH = 32 

• NONCE, the actual nonce. 
Currently, the  

4.4.1.4.2 Attestation response 

 
Figure 29  – Attestation response format 

The attestation response uses the following format (see Figure 29): 

• REQUEST_ID, 8 bytes used to univocally identify the attestation request to which this 
response pertains; 

• DATA_LENGTH, 4 bytes used to indicate the length in bytes of the nonce. This length 
depends on the output of the hash algorithm used; 

• RESPONSE, the actual response. 
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4.5 Tamper detection technique 4: CFG Tagging 
Section Author:  

Jerome D'Annoville (GTO) 

4.5.1 Introduction 
CFG tagging is an anti-tampering technique that aims to detect if the execution flow graph is 
modified in a way that is not expected by application developers. This protection originates 
from code coverage tools used in software testing where it enables to measure the amount of 
code that is activated by a test suite. A common implementation of such tools is to insert probes 
in the code to measure the edges of the CFG that are actually activated by the tests.  

The same idea is reused with the CFG tagging protection where some counters are inserted 
in the code and each time a supervised basic block is activated the corresponding counter is 
incremented. The counter management code, call the Gates, are the Attestator part of the 
tagging protection. The Gates are distributed in the CFG of the application according to the 
annotations set in the source code. The Verifier part of this protection technique checks if 
counters values are consistent. Based on rules set in annotations the Verifier gets counter 
values and checks that rules are respected. If it is not the case, it means that an incorrect 
behaviour is detected in the execution flow of the program and the Verifier triggers the reaction 
mechanism by setting adequate indicator in the Delay Data Structures forcing the program to 
activate an appropriate response.  

This protection technique requires the application developer to specify which paths in the 
execution flow have to be supervised and to set coherence rules that will be checked in the 
Verifier. It is also theoretically possible to perform an exhaustive protection of the execution 
flow, but this would probably lead to heavier control computations, which first would make them 
easier to spot by an attacker and second would bloat the code with useless controls. 

The Verifier code can be inserted in the application code or be located remotely and combined 
with the online remote attestation protection technique. In the latter case counter values are 
sent to the server in a payload. For the purpose of the project only the offline release will be 
implemented. See the plan in the next paragraph about the online CFG support. 

This CFG tagging technique has been initially described in the WP3 part of the DoW as a 
remote attestation technique. However, further analysis has revealed that the tagging 
technique can be decoupled from the response step and that the verifier component can be 
either local or remote. Then the offline part with the Attestator –the Gates- and offline Verifier 
will be available in D2.09 (M30) and described in D210 (M30). In the meantime the Reaction 
logic will be supported on the server and combined with the Remote Attestation protection. 
Then in Q2 2016 the CFG online will be implemented with the Verifier on the server. This 
feature will be available in D3.07 (M33) and reported in D3.08 (M33).  

4.5.2 System requirements and assumptions 
The purpose of the CFG tagging protection is to provide a way to check that identified parts of 
the application have been executed as expected. Code transformations can be applied after 
Gates and Verifiers have been inserted, which will reinforce the tagging protection by hiding 
more deeply the tagging code, thus preventing the attacker to spot the protection code through 
pattern matching.  

Tagging is also complementary with code integrity checking techniques brought by code 
guards. A Gate would take advantage of the static protection by guards, as any code 
modification attempt to change the Verifier part could be detected by the guards. 
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4.5.3 Client-side components 
The CFG Tagging technique is focused on the application execution flow by tracking the 
dynamic execution path with the following components: 

• Attestators: these components are a set of probes, called the Gates. A Gate is the place 
where a counter is incremented. 

• Verifiers: in accordance with the information provided by the various counters, the 
Verifiers are detecting changes in the expected execution flow by checking the 
consistency of the counter values. Verifier code can be either local or remote and in 
this later case another component is required to interface with the server. This 
component is a Verifier connector. 

• Verifier connector: This component sends data remotely in case the Verifier is on the 
server side. 

4.5.3.1 Counter 
A counter is a data location in memory to save an integer value. It should simply be correctly 
hidden, in order to make its detection more difficult for attackers. Indeed, the counter location 
is critical information with this protection technique. Rather than trying to add protections on 
the counter, the option has been taken to keep it as lightweight as possible. 

4.5.3.2 Attestators 
The application is sprinkled with Gates, which are small pieces of code inserted in a basic 
block. The density of Gates is a parameter that is left to the user’s choice and will be driven by 
annotations. Once a Gate is reached, the related Counter is updated to reflect this node of the 
CFG has been activated. 

Each Gate needs to access two data elements in memory: a factor and the Counter. It is 
important to hide these addresses computation and not to hardcode them directly in the Gate. 
Thus, those values are split in two: one part is hardcoded in the Gate, the other is in memory 
and accessed indirectly by offset. 

4.5.3.3 Local Verifier 
A local Verifier retrieves the Counter values required to check a rule, it checks the rule, and in 
case it fails it sets up the data structures in the delay component that will be used by the 
reaction code.  

4.5.4 Verifier connector 
The role of this component is to get counter values, prepare a payload and send it to the remote 
verifier. A Verifier identifier is also passed in the payload to enable the Verifier to retrieve the 
corresponding rule and to make the matching with the counters passed in the payload.  

4.5.5 Server-side components 
The advantage of using a remote Verifier is that no expected counter values appear in the 
client application code as immediate values. This makes it more difficult for an attacker to 
guess what should be restored in case the code has been tampered with. A drawback is that 
calls to the server are easy to retrieve and arguments passed in the payload can perhaps be 
analysed by the attacker. The main issue using a remote Verifier is that the reaction client part 
waiting for reaction notification from the Reaction Manager cannot hidden within the application 
is can be blocked by the attacker. 

4.5.5.1 Remote Verifier 
The rule is checked the same way it is done in the local Verifier. The main difference is that 
data have are saved and retrieved to/from the ASPIRE database. The reaction can differ 
because the application server can be notified in case a rule is not checked. 
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4.5.5.2 ASPIRE database 
The ASPIRE database contains the rules and the Counters passed for a rule.  

4.5.6 CFG tagging offline technique run-time behaviour 
Figure 30 depicts the offline CFG tagging workflow diagram, followed by a detailed overview 
of the referenced steps. 
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Figure 30 – Offline CFG Tagging workflow diagram 

 

Seq# Operation description 

1 The Gate increments the Counter’s value. 

Details: The execution flow reaches a Gate. The Gate increments the Counter value. 

 

2 The Verifier checks for deviation.  

Details: The execution flow reaches a Verifier. It retrieves the required Counters’ values and 
performs several computations with it. The details of these computations are determined by 
the rules set by annotations in the source code. According to result of these computations the 
adequate field in the Delay Data Structures is set. 

4.5.7 CFG tagging online technique run-time behaviour 
Figure 31Error! Reference source not found. depicts the online CFG Tagging workflow 
diagram, followed by a description of the referenced steps. 
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Figure 31 – Online CFG Tagging workflow diagram 

 

Seq# Operation description 

1 The Gate increments the Counter’s value. 

Details: When the execution flow reaches a Gate then the Gate increments the Counter value. 

 

2 The Verifier Connector prepares a payload.  

Details: The execution flow reaches a Verifier Connector. It retrieves the required Counters’ 
values and prepares the payload. 

 

3 The Verifier Connector sends a payload to the Remote Verifier.  

Details: The payload is sent to the ASPIRE portal that forwards it to the Verifier.. 

