
 

 

 

 

 

  

 

 

 

 

 

 
 

 
 
 

 
Grant Agreement Number:  609734 

Project Acronym:   ASPIRE 

Project Title:    Advanced Software Protection: 
     Integration, Research and Exploitation 

Funding scheme:    Collaborative project 

Name, title and organisation of the scientific representative of the project's coordinator:  
     Prof. Dr. Bjorn De Sutter 
     Ghent University 
     Technologiepark-Zwijnaarde 15 
     B9052 Gent 
 

Tel:     +32 9 264 33 67 

Fax:     +32 9 264 3594 

E-mail:     coordinator@aspire-fp7.eu 

Project website address:  https://www.aspire-fp7.eu 

 
 
 
 
 

 
 
  

PROJECT FINAL REPORT 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  I 

 

Editor 
Bjorn De Sutter (UGent) 

 

Contributors (ordered according to beneficiary numbers) 
Bart Coppens, Vicky Wandels (UGent) 

Cataldo Basile (POLITO) 

Brecht Wyseur (NAGRA) 

Mariano Ceccato (FBK) 

Paolo Falcarin (UEL) 

Michael Zunke (SFNT) 

Jerome D'Annoville (GTO) 

 

 

 

 

 

 

 

The ASPIRE Consortium consists of: 

Ghent University (UGent) Coordinator & Beneficiary Belgium 

Politecnico Di Torino (POLITO) Beneficiary Italy 

Nagravision SA (NAGRA) 
(Third Party: EDSI) 

Beneficiary Switzerland 
(France) 

Fondazione Bruno Kessler (FBK)  Beneficiary Italy 

University of East London (UEL) Beneficiary UK 

SFNT Germany GmbH (SFNT) Beneficiary Germany 

Gemalto SA (GTO) Beneficiary France 
 
Coordinating person:  Prof. Bjorn De Sutter 
E-mail:    coordinator@aspire-fp7.eu 
Tel:    +32 9 264 3367 
Fax:    +32 9 264 3594 
Project website:  www.aspire-fp7.eu 

Disclaimer 
The research leading to these results has received funding from the European Union Seventh 
Framework Programme (FP7/2007-2013) under grant agreement n° 609734. 
 
 
 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 2 of 70 

Contents 

Section 1 Final Publishable Summary Report ................................................... 4 

1.1 Executive Summary ............................................................................................. 4 

1.2 Project Context and Objectives ........................................................................... 5 

1.2.1 Context .................................................................................................................... 5 

1.2.2 Strategic Objectives ................................................................................................. 5 

1.2.3 Overall Strategy ....................................................................................................... 5 

1.2.4 S&T Objectives ........................................................................................................ 6 

1.3 Main S&T Results / Foregrounds ........................................................................ 9 

1.3.1 WP1 Requirements and Architecture (M01-M36) .................................................... 9 

1.3.2 WP2 Offline Software Protections (M01-M30) ....................................................... 12 

1.3.3 WP3 Online Software Protections (M07-M36) ....................................................... 17 

1.3.4 WP4 Security Evaluation (M04-M36) ..................................................................... 22 

1.3.5 WP5 Framework (M04-M36) ................................................................................. 27 

1.3.6 WP6 Use Cases - Demonstration (M04-M36) ....................................................... 31 

1.4 Potential Impact, Dissemination Activities and Exploitation of Results ............. 32 

1.4.1 Main Impact ........................................................................................................... 32 

1.4.2 Dissemination Activities ......................................................................................... 36 

1.4.3 Exploitation of Results ........................................................................................... 37 

1.5 Miscellaneous .................................................................................................... 39 

1.5.1 Project website ...................................................................................................... 39 

1.5.2 ASPIRE Logo ......................................................................................................... 39 

1.5.3 ASPIRE Templates ................................................................................................ 40 

1.5.4 ASPIRE Leaflet ...................................................................................................... 40 

1.5.5 ASPIRE Poster ...................................................................................................... 40 

1.5.6 ASPIRE Social Media ............................................................................................ 40 

1.5.7 Software Protection Workshops ............................................................................ 40 

1.5.8 YouTube Channel .................................................................................................. 42 

1.5.9 Open Sourcing ....................................................................................................... 42 

1.5.10 Cooperation with other projects ............................................................................. 42 

1.5.11 The ASPIRE Consortium ....................................................................................... 43 

Section 2 Use and Dissemination of Foreground ............................................ 44 

2.1 Dissemination Measures (public) ...................................................................... 44 

2.1.1 List of scientific (peer reviewed) publications (public) ............................................ 45 

2.1.2 List of dissemination activities (public) ................................................................... 49 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 3 of 70 

2.2 Exploitable Foreground and Exploitation Plans (confidential) ........................... 58 

2.2.1 Initially Planned Exploitation Activities ................................................................... 58 

2.2.2 List of Applications for Patents, Trademarks, Registered Designs, etc. ................ 59 

2.2.3 Exploitable Foreground .......................................................................................... 59 

2.2.4 IPR issues after the project conclusion/future plans .............................................. 64 

Section 3 Report on societal implications ........................................................ 65 

 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 4 of 70 

Section 1 Final Publishable Summary Report 
1.1 Executive Summary 

  Project name:   ASPIRE Start date:  1st November 2013  
  Grant Agreement: 609734  Duration: 36 months 
  Project Website:  www.aspire-fp7.eu  
  Contact:   coordinator@aspire-fp7.eu  

The mission of ASPIRE was to integrate state-of-the-art software protections into an application 
reference architecture and into an easy-to-use compiler framework that automatically provides 
measurable software-based protection of the valuable assets in the persistently or occasionally 
connected client applications of mobile service, software, and content providers. 
Motivation For mobile devices like smartphones and tablets, security solutions based on custom 
hardware (as is traditionally done with, e.g., smart cards, set-top boxes, and dongles) are not 
feasible anymore. Software protection is therefore utterly important; it can be a maker and a 
breaker. Current software protection techniques are incredibly hard to deploy, cost too much and 
limit innovation. Stakeholders in mobile devices need more trustworthy, cheaper software secu-
rity solutions and more value for the money they spend on software security. In this project, three 
market leaders in security ICT solutions and four academic institutions joined forces to protect 
the assets of one class of stakeholders: the service, software, and content providers. From their 
perspective, mobile devices and their users, which can engage in attacks on the software and 
credentials installed to access the services or content, are not trustworthy. 