4 Verdict is saved in the Database.  

Details: The Verifier check if the counter values conform to the rule. The verdict is stored in 
the database. The reaction logic will be triggered independently from those verdicts.  
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4.6 Tamper detection technique 5: Anti-cloning 
Section Author:  

Brecht Wyseur (NAGRA) 

4.6.1 Introduction 
An inherent problem with software applications running on open platforms is that its code and 
data can always be copied. An attacker can always replicate the binary representation of an 
application to run it on another machine. 

One solution to mitigate such attack is by binding the application and its execution to the 
platform. This could be achieved using special-purpose hardware that ensures unique 
execution of applications. This however is not feasible on open platforms as we envision in the 
ASPIRE project. In our attack model (as described in deliverable D1.02), an adversary can 
intercept and emulate any communication between the application and the hardware. 

In Task 3.2 of the ASPIRE project, we will develop a solution to this problem, which we denote 
as the anti-cloning technique. This is a technique that allows for remotely managing unique 
client identification, and can detect when two versions of the exact same application (clones) 
are running. This is challenging to detect, in particular when the two instances are running 
each in a different time frame. Two instances that are running at the same time could be 
detected through behavioural analysis of the network connectivity; two instances running 
sequentially can be hard to distinguish, as they are identical. 

The underlying idea of the technique is to make applications evolve uniquely, and enforce this 
using the network connection. While two applications may be identical at the moment when 
one is cloned from the other, as soon as one connects to the ASPIRE anti-cloning security 
service, they will differentiate. This evolution can be enforced prior to the delivery of any 
valuable service. 

Attackers that aim to mitigate this technique will need to clone the application again each time 
they wish to request the service, as their instance will be desynchronised once the other 
instance has connected. This is an attack that is hard to scale, and meets the objectives of the 
ASPIRE project, where we aim to discourage attackers, in this case by forcing them to make 
continuous efforts. 

In this section, we describe a preliminary proposal of such anti-cloning mechanism. As T3.2 
starts at M10, only initial ideas are available so far. Details on this construction will be reported 
in Deliverable D3.01 (M18). 

4.6.2 System requirements and assumptions 
The Anti-Cloning mechanism requires an occasionally connected system. 

4.6.3 Client-side components 
4.6.3.1 Tag 
A special-purpose value needs to be introduced in the application. We denote this value as 
‘Tag’ value. It embodies the evolution of the application instance. The variable will be frequently 
updated during the execution of the program. 

The tag value should be persistent between different executions of the application and should 
thus be stored in non-volatile memory, preferably in a way that makes it non-trivial to identify 
and copy the variable. 
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4.6.3.2 AC manager 
The client-side anti-cloning functionality is introduced by the AC manager, which is a library 
that needs to be statically linked with the application. The AC manager can be invoked with a 
call to its API to launch the mechanism, will manage the responses from the server, and update 
the tag value when needed.  

4.6.4 Server-side components 
4.6.4.1 AC decision logic 
The AC manager interacts with a server component, which we denote as the Anti-Cloning 
decision logic. This component can verify the correctness of tag values of application instances 
by comparing the received tag value with the expected tag value that is stored in the ASPIRE 
backend DB. 

This component is also able to signal to the AC manager that the tag value needs to be 
updated. This AC decision logic is defined in a policy which can be configured. The 
configuration of this policy is out of scope of the ASPIRE project. 

4.6.4.2 ASPIRE database 
A list of expected tag values corresponding to the client identifiers needs to be stored in the 
ASPIRE database. 

4.6.5 Anti-cloning workflow diagram 
Figure 32 depicts the anti-cloning workflow diagram, followed by a detailed overview of the 
referenced steps. 
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Figure 32 – Anti-cloning workflow diagram 

 

Seq# Operation description 

1 AC manager is invoked by the client application. 

Details: The AC manager is implemented as a native library, and exposes a C function that 
can be invoked. 

2 Tag value is sent to the server-side support logic. 

Details: The AC manager fetches the tag value, and sends this value to the AC decision logic. 
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3 The AC decision logic queries the ASPIRE database, and decides what its response 
will be. 

Details: The response depends on 

• The value of the (ID, tag) couple that is received, 
• The policy that is implemented by the AC decision logic 
• The Tag value that is stored in the ASPIRE database, associated to the application ID. 
• The current state of the application (e.g., the application may have been blacklisted) 

There are three possible responses: 

1. The AC decision logic decides that the (ID, tag) couple that is received is OK, and no 
further updates are needed. It will respond “OK”. 

2. The AC decision logic decides that the tag value needs to be updated at client side. In 
its response, it will send payload to the application that it needs to use to generate a 
new tag value. It will then respond “UPDATE, Nonce” 

3. The AC decision logic decides that the (ID, tag) couple is unacceptable, and will 
blacklist the application associated to the ID. It will respond “NOT OK”. 

4 The AC manager receives the response from the server, and takes subsequent 
action. 

Details: The action that the AC manager takes is defined from the response received. 

If an update response is received from the server (“UPDATE, Nonce”), the AC manager will 
compute a new tag value, using that Nonce, and proceed to step 5. 

In the case of “OK”, the AC manager will return control to the original application (step 6). 

In the case of “NOT OK”, the AC manager can invoke the delay component to update its data 
structures to trigger a delayed tamper response (See Section 3.6), or can directly trigger a 
tamper response. 

5 The tag value is updated 

Details: The AC manager will update the tag value with the new computed tag. 

Subsequently, the sequence flow will proceed with step 2 again: fetching the (new) tag value 
and send it to the server, waiting for its response. 

6 The AC manager returns control to the application. 

 

4.6.6 Server status report request 
The application server can request the ASPIRE portal if a specific application ID is blacklisted 
or not, as depicted in Figure 33. 
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Figure 33 – Request for trustworthiness status report 

Seq# Operation description 

1, 2 The server initiates the request. 

Details: The server connects to the ASPIRE portal, requesting for a status update on the 
application instance identified with ID. The ASPIRE portal forwards the request to the AC status 
logic. 

3,4,5 The AC status logic returns the status report. 

Details: The AC decision logic fetches the information related to the application instance from 
the ASPIRE database, and derives a status report from it. It sends the report as return 
message to the application server that requested the report. 

 

4.6.7 Error management 
There might be an issue in case of de-synchronisation between the tag value at client-side and 
the tag value that is stored in the ASPIRE database. This can occur when the AC decision 
logic updated the ASPIRE database value, but the AC manager failed to update the tag value. 

Fall-back mechanisms to resolve such issues in case of de-synchronisation can be designed, 
but we consider them to be out of scope of the ASPIRE project. They are not of core relevance 
to the protection technique but rather a pure engineering task. This relates to the 
implementation of a policy and management of blacklisted clients. 
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4.7 Delayed Tamper Response: Delay Data Structures 
Section Authors:  

Bjorn De Sutter, Bart Coppens (UGent) 

Sections 3.2 to 3.6 focused on techniques with which verdicts about tampering could be made. 
Now we shift the focus to reacting on those verdicts, and to delaying that reaction. As explained 
in Section 3.1, the overall strategy and architecture is to record the verdict in so-called delay 
data structures by invoking update functions on them, and to react upon the recorded verdicts 
in (unrelated) locations later during the execution of the program on the basis of queries to 
those data structures. In this section, we focus on the delay data structures and their possible 
APIs, and on the possible reactions. 

4.7.1 Delay data structures and their API 
4.7.1.1 Data structures 
In support of delayed tamper responses, a set of statically and/or dynamically allocated data 
structures is injected into the program, together with a number of update functions and query 
functions that manipulate and query the data structures. The core concept is that under normal 
operation of the program, the data structures maintain one or more invariant known at compile 
time. During the execution of the program, update functions on the data structures can be 
invoked that maintain the invariants. However, whenever a negative verdict occurs, an update 
function will be invoked that breaks one or more invariants. Thus, the data structures keep 
track of possibly multiple forms of tampering having been detected or not, and they do so in 
an obfuscated manner. By querying the data structure, the encoded properties can be 
retrieved, and delayed responses can be implemented without directly linking their trigger to 
the failed code guard.  

To avoid easy detection by attackers, the data structures used to encode information about 
the status of protections should not be fixed or special-purpose. Instead multiple variations 
should be available that span a wide range of commonly used data structures. Overhead and 
protection level can then be considered when choosing particular implementations, and 
variations can be chosen that are in line with the data structures already present in the original 
program. For example, if a program already involves many linked lists or hash tables, encoding 
verdicts in the data contained in such container structures will be much stealthier than using a 
number encoding based on prime numbers that occur nowhere else in the original program. 

Furthermore, the interface to those data structures should not be fixed. It cannot be fixed 
because a wide range of data structures has to be supported, and it should not be fixed 
because it should not be easy to identify its use in a program, e.g., through the pattern matching 
attacks described in D1.02.   

Some potential data structures that might be useful, ranging from very simple ones to very 
complex ones are the following:  

• Numbers encoding information, in which case bit combinations or mathematical properties 
of numbers encode the status. 

• Containers where the number of elements with certain keys or values store can store the 
status, as can the presence of aliasing iterators operating on the data structures. 

• Graphs, in which presence of certain aspects encodes the status, such as nodes with 
multiple incoming edges, or loops in the graphs, ... 

• Automata in which the states encode the information. 

The number of available options is only limited by human imagination.  
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Depending on the overall form of the anti-tampering technique (e.g., offline techniques only vs. 
remote attestation) and on the types of response that need to be activated, different forms and 
amounts of information need to be encoded: In the simplest case, only the presence of 
tampering needs to be encoded. In more complex schema, it might be encoded which 
technique resulted in a negative verdict, how many times that has happened, how many times 
that has happened since the last positive verdict or since the last verdict executed under the 
control of a remote server, etc. For example, the information stored could be a combination of 
the following Boolean values: 

• t_bool has_been_tampered:1 This directly stores whether any tampering took place. 
• t_bool CFG_tagging_violation: This stores whether one specific form of tampering 

was detected. 

 

4.7.1.2 Update and Query Functions 
Based on a negative verdict, the protected program will invoke an update function to record 
the verdict in the data structures. A wide range of interfaces can be used for this purpose, such 
as 

• set_tampering() This update function is to be invoked conditionally, i.e., only when the 
verdict was negative. This is relatively easy to spot by an attacker. 

• set_CFG_tagging_result(t_bool verdict) This update function can be invoked 
unconditionally, and is given the Boolean verdict as an argument. 

• insert(int key, void * value) The verdict and the status update to be recorded is 
encoded in some property (known at compile time, but not easily determined by an 
attacker) of the key value, the values of where the pointer points to, and/or the pointer value 
itself.   

While the former interface is easier to handle in a protection tool flow, the latter interface is 
much stealthier; in particular if no conditional statements are executed inside the update 
function for which the verdict needs to be extracted explicitly from the passed arguments. 
Human imagination again seems to be the limiting factor, as well as the needed compiler 
support, and the fact that the verifier routines (local or remote) need to be able to generate the 
appropriate arguments for the update functions. The more complex the interface and the 
encoding of the verdict in the passed arguments, the more tightly coupled the verifier routine 
and the delay data structures become. This more complex interface can be automated to a 
large degree, by allowing users to define the complex data structures, and the effect that 
different functions and their arguments have on these data structures. The tool chain can then 
automatically inject the correct function calls with the correct arguments. 

Similarly to the update functions, the query functions can span a wide range of interfaces, such 
as  

• t_bool check_tampering() 
• void check_tampering(int * result) (result in memory)  
• void * check_tampering() (pointer is result) 

With each of the above interfaces, the result can be turned into a Boolean predicate (i.e., a 
conditional branch) that is used to invoke a tamper response or to continue normal execution. 
Alternatively, and much stealthier, the query operations can result in data, like pointers, on 
which unconditional actions are performed that, in case no tampering was detected, leave the 

                                                

1 We should note that while we use meaningful function and variable names in this section for 
the sake of clarity, obviously no function or variable names will be present in the generated 
code.  
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normal program execution unaltered, and in the other case trigger the actual response, e.g., 
by corrupting the memory. For example, with the latter query function, the returned pointer 
value might be passed to the memset() function. In case no tampering was detected, the 
pointer points to an injected array that may be overwritten without affecting the rest of the 
execution, while in case tampering was detected, it points to some random location in the 
middle of the program's true data, which is therefore corrupted by the memset operation.  

Again it is clear that a simpler interface supports a looser coupling between the query functions 
and the actual tamper responses, while a more complex one will allow a stealthier coupling.  
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4.8 Reaction: Software Time Bombs 
Section Author:  

Jerome d’Annoville (Gemalto) 

4.8.1 Introduction 
Each software protection needs to be protected itself to prevent attackers to make the 
protection ineffective. Several strategies exist to achieve this, like integrating a protection 
mechanism in the protection itself. This technique is used, e.g., by viruses that are encoded 
as bytecode to a custom embedded VM to make their detection more difficult. Another strategy 
is to hide the protection as much as possible making it difficult to spot for an attacker. This 
latter strategy is used for Software Time Bombs (STB). 

STB is a technique developed for the purpose of providing a reaction mechanism for other 
protection techniques. It is a partial defence mechanism, since it does not provide any 
detection functionality but only a reaction functionality. It is accessible through an API enabling 
other protection techniques to alter the behaviour of the application in case of attack detections. 

STB provides protections with a delayed damaging action on code execution. When started, 
STB eventually stops the execution of the program . Through the API, methods are provided 
to control the behaviour of this mechanism. Besides enabling the activation of STB, the 
defence action delay offers an advantage of stealth to the protection. Indeed, it makes it more 
difficult for an attacker to find that STB is the cause of the program stoppage if the related 
reactive action is noticeable some amount of time only after its triggering. 

STB is one of the protection of Task 3.2 of the DoW, as a reaction mechanism of the Remote 
Attestation protection method based on CFG tagging. During the design and brainstorming 
about different techniques, however, it became clear that this technique could be proposed as 
a service that anti-tampering techniques can use as reaction mechanism..  

The experimentation on this technique are reported in D3.04 (M24). Final support will be 
provided in D2.09 (M30) with associated report in D2.10 (M30). 

4.8.2 System requirements and assumptions 
Once started, STB performs very few actions until a certain point. Once this point is reached, 
the real defence mechanism is triggered. From then on nothing can be done anymore to make 
the program working correctly. The behaviour of STB is controlled through its API: 

• startReaction(): Start the reaction timer. Other API methods (restartReaction 
put aside, obviously) have no effect on the STB behaviour if this method is not called. 

• restartReaction(): Restart the reaction timer as if it was just started for the first 
time. The speed of reaction although remains the same as before the 
restartReaction invocation. 

• stopReaction(): Stops the reaction. If the reaction is restarted, it restarts from the 
beginning. 

• fastenReaction(): Ups the reactions speed. 
• slackReaction(): Slows the reaction speed down.  