Final results and their potential impact and use The software protection technology that has 
been developed consists of (i) the ASPIRE reference architecture for combining and composing 
multiple layers and types of software protections; (ii) designs and implementations of a range of 
online and offline protections, some of which pre-existed, some which are new or significant 
improvements over the previous state of the art; (iii) the robust ASPIRE Compiler Tool Chain 
that enables the automated, combined deployment of selected protections on real-world use 
cases; (iv) the ASPIRE Decision Support System and its ASPIRE Knowledge Base to assist the 
user of the tool chain with the selection of the protections best suited to protect the user's soft-
ware and the assets embedded in it; (v) the ASPIRE software protection evaluation methodology 
to assess the value of software protections vis-à-vis man at the end attacks. A large part of the 
developed software prototypes is available as open source with extensive documentation, and 
more than 20 demonstration videos have been published. A significant part of the research has 
already been peer reviewed, many additional papers are still in the pipeline. Through keynotes 
and tutorials, incl. in workshops organized by the Consortium, the European software protection 
community has been revitalized and has been made well aware of the project and its results.  

Some of the project results are already ready for commercial exploitation. A spin-off is in the 
making at FBK, and a technology transfer from UGent to industry has already taken place. Some 
of the specific protections developed within the project are used in products in the pipeline in 
business units of the industrial partners. As such, the project strengthens the position of Eu-
ropean companies, incl. of course the project partners, whose business models depend on 
securing the assets embedded in their software. Other results are not ready for immediate com-
mercialization. But with the whole ASPIRE Framework encompassing the compiler tool chain, 
the decision support system, many protections, and tools that automate the application of the 
software protection evaluation methodology, the consortium has demonstrated that 
measureable, assisted deployment of software protection is feasible. The open source 
availability of the Framework will help the European R&D community to bridge the gap to 
commercial deployment of the ASPIRE approach, not in the least by providing all the founda-
tional infrastructure necessary for complementing and expanding the expert knowledge that was 
already gathered in the project from the PIs' expertise, from professional penetration tests, from 
the pubic challenge, and from external advice.  



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 5 of 70 

1.2 Project Context and Objectives 
1.2.1 Context  

ASPIRE addressed major issues concerning the security of mobile services in application do-
mains like multi-screen mobile TV, software licensing, and credentials and sensitive data stored 
on mobile devices: 
• For mobile devices like smartphones and tablets, security solutions based on custom hard-

ware (as is traditionally done in these domains with, e.g., smart cards, set-top boxes, and 
dongles) are not feasible anymore.  

• Software protection is therefore utterly important; it can be a maker and a breaker. 
• Current software protection techniques are incredibly hard to deploy, cost too much and limit 

innovation. 
• Stakeholders in mobile devices need more trustworthy, cheaper software security solutions 

and more value for the money they spend on software security.  
In this project, three market leaders in security ICT solutions and four academic institutions joined 
forces to protect the assets of one class of stakeholders in mobile services: the service, software, 
and content providers. From their perspective, mobile devices and their users, which can engage 
in attacks on the software and credentials installed to access the services or content, are not 
trustworthy.  

1.2.2 Strategic Objectives 

With the ASPIRE solutions, we wanted mobile software security to become 
• Trustworthy by leveraging on the available network connection and developing a layered 

security approach of strong protections; 
• Measurable by developing practical, validated attack and protection models and practical 

metrics; 
• Cheaper by integrating support for the protections into the productizable ASPIRE security 

framework;  
• More valuable by enabling shorter time-to-markets and technology that is applicable to more 

cases. 
Our ultimate goal was to provide software protection that is equally strong as existing hardware-
based protections, such as custom set-top boxes, smart cards, and dongles. We therefore pro-
posed to develop strong protections techniques and metrics along five mutually strengthening 
lines of defence, and to integrate support for them into the ASPIRE Tool Chain and Decision 
Support System, which we would demonstrate and validate on three real-world use cases from 
the industrial partners in the mentioned domains, and in a public challenge.   

1.2.3 Overall Strategy 

The overall strategy of the work plan is depicted in Figure 1.  
WP1 defined the application requirements to drive the project's research and technology devel-
opment (RTD), its validation, and its demonstration on three industrial use cases. The security 
requirements were unified into an attack model and a reference architecture of protected appli-
cations. The attack model, the architecture, and the requirements then were used to validate the 
application of the ASPIRE tool chain on the use cases. 
The core ASPIRE RTD was situated in WP2, WP3, WP4, and WP5.   
• In WP2 and WP3, new, concrete techniques for software protection were designed and de-

veloped for each of the five identified lines of defence: data hiding, algorithm hiding, anti-
tampering, remote attestation and code renewability. WP2 focused on techniques that are 
applicable offline. WP3 focused on online techniques in which the application is split over a 
client-side component and a server-side component running on a secure, trusted server. 
Gradually, tool support for the techniques was integrated into the ASPIRE framework.  



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 6 of 70 

• In WP4, a security evaluation methodology was developed for the software protections de-
veloped in WP2 and WP3. This methodology covers the attack model developed in WP1, 
and concentrates on the link between applied protections and the delay they cause for the 
attacker. To make the evaluation measurable, a software metric approach was designed and 
developed. Based on practical insights and experiments with attack tools and human attack-
ers, a knowledge base was set up and tuned.  

• WP5 brought together and integrated all developed technology to ensure their compatibility 
and composability. The tools that apply the protections developed in WP2 and WP3 were 
integrated in the ASPIRE Compiler Tool Chain. The developed security evaluation technol-
ogy and knowledge base of WP4 was integrated into the ASPIRE Decision Support System. 

In WP6, the three uses cases defined in WP1 were implemented and protected by means of the 
ASPIRE framework to evaluate the framework, to demonstrate its capabilities, and to ensure a 
clear path to exploitation. 