Two usage scenarios supported with such an API include both Positive Reaction or Negative 
Reaction, as discussed in Section 4.1.2.3. Negative Reaction is the direct triggering of the 
reaction mechanism on detection of a threat. STB could be useful for such a usage in the case 
of unsure detections. For example, if a detection mechanism notices a threat but is not sure of 
it, it can start the STB mechanism and stop it if the threat is later proved unfounded (false 
positive).  
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Positive Reaction works the other way around. The STB has its reaction started from the 
beginning of the execution. Security checks are performed on regular basis and if they 
succeed, the reaction is restarted. If they fail, obviously the reaction is not restarted and the 
execution eventually fails. In this usage scenario, functions startReaction and 
stopReaction are not required. For the purpose of the project only Negative Reaction is 
proposed for online protection techniques and it is not recommended to use STB as a positive 
reaction mechanism by the offline protection techniques because there is no control on the 
time where the degradation has reached the non-return point.  

Again, STB is not intended to work by itself. It is both a Delay and Response component that 
acts on behalf of protection techniques and which action is controlled by protection techniques. 

Client-side components 
The STB Reaction Enforcement Unit is based on two components: 

• Accumulator: This is a simple counter that is incremented. Its only purpose is to be 
accessible by Incrementors. There can be several Accumulators but the number is 
limited. 

• Incrementors: These are small software components whose only purpose is to modify 
their Accumulator value. Incrementors are part of STB. They are not part of Verifier of 
protection components. A set of Incrementors are related to a single Accumulator. 

4.8.3.1 Accumulator 
An Accumulator is a global variable in memory. It is accessible to Incrementors that increase 
the Accumulator value each time one of its Incrementor is called. When the maximum value of 
the counter is exceeded, a punishment is triggered on execution. 

 

The accumulator is a passive component. Its presence in the model is only for the purpose 
clarity, but it is not a real dynamic or active component. 

3 functions in the API directly modify the Accumulator’s value. 

- startReaction(): Activates the accumulator.. 
- stopReaction(): Deactivates the Accumulator.. 
- restartReaction(): Sets the reaction time to its initial value.. 

4.8.3.2 Incrementors 
Incrementors are small pieces of code positioned at places in the CFG that have a high 
probability to be executed like a common node of two sub-graphs. Their only role is to increase 
the Accumulator’s value, in order to make it reach its maximum value. All Incrementors perform 
the same action on their Accumulator: Each one makes Accumulator’s value grow at the same 
speed. The Incrementor's behaviour is not conditioned: they are always executed whatever is 
the verdict of the protection Verifiers. 

Each Incrementor must be able to access its Accumulator through its address. Moreover, in 
order to ensure that each Incrementor performs the same transformation on its Accumulator, 
all Incrementors access the same growth parameter. This growth factor is saved in memory 
and its address is given to all Incrementors of an Accumulator. 

Two functions in STB API perform modifications on Incrementors. 

- fastenReaction(): Makes Incrementors action twice as fast..  
- slackReaction(): In a symmetric manner, this cuts the Incrementors action’s speed by 

half. 
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4.8.4 Software Time Bombs run-time behaviour 
Two mechanisms are described hereafter. The first one depicts a static invocation of STB. The 
reaction actions are performed regardless of the STB API. This is typically the way online 
protections will activate the degradation of the application through the Delay Data Structures. 
The second one depicts the dynamic behaviour of STB that is triggered by offline protection 
techniques. 

4.8.4.1 Passive operations workflow 
Passive operations are the executions of Incrementors throughout the application. This is 
depicted in Figure 34 and each corresponding step of the Figure is subsequently detailed.  
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Figure 34 – STB workflow diagram for Passive Operations 

 

Seq# Operation description 

1 Incrementor is activated. 

Details: Execution passes through Incrementor #i. It activates the growth factor if the Delay 
Data Structures related field is set.  

2 Accumulator value is updated. 

Details: Accumulator value is multiplied by growth factor: accumulator *= 
growth_factor. 

The Accumulator is an integer variable. If allocated on four bytes then with a growth_factor 
equal to 2 there will be an overflow after 32 updates of the Accumulator. This is the expected 
behaviour of the Accumulator that will spread memory corruption once it has been activated 
and updated until a threshold where the overflow occurs. Once there is an overflow it exceeds 
the allocated Accumulator variable to corrupt the previous allocated variable.  



 

D1.04 – Reference Architecture v2.1   

ASPIRE D1.04 v2.1 PUBLIC Page 82 of 99 

Speed and effect of the overflow propagation will vary according to the numbers of executed 
Incrementors and the reaction speed 

3 Punishment is triggered. 

Details: This operation is conditioned by the reaching of its maximal Accumulator value. When 
the maximal value is reached, punishment gets triggered. This happens on one of the many 
operations #2 that will be executed, but it cannot be predicted when exactly it occurs, as that 
depends on the last intervening reset of the Accumulator.  

 

4.8.4.2 Active operations: Workflow diagram 
Figure 35 depicts the way STB is used by offline protection techniques. Verifiers may call the 
STB to manage the Delay and the Response component. 
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Figure 35 – STB workflow diagram for Active Operations 

 

4.8.4.3 Active operations: Workflow details 
The first operation described below is not part of STB. It is there to shown how STB is used by 
a anti-tampering protection technique to control the delay component of the STB. 

Seq# Operation description 

1 A Verifier is invoked. 

Details: This operation is not really part of STB. The attestation report is verified. 

2 STB API is called to update the tamper detection status. 

Details: Based on the verdict, any function in STB API can be called to activated and controlled 
the response mechanism. 

Data passing: 

API functions arguments have to be passed at this moment.  

- startReaction() takes no argument.  
- stopReaction() takes no argument. 
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- restartReaction() takes one argument: int reaction_advancement. It specifies 
which level of advancement the reaction must restart from.  

- fastenReaction() takes one argument: int added_speed. It specifies how much the 
reaction speed must be increased. 

- slackReaction() takes one argument: int removed_speed. It specifies how much the 
reaction speed must be reduced. 

3 Accumulator’s value is modified. 

Details: The function called in API masks modifications on Accumulator’s value. 

4 Growth factor’s value is modified. 

Details: The function called in API masks modifications on Growth Factor’s value. 
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Section 5 Composability 
The composability of multiple protection, on the same code fragment, is of course an important 
aspect of ASPIRE, given the underlying principle of five lines of defence that strengthen one 
another.  
So this section discusses to what extent the ASPIRE integrated tool flow supports 
compositions of individual protections, to what extent custom support is foreseen to let multiple 
protections work together, and where the consortium has identified synergies between 
protections: which protections protect each other, and which protections, when combined, 
provide more than 1+1 protection of the original application assets to be protected.  

5.1 Composability of different protections in the ACTC 
Section Authors: Bart Coppens, Bjorn De Sutter (UGent) 

As a first-order approximation of how the implementation of different ASPIRE protections are 
composable, we investigated whether or not techniques can be applied to the same code block 
or not. This is an approximation of all possible compositions, because the investigation only 
considers the deployment of protections in the order they are actually deployed in the ASPIRE 
tool chain, rather than all possible theoretic orderings.  

We carefully analysed each combination of protection techniques during two dedicated 
conference calls. Even though the conclusion from this analysis is that most combinations of 
protections will pose no problems, some issues were identified; these will be discussed in more 
detail in the following subsections. 

Most of these issues are limitations of the current implementation, and are not necessarily an 
absolute prohibition of composability. They simply reflect that the project has limited resources, 
and that the often significant additional engineering that would be required to overcome the 
limitations has given a low priority.  