 
Figure 1 - Overall project strategy 

1.2.4 S&T Objectives 

1.2.4.1 WP1 Requirements and Architecture  
In year one, WP1 had two objectives. The first one was to specify three industrial use cases 
and their attack models. One use case per industrial partner was foreseen, as follows:  

• Task T1.1: Secure integration of DRM libraries (NAGRA) 
• Task T1.2: Any end-point software licensing (SFNT) 
• Task T1.3: Software-based security for credentials (GTO) 

The second early goal, in Task T1.4, was to derive and define a generic attack model, the 
application-level security requirements, and a common protection reference architecture 
that would drive the other WPs, all based on the use case designs and their attack. 
Towards the end of year 2, the objective of Task T1.5 was to validate whether or not the project 
solutions (reference architecture, protection techniques, tool chain, decision support system, se-
curity evaluation methodologies) as developed thus far in the other WPs were able to protect the 
use cases within the attack model and the security requirements. Moreover, the attack model, 
the security requirements description and the reference architecture were to be updated to re-
flect lessons learned and to ensure they were still up to date.  
At the end of the project, the final validation had to cover all solutions developed in the other 
WPs, and incorporate lessons learned and insights obtained from all the experiments with aca-
demic hackers, with professional pen testers, and in the public challenge.  

FP7-ICT-2013-10  Proposal ID 609734 - Part B ASPIRE  p. 21/123 

 

1.3 S/T methodology and associated work plan 
1.3.1 Overall strategy of the work plan  
The overall strategy of the work plan is depicted in 
Figure 7. ASPIRE's WP and task structure and organi-
zation has been defined as the most appropriate to limit 
the risks associated with the RTD challenges while 
maximizing the potential outcomes of the individual 
developments. 
• WP8 provides the necessary management support. 

It also covers the internal dissemination throughout 
the project and Q&A. 

• WP7 covers the coordination of external dissemina-
tion throughout the project and concentrates on the 
preparation of the project outcomes' exploitation. 

• WP1 will define the application requirements that 
will drive the project's RTD and the demonstration 
in three industrial use cases. The security require-
ments will be unified into an attack model and a re-
ference architecture of protected applications. They 
will be used to validate the application of the AS-
PIRE tool chain on the use cases. 

The core ASPIRE RTD is situated in WP2, WP3, and WP4.   
• In WP2 and WP3, new, concrete techniques for software protection will be designed and developed for each 

of the five identified lines of defence: data hiding, algorithm hiding, anti-tampering, remote attestation and 
code renewability. WP2 focuses on techniques that are applicable offline. WP3 focuses on online techniques 
in which the application is split over a client-side component and a server-side component as shown in the 
ASPIRE reference application architecture (Figure 5). Gradually, tool support for the different techniques will 
be integrated into the ASPIRE framework.  

• In WP4, a security evaluation methodology is developed for the software protections developed in WP2. This 
methodology will cover the attack model developed in WP1, and concentrates on the link between applied pro-
tections and delay for the attacker. Based on practical insights and experiments with attack tools and humans 
attackers, a knowledge base will be set up. 

• WP5 brings together all developed technology to ensure their compatibility. The tools that apply the protection 
mechanisms developed in WP2 and WP3 are integrated in the ASPIRE Tool Chain. The developed security 
evaluation technology and knowledge base of WP4 is integrated into the ASPIRE Decision Support System. 

• In WP6, the three uses cases defined in WP1 will be implemented and protected by means of the ASPIRE 
framework to evaluate the framework, to demonstrate its capabilities, and to ensure a clear path to exploitation. 

Frequent consortium meetings as well as joint developments in WP1-6 will ensure that inter-WP information ex-
change is maximized throughout the project in order to optimize collaboration and efficiency.  
The overall RTD timeline of the project is depicted below. Continuous testing of the developed technology on the 
three use cases from month 18 on will ensure that the exploitation potential is maximized. 
 

 
 
 

!"Security"evalua.on"RTD"starts"(WP4)"
!"Tool"chain"integra.on"starts"(WP5)"
!"Use"case"development"starts"(WP6)"

!"Requirement"analysis"
""starts"(WP1)"
!"RTD"of"offline"protec.on"
""techniques"starts"(WP"2)"

M1"

M4"

!"RTD"of"online"
"""protec.ons"starts""
"""(WP3)"

M7" M18"

!"Offline"tool"chain"first"protects"
"""use"cases"(WP"5)"

M24"

!"Gradual"integra.on"of"online"protec.ons"starts"(WP5)"""
!"Development"of"exploita.on"plan"(WP7)"

M30"

!"Public"Challenge"Launched"(WP4)"
!"Integra.on"Decision"Support"System"(WP5)"

M12"

!"First"offline"tool"chain"(WP5)"

M25"

!"Intermediate"Valida.on"(WP1)"

M36"

!"Demo"(WP6)"
!"Final"valida.on"(WP1)"

.me"

M28"

!"Demo"prepara.on"starts"(WP6)"

Figure 7: Overall strategy of the work plan 

WP#6#Demo#

use#case#1#

Research#&#Technology#Development#

WP#1#Requirements#and#Architecture#

WP#5##ASPIRE#framework#
##ASPIRE#
tool#chain#

##ASPIRE###
#decision#
#support##
##system#

WP#2#Offline#ProtecHons#

WP#4#Security#EvaluaHon#

WP#7#DisseminaHon#&#ExploitaHon#

WP#8#Project#Management#

use#case#2#

use#case#3#

WP#3#Online#ProtecHons#



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 7 of 70 

1.2.4.2 WP2 Offline Software Protections 
The goal of this WP was to develop offline protections. For some, the goal was to push the state 
of the art, for others the goal was to have basic implementations that could be integrated with 
the other protections in WP5 to study composability. The WP consisted of five tasks, with the 
following objectives. 
Task T2.1: Data obfuscation: Develop stronger data obfuscation techniques by making them 
depend on dynamic properties such as aliasing or hard to analyse features. Develop a source-
level tool set to support the automated application of these techniques and of all other source-
level techniques of this project.  
Task T2.2: White-box cryptography (WBC): Design and implement provably strong WBC so-
lutions based on the decomposition of multivariate equations over finite fields as an extension to 
a provided WBC library generator tool. Extend that existing WBC tool and library to support 
dynamic keys. Study the potential for using weaker but faster WBC schemes in time-limited 
protections, where renewability can ensure that keys are replaced before being broken. Use 
WBC to protect the bytecode used in the virtual machine (VM) we will embed in client-side ap-
plications. Use WBC in an indirect way in a diversified cryptographic library by protecting appli-
cation keys by a key that is derived from a master key protected by WBC. 
Task T2.3: Client-side code splitting: Develop a code splitting approach that can extract native 
client application code to replace it by bytecode that is interpreted in an embedded VM to protect 
against code inspection. 
Task T2.4: Binary Code Obfuscation: Develop support for existing control flow obfuscation for 
the project's use cases and platforms.� Extend the application of control flow obfuscations to 
cover both the original application code and the code of the embedded VM and other security 
components, such that the total binary is not easily decomposed into its two components by an 
attacker.�Develop domain-specific obfuscations to protect cryptographic algorithms against pat-
tern-based static or dynamic attacks. �
Task T2.5: Anti-tampering: Develop anti-debugging techniques in which the client-side appli-
cation is partially transferred into a debugger that gets attached to it, such that that debugger 
cannot be removed to make room for a malicious one.� Develop limited overhead call stack 
checks and control flow checks to detect inappropriate callbacks from external libraries not pro-
tected by the other techniques.�Develop code guards of which the functionality is split over the 
binary code and the bytecode, and that also guards both the application code and the embedded 
VM's code.  
1.2.4.3 WP3 Online Software Protections 
The goal of this WP was to design and develop state-of-the-art online protections. The WP con-
sisted of three tasks, with the following objectives: 
Task T3.1: Client-Server Code and Data Splitting: Develop a code splitting approach that can 
extract part of the client application code to execute it on a trusted server where it cannot be 
observed by an attacker. Combine server-side execution with execution in a client-side VM by 
having a server deliver the so-called mobile code to the client. Research data splitting techniques 
for protecting larger data sets by splitting the data over server and client.  
Task T3.2: Remote attestation: Build on code splitting to develop a new type of implicit attes-
tators (that relies on seemingly normal data being transferred from client to server and on the 
partial execution on the server) to make authenticity verdicts. Study advanced remote attestation 
aspects to improve the applicability, scalability, and dependencies of implicit attestation. Develop 
so-called time bombs to force the clients to connect to the server to undergo attestation regularly. 
Develop specific attestation schemes that can detect code cloning.  
Task T3.3: Renewability: Extend the server-side functionality of the ASPIRE reference archi-
tecture to support renewability in time, i.e., to make the mobile protection code that is provisioned 
by the server to the client vary over time. Diversify the bytecode representation in the VM in 
space, to ensure that an attack on one application copy cannot be repeated immediately on 
another copy. Extend the existing binary code diversification contributed by UGent through Dia-



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 8 of 70 

blo from a purely stochastic process to a controlled process. Use a controlled process and opti-
mization approaches to generate maximally diversified application copies.  

1.2.4.4 WP4 Security Evaluation 
The overall objectives of WP4 were the development of a software protection evaluation meth-
odology and the necessary models and metrics to make software protection measurable. Pene-
tration tests of various forms will be conducted to populate the models and better understand 
the relation between attacks and protections. The goals of the five tasks were as follows. 

Task T4.1 Security Model and Evaluation: Develop a formal security model, security evalua-
tion methodology, and knowledge base in which the relation between protections and attacks is 
incorporated such that the model can predict the delay an attacker will incur on an attack given 
a description of the ASPIRE protections applied and the assets of the program to be protected. 
Incorporate all information obtained from the experiments in T4.2–4 in the model.  

Task T4.2 Complexity metrics: For a range of attacks, analyse modes of operation in attacks 
to define the heuristics used by attackers to steer their activities during attacks. Develop scripts 
that implement those heuristics and automate those activities that involve (semi-)automated at-
tacker tools. Design complexity metrics based on the data set sizes observed during and after 
the execution of those scripts. Analyse how protection techniques being applied increase those 
data set sizes to estimate the delay an attacker will incur as the result of a protection.  

Task T4.3 Experiments with academic subjects: Iteratively design, execute, and analyse con-
trolled experiments in which PhD and MSc students attack protected programs to evaluate the 
delay resulting from the protections.  

Task T4.4 Experiments with industrial tiger teams: Similar to Task T4.3, but in this task, 
industrial experts in tiger teams perform the attacks.  

Task T4.5: Public Challenge: Setup a public challenge, run and monitor the challenge, analyse 
the (reported) attacks and their failure or success.  

1.2.4.5 WP5 Framework 
The overall objectives of WP5 were to develop a tool chain to deploy all the developed protec-
tions, a decision support system to assist the user of the tool chain, and open source versions 
thereof. 

Task T5.1: ASPIRE Compiler Tool Chain: Design the ASPIRE tool chain: the set of tools that 
will be used as plug-ins, all APIs, information formats and semantics, the overall flow of the tool 
chain, etc. Ensure that it runs on the use case applications. Integrate all technology developed 
in WP2 and WP3 into this tool chain. Develop an easy-to-use GUI interface.  

Task T5.2 ASPIRE decision support system: Develop a tool that allows a (non-expert) tool 
chain user to invoke the tool chain and obtain a selected level of protection. Develop a tool 
module that interfaces the model and knowledge base of Task T4.1 to obtain a list of tool chain 
configurations (combinations of protections to apply and their parameters) that will meet the us-
er's requirements. Develop an optimization module that finds the optimal tool chain configuration 
for a target optimization function. Develop a GUI and integration with the tool chain.  

Task T5.3 Open Source: Isolate, separate and clean up those parts of the ASPIRE framework 
that can be open-sourced. Open-source them with a manual. 

1.2.4.6 WP6 Use Cases 
To objectives in this WP were to develop and prepare the three use cases that are to be used to 
validate, test, and tune the ASPIRE framework and its components, and to demonstrate the 
ASPIRE results.  