By contrast, one composability issue was identified as too important, and was hence 
addressed immediately. With the existing infrastructure for extracting annotations from the 
source code and using those annotations to steer the protections, it was not possible to specify 
that binary protection techniques should be applied to binary code that was automatically  
linked-in as part of some protection techniques. This concerns, for example, the code that 
implements the embedded interpreter, the attestator routines, the anti-debugging component, 
the code mobility downloader and binder, etc. As this severely limited the useful compositions, 
we modified the ACTC to allow users to specify additional annotation fact files, which can 
contain annotations (i.e., specifications) for the binary protections that should be applied to 
code that was pre-compiled instead of being compiled during the invocation of the ACTC on 
the application to be protected.  

5.1.1 Code mobility combined with binary obfuscations 
Mobile code blocks are currently implemented as on a per-function basis. Binary obfuscations 
(including factoring) split up functions into smaller functions. This means that when 
obfuscations are applied, this results in multiple, smaller functions, which in turn results in more 
mobile code blocks being necessary. While this is not an issue per se, composing both 
techniques can affect performance negatively. 

5.1.2 Code mobility combined with the SoftVM 
Making the VM and the VM invocations mobile will pose no problem. However, making the 
byte code itself mobile requires data mobility in addition to code mobility. This will require some 
additional engineering to support. 
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5.1.3 Code mobility combined with anti-debugging 
When control flow leaves a code block that has been protected by anti-debugging, the anti-
debugging component needs to know to which address control flow should return. However, it 
might require quite some engineering to inform the anti-debugger component that this address 
is actually mobile code, and to correctly invoke the downloader/binder if required. 

5.1.4 Code mobility combined with WBC 
As with the combination of code mobility and the SoftVM, making the WBC tables mobile 
requires data mobility in addition to code mobility, and will require additional effort to complete. 

5.1.5 Code mobility combined with binary attestation techniques 
Mobile code is no longer present in the static part of the protected application. Rather, it is 
downloaded, and on each execution this code will be located in potentially different memory 
regions. Furthermore, not all mobile code will be present at any given point during the exaction 
of the protected application.  This poses problems when combined with techniques that try to 
attest the integrity of the binary code: 

1. Code guards would need to be informed that code is currently (not) downloaded, and 
code guards should be provided with a dynamic mapping between the attested code 
regions, and where these are currently loaded in memory. Furthermore, downloaded 
blocks cannot be diversified if their hashes are stored in the static binary. 

2. Remote attestation similarly would need to keep track of which code blocks are 
downloaded, and where they are loaded in memory. It is definitely possible for the RA 
server to keep track of diversified copies of each binary, however, which makes this  
combination a potential candidate for actual implementation. 

3. Call stack checks currently verify only if the address of the calling function resides in 
the protected application. Mobile code will blocks will be located in the heap, rather 
than in the protected application. Thus, in the current implementation, call stack checks 
and mobile code cannot be combined at all. 

5.1.6 Code guards and remote attestation combined with the SoftVM and WBC 
Currently, constant data such as the VM byte code is not yet attested. However, we foresee 
that this can be solved with relatively little effort, and should pose no real problem of 
composability. 

5.1.7 CFG Tagging combined with attestation techniques, SoftVM, anti-
debugging and mobile code 

All of these techniques contain code fragments that are injected in the binary, such as a 
downloader component, a binder, the anti-debugger component, etc. It is not possible to 
determine up-front in which order and with what frequencies all these components will be 
executed. As such, they are unsuited to be combined with CFG tagging. 

5.1.8 Remote attestation combined with anti-debugging 
Care should be taken that the anti-debugger component can correctly deal with multiple 
threads, as it could be called from the asynchronous RA thread. 

5.1.9 Call stack checks combined with binary obfuscations 
We should ensure that the factoring transformation that is part of the set of binary obfuscations 
does not factor the entry block of a function that is protected with call stack checks. 

5.1.10 Invariant Monitoring combined with all Diablo-implemented techniques 
Invariant monitoring will require the use of debugging information to read information about the 
locations of variables on the stack. Currently, Diablo has no support whatsoever to track 
debugging information through its transformations. Thus, invariants monitoring cannot be 
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combined at present with techniques in which Diablo has to transform the code, which currently 
are: binary code obfuscations, SoftVM, and anti-debugging, and code mobility. 

5.1.11 Invariant Monitoring combined with Client-Server code splitting 
Code fragments that have been moved to a server, can of course no longer be monitored for 
invariants on the client. 

5.1.12 Invariant Monitoring combined with data obfuscations and WBC 
Data obfuscations will transform values throughout the execution of a function. Thus, what is 
an invariant value in the unprotected application can be transformed by data obfuscation into 
different values that no longer have the same invariant. Similarly, the White-Box Crypto code 
might remove a fixed key, and thus also remove an invariant. 

5.1.13 Multi-threaded crypto combined with client-server code splitting 
It is possible that moving the multi-threaded code to the server might pose some minor issues. 

5.2 Custom support for specific protection compositions 
Section Author: Bjorn De Sutter (UGent 
One of the basic concepts of the ASPIRE project are its five lines of defence, which are 
envisioned to strengthen each other. A careful investigation of a number of techniques and 
their composability has uncovered a number of challenges. In this section, we discuss these 
challenges, and the extensions of the individual techniques we propose to overcome the 
challenges.  

5.2.1 Composability challenges 
5.2.1.1 Native code mobility vs. white-box crypto data and bytecode mobility 
Automatically making native code blocks from a client-side application mobile is relatively easy, 
even if they are targeted through indirect control flow transfers (i.e., using code pointers): All 
indirect transfers can be diverted to direct transfers, so-called trampolines. Making statically 
allocated data mobile is harder, however, because aliasing prevents compiler tools from 
performing precise enough data flow analysis to determine when and where all possible data 
pointers are used in the program, and from rewriting a program to redirect all accesses through 
such pointers (with acceptable overhead).  

There are at least two important cases, however, in which protections can be made stronger 
by making data blocks mobile as well.  

The first is white-box cryptography, of which the implementation depends on (very) large 
chunks of code and (very) large look-up tables in which the cryptographic keys are embedded. 
In order to support renewability of those tables (and of the keys embedded in them), they need 
to become mobile.  

Secondly, in order to support renewability by means of bytecode generated for the bytecode 
interpreter embedded in an application protected with the client-side code splitting, bytecode 
fragments, which are data from a technical perspective, need to become mobile as well.  

Clearly, the existing design of the code mobility protection will need to be revised and extended 
to support mobile data. 

5.2.1.2 Code mobility vs. remote attestation 
Mobile code is downloaded into the client application at run time and placed at randomized 
addresses in the client's memory space, as explained in Section 3.4. Static remote attestation, 
however, relies on executing code guards in the client on known code, i.e., code at known 
locations. This prevents that the basic static remote attestation techniques and offline code 
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guards protect the integrity of mobile code. As this typically concerns security-sensitive code 
(otherwise it would not be made mobile), this is a serious issue.  

Moreover, the binding performed for mobile code needs to have its integrity checked as well. 
This binding is performed by means of mutable data (tables of code pointers) which are 
vulnerable to tampering, so purely static code guards do not suffice, and special care is needed 
instead.  

Finally, the static remote attestation as foreseen in Section 4 does not yet check the integrity 
of immutable data (i.e., data in read-only sections). Also for that, specialized extensions are 
needed. Those extensions need to cover mobile byte code was well.  

Clearly, remote attestation will need to be customized to check the integrity of mobile code, of 
mobile data (incl. mobile bytecode), and of the client-side components implementing code 
mobility. 

5.2.1.3 Code mobility vs. client-side code splitting 
As already stated, downloaded mobile code is placed at random memory locations. This 
conflicts with some implementation aspects of the client-side code splitting approach. To 
obfuscate the flow of control into and out of bytecode fragments, the native continuation points 
of the bytecode (i.e., the points in native code where execution continues after a bytecode 
fragment has been interpreted) are hardcoded (in a position-independent manner) in the 
bytecode itself, in a custom manner not easily interpretable by attackers. Such hardcoded 
addresses are of course not possible for mobile code.  

This limitation is problematic, because both mobile code and client-side splitting are supposed 
to be applied on security-sensitive code fragments, and because it is hence likely useful to 
make them more composable.  

We hence need to design a method to make the two techniques composable. At the very least, 
we need to make sure that any implementations of code mobility and of client-side code 
splitting resolve all conflicts correctly, albeit possibly by separating the fragments on which the 
techniques are applied.  

5.2.2 Solutions 
5.2.2.1 Mobile data blocks (incl. mobile bytecode) 
In addition to mobile code blocks, we will let our Code Mobility protection (as described in 
Section 3.4) support mobile data blocks. A couple of restrictions will apply, however: 

- Each mobile code block has to correspond to exactly one object file data section, 
i.e., to one statically allocated variable. All statically allocated arrays in C can be allocated 
into separate sections by invoking the compiler (such as LLVM or GCC) with the -fdata-
sections flag. So this restriction will in general pose no problems. We checked that it 
definitely does not pose any problem for bytecode chunks generated as part of the client-
side code splitting and for the lookup-tables of the WBC functions.  

- Those object file sections should only be referenced from within the code section, 
not from within other data sections. For bytecode chunks, this holds by construction, as the 
address of the bytecode chunk is produced only in the native code chunk that invokes the 
embedded interpreter to executed the bytecode chunk. For the WBC lookup tables 
generated in the ASPIRE compiler tool chain, this property also holds.  

- Mobile code blocks will only be supported for position-independent code. This requirement 
is met in all ASPIRE use cases, is by definition met in all dynamically linked libraries, and 
is also met in all so-called position-independent executable (PIE). Given that recent version 
of LLVM and GCC can generate PIE binaries at a very low overhead, this limitation imposes 
no significant burden. 

The run time behavior of an application with mobile data blocks will be very similar to the case 
of mobile code blocks as documented in Section 3.4.5. Every reference to the object sections 
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that have become mobile (i.e., every position-independent production of an address in those 
object sections) will be replaced by 

- a lookup in a statically allocated table maintained by the Binder to check for the presence 
of the downloaded block; 

- a check whether or not the loaded address is a valid address; 
- if so, simply continue executing; 
- if not, instead invoke the Binder (and the Downloader) to download the block and to fill in 

the table, and continue executing with the new address determined by the Binder.  

5.2.2.2 Custom remote attestation 
The static remote attestation framework in ASPIRE already includes a large set of different 
code guard functions (i.e., attestation functions and verifier functions). The current ones can 
only scan code at fixed offsets in the binary/library code segment.  

We will in addition develop data guards that can also scan read-only data sections to check 
their integrity.  

Moreover, we will develop custom attestation and verification routines that interact with the 
bookkeeping tables of the Code Mobility Binder to check the integrity of those tables and of 
mobile code and data blocks. In year 3 of the project, we will study how the Binder can 
introduce redundant data that allows for stronger integrity checks, and we will study what is 
the best ways to perform the integrity checks themselves. If necessary, we will also let the RA 
server and the Code Mobility server communicate directly such that the server obtains 
additional information about the state of the Binder, to allow for stronger integrity checks.  

These custom routines and the necessary support in the Binder, as well as the potential 
support on the server side will of course tie the remote attestation implementation in ASPIRE 
to the implementation of remote attestation. This can be considered a violation of the plugin-
based design that was envisioned for the ASPIRE Compiler Tool Chain. This is inevitable, 
however, to obtain that 1 + 1 > 2 in terms of protection, which is also a major goal of ASPIRE. 
So in this case, we prioritize the protection strength over the flexibility of the tool support.  

5.2.2.3 Composing client-side splitting with code mobility 
To make the client-sidecode splitting compose with code mobility, we will not extend any of the 
reference architecture components. Instead, we impose the restriction that bytecode fragments 
can only feature continuation points in non-mobile code blocks.  

To support cases where a bytecode fragment still is followed directly by a mobile code 
fragment, as occurs when an outer, larger code fragment in the application to be protected is 
marked to made mobile, and a nested, smaller fragment in it is marked to become (mobile) 
bytecode, we will introduce trampolines in the code. The original outer fragment will be split 
into multiple smaller ones, each of which has a single entry point corresponding to one of the 
continuation points of the bytecode fragment. Transfers from one of the split fragments to 
another will then be diverted via an injected trampoline, and that trampoline will remain static. 
As such, all continuation points of bytecode fragments extracted from mobile code fragments 
will still be located in the static code sections of the binary/library.  

5.3 Server-generated bytecode 
Section Author: Andreas Weber (SFNT) 

SafeNet will investigate the feasibility of an alternative code generation route for their SoftVM 
that starts from C source instead of ARM binary code. A route starting from source code would 
enable the ASPIRE security server to easily generate and package additional code modules 
that can be sent to the client and run inside the process of the ASPIRE protected component. 
This could be used to strengthen other protections such as remote attestation by providing the 
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server with the capability to dynamically generate and deploy customized data collection and 
response modules. 

SafeNet will also investigate the interworking between the ASPIRE protected component and 
the separately compiled bytecode. The result should be a design that describes how the 
ASPIRE protected component can invoke a separately compiled bytecode module and how 
the bytecode can access resources (code/data) of its surrounding process. 

5.4 Synergies of protections 
Section Author: Cataldo Basile (POLITO) 

The most important aspect of using multiple lines of defence is to achieve better levels of 
protection. We often indicated this case with the formula 1+1>2. In the ASPIRE project, we 
have developed techniques that used in combination present synergies that improve the 
overall level of protection. 

As a first level of approximation, one protection is suitable to protect some security properties 
of application assets if it makes it more difficult (or costly) for an attacker to violate these 
security properties compared to the vanilla application.  

Two or more protections join forces to improve the overall security if the effort (or cost) needed 
to achieve the attacker goals is more than the effort (or cost) to remove the two protections in 
isolation. This scenario happens every time a technique renders the attacks more difficult to 
violate the security properties that the other projection aims at preserving. In other words, the 
risk mitigation obtained with the two techniques in place is much better than the individual risk 
mitigations. 

By analysing data collected from the protection owners (see deliverable D5.07 for more details 
on the questionnaires), we have identified several cases where synergies manifest: 

• When a technique blocks or renders useless tools and techniques that are not (or only 
partly) blocked or addressed by the other protection techniques; 

• When a technique blocks or renders useless tools and techniques that are used to 
remove or circumvent the other protection techniques; 

• When a technique blocks specific classes of attacks (e.g., dynamic analysis or static 
analysis), that are used to detect and defeat some techniques; 

• When a technique blocks specific classes of attacks that are not (or only partly) covered 
by the other protection techniques; 

• When a technique detects and reacts to complementary attacks against the assets 
protected by another protection technique; 

• When a technique detects and reacts to attacks against another protection. 

Given the previous considerations, for the synergy analysis it is not important to assume that 
the protections are deployed on the same asset. For instance, anti-debugging renders dynamic 
analysis at application level harder, not only on the piece of software that will be actually 
protected. 