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 9 of 70 

1.3 Main S&T Results / Foregrounds  
1.3.1 WP1 Requirements and Architecture (M01-M36) 

In Tasks T1.1–3, the industrial partners defined three use cases that are representative for their 
business applications and that embed similar assets to be protected. The use cases themselves 
were implemented in WP6, and the elicited security requirements were bundled and extended 
in Task T1.4. Importantly, the project opted for more complex use cases, i.e., dynamically 
linked native Android ARMv7 libraries loaded into processes largely out of control of the pro-
ject, to ensure their representativeness of real-world applications, rather than going for simpler 
implementations that would have minimized the engineering effort needed in the other WPs.  
 

1.3.1.1 Task T1.4 Attack model, security requirements, reference architecture 
The ASPIRE Attack Model (D1.02, 89 pages, confidential) 
The model first describes the scope of attacks on software assets against which the ASPIRE 
project developed protections. The attack scope is limited to MATE attacks on native binary 
code that is normally executed on mobile devices. Attackers can, however, also attack the soft-
ware in their labs, where they have a whole range of tools, techniques, and more accessible 
devices at hand. With their toolbox, they can perform white-box attacks on the software and its 
assets. To put the attacks and the attackers' goals in perspective, the project builds on an eco-
nomic attack model for MATE attacks, in which attackers try to gain more from exploiting an 
attack than they need to invest to engineer it. Obviously, the ASPIRE protections then aim 
for requiring more effort from the attacker, and for lowering his potential gains.   
The attack model also describes the assets that attackers might be interested in and that the 
ASPIRE technology aims to protect. These assets include private data, public data, unique 
data, global data, traceable code and data, code, and code execution. Their information 
security attributes that need to be protected are confidentiality, privacy, integrity, non-repu-
diation, and execution correctness. An overview is also presented of the threats that attackers 
can pose on these assets and attributes.  
A large section of D1.02 is devoted to extensive, exhaustive discussions of the known attacks 
and attack steps that attackers deploy to attack the previously discussed assets. The list of at-
tacks was assembled following a consortium-wide literature study covering academic and indus-
trial experience within the project partners, academic literature, and online forums and hacker 
blogs. Static attacks are considered, in which no software under attack is executed, as well as 
dynamic attacks, that involve execution the software on selected inputs, and hybrid attacks, 
that combine static attack features with dynamic attack features. The static attacks are classified 
into static structural code and data recovery, structural matching of binaries, and static 
tampering attacks. The model also discusses the most important attack attributes: identifica-
tion and exploitation. Identification refers to the expertise needed by attackers to engineer an 
attack. Exploitation refers to the damage that can be done on a provider's or vendor's business 
once a successful attack is engineered. The dynamic attacks are classified into attacks on com-
munication channels, fuzzing, debugging, dynamic structure and data analysis, and dy-
namic tampering attacks. For all classes of attacks, the state of the art, the available tools and 
mitigations, and the attributes are discussed.  
Finally, six concrete attack paths are presented to clarify how the different types of attacks are 
in practice combined to attack assets in real world use cases.  
 

All partners consider the ASPIRE Attack Model a very useful S&T result, that allows them to put 
their S&T results of the other WPs in the correct perspective. The model remains confidential 
because industrial partners do not want such a valuable overview of available attack methods to 
fall in the hands of potential attackers of their products.   

 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 10 of 70 

The ASPIRE Security Requirements (D1.03, 18 pages, confidential) 
The document lists 42 security requirements and recommendations for the ASPIRE tool chain 
and for protected applications. They reflect requirements real-world applications (ideally) meet. 
Three categories of security requirements are elicited: functional, non-functional, and assurance 
requirements. Eleven functional security requirements and recommendations elicit which 
security functionalities an ASPIRE protected application needs to contain. For example, they 
need to comprise some authentication functionalities or remote attestation techniques need to 
be used. Thirteen non-functional security requirements and recommendations express the 
properties the ASPIRE projected application need to contain. This relates to inherent security 
properties such as obfuscation techniques that need to be present, or the fact that no debug 
information must be in the system. Eighteen assurance security requirements and recom-
mendations relate to the ASPIRE tool chain itself and the life cycle of the protected application. 
For example, the fact that the ASPIRE tool chain needs to contain versioning support, accept 
parameters that allow further tuning of a trade-off between performance and security, and must 
have appropriate logging features. 
 

The list of ASPIRE security requirements and recommendations is an important S&T result. It 
formed one of the foundations of the successful validation towards the end of the project.  

 
The ASPIRE Reference Architecture (D1.04, 99 pages, public) 
The ASPIRE Reference Architecture defines the components of ASPIRE-protected client-side 
applications and their server-side support, and how these interact with each other. In other 
words, this reference architecture presents which components are introduced by ASPIRE pro-
tection techniques and how these operate during the execution of the protected application. 
As a basis, a multi-tier architecture is defined and documented. This captures an architecture 
where a multitude of client applications can connect to the ASPIRE portal infrastructure, which 
will manage the connections with a multitude of backend services. Within the context of this 
multi-tier architecture, the ASPIRE protection techniques are defined and their architecture is 
detailed. This includes the server-side and client-side components that each technique intro-
duces, and how those components operate and communicate during the execution of the pro-
tected application. The document also presents the ASPIRE protocol, the ASPIRE server portal, 
and the ASPIRE Client Communication Logic through which all online ASPIRE protected appli-
cations communicate with the ASPIRE security server. Two different types of protocols are in-
cluded: a simple request protocol and a protocol based on WebSockets.  
Next, the document presents the architecture of the ASPIRE anti-reverse engineering protection 
techniques. These include obfuscation techniques and anti-debugging techniques. With respect 
to the architecture of the ASPIRE anti-tampering techniques, the architecture does not present 
complete solutions as individual techniques in separate subsections. Instead, different types of 
components are individually presented: tamper detection components (attestator components 
and verifier components) and tamper response components (delay components and reaction 
components). A complete anti-tampering solution comprises these different types of compo-
nents. As tamper detection technique, code guards, CFG tagging, call stacks check, and anti-
cloning are presented. As response components, delay data structures and software time bombs 
are presented. Some examples of compositions thereof are introduced as well: a completely 
offline combination, and remote attestation techniques. 
The reference architecture also contains an assessment of the composability of the many pro-
tections supported by the ASPIRE Compiler Tool Chain, i.e., to what extent multiple protections 
can be applied to protect the same code fragment. It also discusses where synergies exist be-
tween individual protections to let them reinforce each other, and where additional design and 
development work was invested in building even stronger protections out of compositions of 
existing ones. This specifically concerns adaptations to mobile code, remote attestation (and its 
code guards) and client-side code splitting to support remote attestation of mobile code & data.  



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 11 of 70 

Finally, the reference architecture details the forms of renewability that were developed.  
A paper on the ASPIRE reference architecture has been published in the 13th Working 
IEEE/IFIP Conference on Software Architecture. 
 

The public ASPIRE Reference Architecture document is an important S&T results because it 
helps users of the ASPIRE S&T results and their prototype implementations to understand and 
use those artefacts, and because it helps them to reason about the protection provided by the 
ASPIRE protections and combinations thereof. It also provides an excellent framework for rea-
soning about future extensions and compositions. 

 

1.3.1.2 Task T1.5 Validation 
One of the most important S&T results of the project is deliverable D1.06 Validation, a public 
66-page report in which all of the developed software protection technology is validated on the 
three project use cases, against the security requirements, and in light of the attacks of the attack 
model. In a preliminary version D1.05 delivered after two of the three project years, the members 
of the ASPIRE advisory boards confirmed that the validation methodology was fair and complete.   
In D1.06, the ASPIRE consortium concluded that the assembled (and updated) Attack Model, 
Security Requirements, and Reference Architecture were still valid and appropriate at the 
end of the project. The consortium also concluded that the project results meet almost all 
requirements. In particular, the most important ones are met. In addition, the ASPIRE consor-
tium concluded that, with the exception of some data obfuscations and multi-threaded cryptog-
raphy, all protections developed during the project are covered by the validation of the use cases. 
Regarding the assets in the ASPIRE use cases and their security requirements, the consortium 
concluded that at the end of the project the envisioned, useful protections for those assets 
are mostly available in the ASPIRE protection framework. The exceptions were interproce-
dural data obfuscation (which is not available), control flow tagging (which was delivered too late 
by one partner to protect another partner's use case), and dynamic remote attestation (which 
was not yet supported on the use case demonstration platform). Moreover, the ASPIRE consor-
tium concluded that the tool support for the available protections was sufficiently mature 
to deploy them correctly and automatically on the complex project use cases.  
Based on their own assessment and tests, as well as on penetration tests performed with project 
outsiders, i.e., in tests performed by academic students, professional tiger teams, and in a public 
challenge, the ASPIRE consortium concluded that although many of developed and integrated 
protections still offer a large potential for improvement, those protections effectively delay at-
tacks and increase the effort that attackers need to invest in identifying attack vectors; 
they make it harder to exploit identified attacks at a large scale; and hence effectively 
reduce the profitability of engineered attacks. 
It also concluded that it can conjecture that the developed and integrated renewability tech-
niques deliver improved protection, as they make the scaling up of attacks harder, as they 
can delay attack vector identification, and as they can help in raising the costs faced by attackers.  
 

To a large degree, the project has hence achieved its goals to demonstrate that software-based 
protection techniques that cover multiple lines of defence can be composed to deliver true pro-
tection. 

 
Relying on various experimental evaluations and theoretical considerations, the ASPIRE con-
sortium furthermore concluded that the overhead the protections introduce is limited and 
can be controlled by deploying the protections cautiously. In particular, on the project use 
cases, the protections could be deployed as foreseen by their developers and the project's se-
curity experts, and with an acceptable overhead.  



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 12 of 70 

Finally, the ASPIRE consortium concluded that the ASPIRE Decision Support System has a 
very high potential even if it is not yet ready to be used to protect real applications. On one 
hand, it can automate complex operations relevant to the deployment of software protections, 
such as attack path discovery and suggest combinations of protections to deploy; it gathers a 
huge amount of data useful for making decisions; and it proposes effective protections. On the 
other hand, in some cases, the level of details of the output is not yet good enough to be used 
in practice (attack paths description are too coarse grained); it was not possible to prove that the 
golden combinations are actually optimal; and there are still concerns about the presentation of 
the results, especially with the consulted experts outside the ASPIRE project. 
 

To a large degree, the project hence achieved its goals to demonstrate that decision support can 
ease and semi-automate the task of the user of a software protection tool chain. Tool support is 
available that, given annotations of assets and a description of the available protections, their 
limitations and their impact on security and overhead, can provide insights in the best available 
combinations of protections to deploy, and provide quantitative evaluations of them.  

 

1.3.2 WP2 Offline Software Protections (M01-M30) 

The results of WP2 were documented extensively in deliverables D2.01, D2.03, D2.06, D2.08, 
and D2.10, all of which are public. The developed prototype tool support was delivered in D2.02, 
D2.04, D2.05, D2.07, and D2.09, most of which have been open-sourced.   

1.3.2.1 Task T2.1 Data obfuscation  
At the beginning of the project, FBK surveyed the state of the art relevant for data obfuscation 
and identified the most interesting approaches. Some promising approaches have been imple-
mented to experiment with their strong and weak points. These initial findings have been pub-
lished as a workshop paper, in the 1st International Workshop on Software PROtection (SPRO), 
held in May 19, 2015, in Florence, Italy. 
One of the most interesting among the existing approaches relied on an NP-hard problem to 
block attacks. The rationale is that an attacking tool should have solved a hard problem to re-
cover clear values. However, we realised that this approach was limited by the fact that the same 
hard problem that should stop the attacker also limits the obfuscation tool. In fact, the protection 
tool should check the solution of a randomly generated hard problem, by solving it at obfuscation 
time. Consequently, to make the obfuscation process affordable, either the NP-hard problem 
should not be too hard or the transformation soundness should not be checked at obfuscation 
time. The Authors of this approach adopted the second strategy to deliver a hard obfuscation 
scheme that might deliver wrong obfuscated code. As generating potentially wrong obfuscated 
code is not acceptable in the scope of ASPIRE, this approach needed to be refined and extended 
to meet the project requirements.   
FBK therefore invented a novel approach to data obfuscation that overcomes this limitation by 
using a mapping between different NP-hard problems. At obfuscation time, a tool generates a 
(random) instance of a 3SAT problem that is fast to check by the obfuscation tool. This ensures 
that the transformation is sound. This easier instance of a 3SAT problem is then transformed 
into a larger instance of k-clique problem that is much harder to solve. The transformation algo-
rithm then obfuscates data such that a static de-obfuscation attack tool would need to solve the 
hard k-clique problem to recover clear data.  
The experiments confirmed that: 