The same analysis allowed us to abstract when synergies are expected in a more practical 
way: 

• Some techniques insert parts that may be detected with some analysis 
• Some techniques have peculiar behaviours that can be identified with some analysis 
• Some techniques rely on parts, added to the application, that if modified, do not work 

as expected (or a rendered useless) 

From this synergy analysis we have also modelled, for the sake of more effective ADSS, that 
in several cases some protection techniques can be deployed to strengthen some of the 
techniques. That is, protections can be used not only to protect application assets. For 
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instance, remote attestation can be deployed to check whether renewable white box 
cryptography code, even if no assets require to protect integrity. 

Table 3 summarizes the synergies among ASPIRE protection techniques. The Scope column 
explains if the technique must be deployed on the same asset (e.g., same variable of piece of 
code), if their impact is positive if they are deployed on the same application, and if the 
protection techniques are helpful to protect the code added by the other protection.  

 
Table 3 – Summary of the synergies between ASPIRE protections. 

Protection Synergy with Scope Motivation 

Anti-Cloning None --- Since this technique stores on the client 
data that are valid only between two 
invocations of the application, it cannot be 
strengthened by other techniques nor it 
strengthen other protections. 

Anti-
Debugging 

Code guards On the 
protection 
code 

An attacker could try to analyze and 
circumvent anti-debugging by modifying 
and/or instrumenting the anti-debugger 
component. Code guards protect from 
these attacks. 

Anti-
Debugging 

Remote 
attestation + 
Reaction 

On the 
protection 
code 

An attacker could try to analyze and 
circumvent anti-debugging by modifying 
and/or instrumenting the anti-debugger 
component. Code guards protect from 
these attacks. 

Client-
Server code 
splitting 

Data 
obfuscation 

On the 
protection 
code 

Barrier variables are sensitive part of the 
applications, even if they are not assets 
(i.e., they are not annotated by users). 
Data obfuscation can help to preserve 
them by making them more difficult to 
understand. 

Binary 
Obfuscation 

Anti-Debugging global Anti-Debugging protects against dynamic 
attacks that can be used to de-obfuscate 
protected code. 

Call Checks Anti-Debugging global Anti-Debugging prevents certain 
components of the anti-debugger from 
being executed outside of the anti-
debugger component by an attacker. 

CFG 
Tagging 

Code guards  On the 
protection 
code 

Integrity protections work against an 
attacker trying to bypass or activate 
artificially a gate set by the CFG tagging. 

CFG 
Tagging 

Remote 
attestation + 
Reaction 

On the 
protection 
code 

Integrity protections work against an 
attacker trying to bypass or activate 
artificially a gate set by the CFG tagging. 
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CFG 
Tagging 

Binary 
Obfuscation 

On the 
protection 
code 

Binary Obfuscation makes more difficult 
to detect where tags are inserted and 
used. 

Code 
Guards 

Remote 
Attestation+ 
Reaction 

On the 
protection 
code 

Remote attestation can detect react code 
written to skip guards or defeat reactions 
and react according to a user-defined 
policy. 

Code 
Guards 

SoftVM Globally SoftVM can increase the confidentiality of 
the guards as it protects against dynamic 
attacks and tampering. 

Code 
Guards 

Anti-debugging  Globally Anti-Debugging protects against dynamic 
attacks, which use debuggers, mounted 
to detect guards attestators and verifiers.  

Code 
Mobility 

Binary 
obfuscation  

 

On the 
protection 
code 

Binary obfuscation techniques that 
protect against static analysis can help to 
increase the resilience of this protection. 

Code 
Mobility 

CFG tagging 
 On the 

protection 
code 

Integrity protections work against an 
attacker trying to modify the mobile code 
that is, by definition, sensitive code. 

Code 
Mobility 

Multi-Threaded 
Crypto On the 

protection 
code 

Integrity protections work against an 
attacker trying to modify the mobile code 
that is, by definition, sensitive code. 

Code 
Mobility 

Remote 
Attestation On the 

protection 
code 

Integrity protections work against an 
attacker trying to modify the mobile code 
that is, by definition, sensitive code. 

Data 
Obfuscation 

Anti-debugging  Globally Anti-Debugging protects against dynamic 
attacks that may help to discover data 
modifications operated by Data 
Obfuscation protections. 

Data 
Obfuscation 

Code guards  Globally Circumventing data obfuscation 
techniques requires modifications of the 
application binaries. This can be detected 
by integrity protection techniques. 

Data 
Obfuscation 

SoftVM  Globally SoftVM can increase the confidentiality of 
the transformations operated by Data 
Obfuscation  (xor, merge_var, rnc 
technique). 

Data 
Obfuscation 

Remote 
attestation + 
Reaction 

 Globally Circumventing data obfuscation 
techniques requires modifications of the 
application binaries. This scenario can be 
detected by integrity protection 
techniques. 
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Data 
Obfuscation 

Client-Server 
code splitting 

 Globally Client-Server code splitting increases the 
effectiveness of overall Data protection by 
moving on the server selected variables  
(data_to_proc technique).  

Data 
Obfuscation 

Binary 
Obfuscation 

On the 
protection 
code 

Binary Obfuscation can increase the 
confidentiality of the transformations 
operated by Data Obfuscation  (xor, 
merge_var, rnc technique). 

Multi-
Threaded 
Crypto 

Code Mobility Globally Code mobility helps against static 
analysis that allows attackers to identify 
multi-threaded crypto code 

Non 
Renewable 
White-Box 
Crypto 

Binary 
Obfuscation  

 

On the 
protection 
code 

WBC code is automatically generated 
thus it has a structure that can be 
recognised. Binary Obfuscation helps in 
hiding this structure. 

Non 
Renewable 
White-Box 
Crypto 

Code Guards On the 
protection 
code 

Integrity protection can detect and react to 
modifications of the WBC code aimed at 
extracting the key or against reuse if WBC 
in applications different from the protected 
one. 

Renewable 
White-Box 
Crypto 

Binary 
Obfuscation  On the 

protection 
code 

WBC code is automatically generated 
thus it has a structure that can be 
recognised. Binary Obfuscation helps in 
hiding this structure.  

Renewable 
White-Box 
Crypto 

Code Guards On the 
protection 
code 

Integrity protection can detect and react to 
modifications of the WBC code aimed at 
extracting the key or against reuse if WBC 
in applications different from the protected 
one. 

Renewable 
White-Box 
Crypto 

Remote 
Attestation  

On the 
protection 
code 

Remote attestation can help 
strengthening this technique if used to 
check if the renewed WBC tables have 
been updated correctly 

SoftVM Binary 
Obfuscation  

 

On the 
protection 
code 

Binary obfuscation helps in making more 
difficult for an attacker to detect the VM 
code Code layout randomization mixes 
application code with VM code and hence 
helps hiding the VM. 

Software 
Time Bombs 

Code guards On the 
protection 
code 

Code guards are helpful against an 
attacker trying to bypass the software 
time bombs code. 

 

Software 
Time Bombs 

Binary 
Obfuscation  
 

On the 
protection 
code 

Techniques to improve the confidentiality 
of the STB code help in making harder to 
defeat this kind of reaction. 
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Software 
Time Bombs 

Code Mobility On the 
protection 
code 

Dynamically sending the reaction code 
help preventing attacks that completely 
defeat them. 

Static RA Code guards On the 
protection 
code 

Integrity protection can detect and react to 
modifications of the WBC code aimed at 
extracting the key or against reuse if WBC 
in applications different from the protected 
one. 