• A state-of-the-art static analysis tool requires exponential time to recover clear values of 
obfuscated variables; 

• The obfuscation transformation requires very short time to protect values; and 
• The transformation is sound. 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 13 of 70 

These research outcomes have been accepted for publication in an academic conference, the 
24th IEEE International Conference on Software Analysis, Evolution, and Reengineering, to be 
held in February 20-24, 2017, in Klagenfurt, Austria. 
Automated tool support to deploy the implementations of the existing state of the art and of the 
invented extensions has been delivered and integrated into the ASPIRE Compiler Tool Chain. 
This includes support to extract source code annotations that specify the protections to be de-
ployed.  
 

The project goals of integrating state-of-the-art data obfuscations, of pushing that state of the 
art, and of developing automated tool support have hence clearly been achieved.  

 

1.3.2.2 Task T2.2 White-box cryptography  
White-box cryptography 
In the state of the art, prior to ASPIRE, there was no research into provably secure constructions. 
This was something that NAGRA wanted to find out, and it chose to explore how multi-variate 
white-box constructions can be achieved. The activities in the ASPIRE project showed that such 
provably secure constructions can indeed be achieved. NAGRA found ways to do so, but con-
cluded that these constructions are too slow and too large for practical use cases. 

For the remainder of the white-box activities in the ASPIRE project, NAGRA focused on practical 
implementation and improvements on the white-box tool framework for ASPIRE (WBTA). The 
WBTA framework is based on NAGRA’s existing tools for managing the white-box implementa-
tion generation and build process. It was adapted (i) to allow the integration of new white-box 
constructions that were developed during the ASPIRE project, and (ii) to integrate it into the 
ASPIRE Compiler Tool Chain and to make the constructions composable with many other pro-
tection techniques – this was one of the prime goals in the project. The WBTA is integrated into 
the tool chain as a source-to-source translation tool that operates on annotated code and re-
writes that code to include invocations to newly generated white-box code. That white-box code 
is generated automatically by the WBTA and linked into the program. As a result of the integra-
tion into the ASPIRE Compiler Tool Chain, the translated code and newly generated white-box 
code can be protected with other binary-level protections and with some source-level protections 
such as cross-translating it to bytecode, applying control flow obfuscation, applying integrity 
checks, etc. 

NAGRA also investigated new constructions for fixed-key implementations, which have been 
deployed onto its use-case, and found new ways to achieve dynamic-key implementations. Such 
white-box implementations have not been seen in public literature before, and allow to instantiate 
keys in white-box implementations at run time – something that is needed in DRM use cases. 
NAGRA also developed faster, time-limited white-box implementations which introduce a trade-
off between security and performance, and then subsequently investigated how such implemen-
tations can be renewed at run time (See Task T3.3 in Section 0). Such time-limited implementa-
tions can be useful in bootstrapping use cases or other use cases where cryptographic keys 
have only value in a limited time-frame. 

The practical implementations were deployed successfully on two of the three industrial project 
use cases through the ASPIRE Compiler Tool Chain, and not broken in any of the multiple pen-
etration tests in which they were attacked.  

Together with SFNT, NAGRA also researched options for using WBC to protect VM bytecode. 
The conclusion from this is that apart from encrypting the bytecode – which is a straightforward 
process not very useful to invest research funding in – nothing useful enough and with sufficiently 
low overhead was found.  

With respect to pushing the state of the art of white-box cryptography and the integration of tool 
support for practical instantiations, the project has as a result achieved all its objectives. 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 14 of 70 

Diversified Cryptographic Library 
GTO proposed a protection that enables to hide a key at compile time in the application in such 
a way that it can be derived in a secure way at run time. A typical use case is a symmetrical 
master key that is shared between the application and a server from which derived keys are 
computed with data retrieved from a service provider server. The Diversified Crypto library (DCL) 
protection enables such a feature. This protection is derived from other research work done at 
GTO and enables to embed some application code together with the pure cryptographic library. 
In this regard is it more than another cryptographic library available for mobile application be-
cause it brings flexibility.  

For the purpose of the validation task, the one-time password (OTP) generation processing (see 
the OTP use case in Section 0) has been put within the DCL. In addition to protecting a master 
key as initially planned, this protection can deploy application logic as well and take advantage 
of the secure storage feature of DCL and the ability to embed some application code under an 
encrypted form. 

 

With the development of the DCL, the integration of its tool support into the ASPIRE Compiler 
Tool Chain, and its deployment on the OTP use case, the project has reached the goal put 
forward in the DoW for this protection.  

 

1.3.2.3 Task T2.3 Client-side code splitting 
In the DoW, SFNT was foreseen to develop a protection and the corresponding tool support 
called client-side code splitting. In this protection, native code is extracted from the code section 
of the binary/library to be protected. The native code is then cross-translated to bytecode, which 
is injected into the binary or library, together with a software virtual machine (SoftVM) that can 
interpret the bytecode. SFNT delivered three generations of SoftVMs with the corresponding 
cross-translators, albeit as Background. Because of the importance for SFNT's business, they 
already developed SoftVMs meeting the requirements of their business ahead of the project 
schedule. In the project, those SoftVMs were re-used rather than developing alternative ones 
from scratch. Whereas the first two generations still contained weaknesses (as expected by the 
developers and confirmed in the conducted penetration tests), the last one is considered signif-
icantly stronger because it is not vulnerable to the attack steps that were executed during the 
penetration test.  

A tool flow design for the code extraction, cross-translation, and injection of bytecode was de-
signed and developed by UGent and SFNT (as project Foreground) to enable the deployment 
of this protection as a plug-in in the overall ASPIRE Compiler Tool Chain. Its main feature is a 
clear separation of concerns between the native code extraction and bytecode injection func-
tionality on the one side, of which the only feasible implementation is one that is tightly coupled 
to the other binary-level protection tool support, and the cross-translation and SoftVM compila-
tion on the other side, both of which should be able to evolve and be replaced independently of 
all other protections. Still both sides of the separation co-operate tightly, because the extraction 
tool queries the cross-translation tool to identify which native instructions it supports.  