Static RA Anti-Debugging Globally Anti-Debugging protects against dynamic 
attacks that can be used to detect RA 
code. 
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Section 6 Renewability techniques 
Section Author:  

Paolo Falcarin, Alessandro Cabutto (UEL) 

This section describes the high level design of the reference architecture related to renewability 
techniques, which aims at making renewable in time and in space as many as possible 
protection techniques. 

As described in the previous section, the composability of different offline and online 
techniques, when feasible, come with a price in terms of additional engineering effort or run-
time performance overhead. 

Software diversity applied to renewability consists in producing and delivering semantically 
equivalent or semantically different versions of the same application in order to obtain various 
benefits in terms of protection: 

• A patch able to successfully circumvent a certain protection technique on a given 
application instance cannot be applied with no effort on a diversified instance of that 
application. 

• A patch that used to work on an application instance at a specific time will not work 
later. 

The introduction of software diversity (renewability in space) and renewability in time, adds 
other two variables (space and time) to the above-mentioned composability constraints. 

Renewability techniques will come with many challenges: the generation of diversified code, 
its transport to the client side, and then its integration and invocation in a manner that does not 
break the run-time behaviour of the protected application and does not introduce any new 
attack vectors.  

Moreover, the main concern will be the components that will manage the diversified code 
blocks both at server as at client side, how they will interact and what impact they will have on 
other components.  

Renewability will be based on the Code Mobility technique that has been developed in Task 
3.1 and described in deliverables D3.02, D3.03, and D3.04. This technique can already 
download code blocks on-demand and install them on the client at run-time, but it is currently 
limited to code blocks that have been extracted from the original binary application. It would 
need to be adapted to work also with diversified code blocks and to transfer data blocks. Figure 
36 shows the extended Reference Architecture for Renewability. 
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Figure 36 – Extended Reference Architecture for Renewability 

The Code Mobility prototype discussed in Section 3.4 was designed to manage one version of 
the client application for one particular version of the client application. 

In order to implement renewability, the Code Mobility Server will be extended to be able to 
initiate transactions using the ACCL WebSocket Protocol in order to start some tasks on the 
client side (e.g. code blocks deletion This capability is useful when the server decides that a 
certain code block has to be delivered again from the server before next use. The subsequently 
transferred block can then be a diversified version of the initial one taken from the Diversified 
Code DB shown in Figure 36. 

Renewability of the client application is also achieved by means of the Data Mobility extension 
described in Section 5.2.2.1 that allows SoftVM bytecode renewability (see Section 5.3) and 
WBC data table run-time replacing. 

The Renewability Manager component is now introduced to manage the different lifecycles of 
the various client applications and to orchestrate the renewability schedule of each mobile 
block depending on different and configurable renewability strategies: 

1. The Basic renewability strategy will split the original code in N code blocks and then 
diversify each code block in M semantically-equivalent versions stored in the 
Diversified Code DB. The Renewability Manager will set a timeout for each code block 
and when it will expire the Code Mobility Server will send an erase request for that code 
block to the client. When the code block will be requested again to the server one of 
the M diversified versions will be selected for delivery. In this case once the initial split 
in code blocks is defined it will be maintained during the application lifecycle, as 
diversity is then applied to the next version of each single block after it is expired; 
however multiple clients will have the same initial version and the renewable code 
blocks will be randomly chosen among the corresponding blocks in the M versions in 
the database.   

2. The Mobile Diversity strategy will create M diversified binary versions and then split 
them in N code blocks: this is equivalent to apply diversity in order to have different 
versions running on different clients and each version having its own code mobility 
protection applied afterwards; it is important to notice that in this case different clients 
can have an initial diversified version with a different binary structure, thus the code 
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mobility split in blocks will be different in such versions as the original binary structure 
will be different;  

3. The Renewable Remote Attestation Strategy will require the design of a information 
exchange protocol between the Renewability Manager and the Remote Attestation 
Service in order to create renewable remote attestators (code guards) deployed with 
the Code Mobility framework; 

4. The Renewable Actuator Strategy will be designed to work with the Remote 
Attestation Service in order to create renewable actuators to implement reactions after 
tampering has been detected by an attestator: a possible implementation of this 
strategy would require making mobile current reaction components such as time-
bombs, or delayed tamper-response code; 

5. The Renewable Data Strategy will leverage on the extended Code Mobility framework 
(that will be able make data blocks mobile), to force an update of specific data 
whenever a timeout expires (e.g. WBC data tables). 

6. The Mobile Data Strategy will leverage on the extended Code Mobility framework 
(Able to make data blocks mobile), to download data at run-time once, without any 
further renewability. For example this will be the case for the VM bytecode that can be 
made mobile (i.e. downloadable from a server) but not renewable as the bytecode is 
created at compile-time together with the corresponding VM implementation. This 
strategy can be combined with the basic code diversity of the VM implementation, but 
there cannot be diversified bytecode for the same VM.  

In conclusion, the renewability framework goals will be slightly less ambitious than the ones in 
the DoW, due to the technical constraints, and the composability issues highlighted in Section 
5.  
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Section 7 List of technique identifiers 
In this section, we define the list of technique identifiers. These identifiers will be used by the 
ASPIRE portal to redirect messages that it received from the protected application to the 
correct protection service. In other words, we provide a list of server-side support components 
with which the ASPIRE portal can communicate. 

The list is provided in Table 4, and comprises a column with the identifier (T_ID) that needs to 
be used by the client-side components when invoking the ACCL (see Section 2.4), the 
technique, and the server-side support component. 

Table 4 – List of technique identifiers 

T_ID Technique Service 

10 Client-server code splitting (Section 2.3) Code splitting service (2.3.5.1) 

20 Mobile code (Section 2.4) Code mobility service (2.4.4.1) 

21 Mobile data  

30 White-box cryptography (Section 2.5) WBS (2.5.3.1) 

40 Multi-threaded cryptography (Section 2.6) Crypto server code (2.6.4) 

41 Diversified crypto (conditional)  

50 Code guards (Section 3.2)  

 

Hash randomization (3.2.3.1) 

55 Hash verification (3.2.3.2) 

60 CFG tagging (Section 3.3) Remote verifier (3.3.5.1) 

70 Anti-cloning (Sect 3.5) 

 

AC decision logic (3.5.4.1) 

75 AC status logic – only for 
application service providers. 

80 Remote attestation (Section 3.8.3) 

 

Reaction manager (3.6.2.1) 

To be 
defined 

The verifier to be used depends on 
the attestators or the code guards 
deployed. Identifier that needs to 
be defined needs to be specific to 
the verifier. 
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Section 8 List of Abbreviations  

Abbreviation Meaning 

3G Third Generation of mobile communications technology 

ACCL ASPIRE Client-side Communication Logic 

ADSS ASPIRE Decision Support System 

API Application Program Interface 

ASPIRE Advanced Software Protection: Integration, Research and Exploitation 

CFG Control Flow Graph 

DB Database 

DoW Description of Work 

HTTP HyperText Transfer Protocol 

MATE Man-at-the-end 

MITM Man-in-the-middle 

Mx Month x. A reference to a specific time in the ASPIRE project. It refers 
to the x’th month since November 2013. 

PBKDF2 A standardized Password-Based Key Derivation Function (see 
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf) 

RA Remote Attestation 

STB Software Time Bomb 

VM Virtual Machine 

WB White-Box 

WBGC White-Box Generated Code 

WBLC White-Box Library Client-side 

WBLS White-Box Library Server-side 

WBS White-Box Server 
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