The native code extraction and the bytecode injection functionality are open-sourced. Finally, it 
is worth mentioning that the designed tool flow makes that this protection composes really well 
with other protections. In particular, the linked-in SoftVM can be protected with all binary-level 
protections, including binary code obfuscation, code guards, migration to the self-debugger, etc. 
Furthermore, code from the SoftVM as well as the translated bytecode fragments can be made 
mobile.   

Whereas the DoW proposed to research techniques to automatically identify the code fragments 
to be cross-translated with slicing techniques, external expert advice gathered during the project 
(from advisory boards and other experts of the industrial partners) made us move away from this 
idea. The advice in general was to focus on techniques in which the protection tool chain user 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 15 of 70 

explicitly marks code to be protected (i.e., annotates the code fragments relevant for protecting 
the assets), thus avoiding the in general intractable problem of automatically determining that 
code based on a description of only the assets. For this protection, we completely followed that 
advice. This decision followed in part from the fact that slicing techniques to identify relevant 
code were already being researched for client-server code splitting later in the project anyway 
(in Task T3.1, see Section 1.3.3.1), and that little additional scientific value was to be found 
researching it earlier here and hence delaying the other work in this task until a slicing technique 
would become available.  

 

Overall, the project has hence clearly met all its goals with respect to the client-side code splitting 
protection in this task.  

 

1.3.2.4 Task T2.4 Binary code obfuscation 
Starting from UGent's embryonic Intel x86 support for code flattening, opaque predicates, branch 
functions, and code layout randomization in its link-time binary rewriting framework Diablo, 
UGent developed a generic Diablo control flow obfuscation module, and back-ends for both the 
x86 (i386) architecture and the target ARMv7 platform of this project. In the penetration tests 
conducted in the project, these obfuscations proved to hamper attackers, but they were not (yet) 
unsurmountable. This is okay, as the goal of this effort was to enable integration of state-of-the-
art binary code obfuscations with other protections, not to push the state of the art w.r.t. code 
obfuscations.  

That integration goal was clearly reached: in the binary-level processing step in the ASPIRE 
Compiler Tool Chain, the code obfuscations compose well with the other protections. All com-
ponents linked into the binary/library in support of other protections (the ASPIRE communication 
logic, the SoftVM, implementations of WBC primitives, code guards, the self-debugger, ...) can 
be obfuscated. Moreover, the more global obfuscations (flattening, branch functions) as well as 
the global transformation of code factoring can be applied across functions, even across func-
tions from different components (linked-in object files or archives), and can hence hide the 
boundaries between the components. Furthermore, the code that is extracted to become mobile, 
can be obfuscated as well. The project goals with respect to generic control flow obfuscation 
have hence clearly been reached by UGent. Importantly, all of the developed and integrated tool 
support has been open-sourced.  

In a parallel research track, GTO designed a multi-threaded cryptography scheme to provide 
domain-specific obfuscation for cryptographic primitives in online client applications. As this 
scheme seemed promising at first, a prototype implementation was developed and evaluated. 
At that point, it was observed that in order to deploy the technique, the APIs (input/output for-
mats) of the client need to be adapted. Automated rewriting of such APIs falls outside the scope 
of the project, however, so the further development within the project was stopped.  

 

With respect to code obfuscations, it is clear that the project achieved all objectives. 

 

1.3.2.5 Task T2.5 Anti-tampering 
UGent designed a tightly coupled self-debugger protection in which a custom debugger occupies 
the one seat available in operating systems for debugging processes under attack. It works by 
forking off a debugger process as soon as a binary or library is loaded into memory, and by 
letting that debugger attach to all the threads in the process to be protected. This prevents an 
attacker from attaching his own debugger. This proved to be a very effective anti-debugging 
protection in the conducted penetration tests. Moreover, it prevents the collection of execution 
traces with existing system-level instrumentation tools on the project's target platform. UGent 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 16 of 70 

designed not only the overall protection technique, but also an implementation that operates 
correctly in the very demanding scenario of the project use cases, incl. one case in which a 
library to be protected is loaded and unloaded repeatedly into a multi-threaded daemon server 
process. Furthermore, UGent developed the necessary tool support in its Diablo link-time rewrit-
ing framework (and integrated it into the ASPIRE Compiler Tool Chain), such that the deploy-
ment of this protection is fully automated.  

All tool support and protection components will be open sourced (for research purposes).  The 
work was also published in an academic workshop, the Software Security, Protection, and Re-
verse Engineering Workshop that was co-located with the ACSAC 2016 conference on 5-6 De-
cember 2016. Finally, to assess the exploitability of this technique, which depends on the avail-
ability of a number of kernel functionalities on the device platform, the protection was tested on 
the latest Android and Linux versions. It worked without problems.  

UGent also developed anti-callback stack checks. The developed tool support can inject these 
checks automatically in all non-exported functions of binaries and libraries, where they check for 
the occurrence of unallowed external function calls every time such a function is invoked. The 
checks are light-weight, checking only for coarse-grained control flow integrity, because they 
need to operate in an environment (i.e., they are loaded into a process space) not controlled by 
the ASPIRE Framework, but by Google (i.e., the Dalvik runtime environment and the DRM server 
and media server daemons). The tool support was integrated into the binary-level processing 
steps of the ASPIRE Compiler Tool Chain and open sourced and it functions correctly on the 
project use cases. During the professional penetration tests in the project, no attacks on these 
checks were executed, however. 

Furthermore, UGent designed and developed a protection consisting of offline code guards, and 
the necessary tool support to deploy them automatically. The developed tool support manipu-
lates source code to inject invocations of attestators and verifiers at locations indicated by source 
code annotations. Based on the forms of guards requested in the annotations, source code im-
plementing the attestators and the verifiers is then instantiated from a template, together with a 
set of application-independent, to a certain degree stealthy reaction mechanisms, and a set of 
data structures in which the verifiers can encode, in non-obvious ways, whether or not their 
verifications were successful. The reaction mechanisms are carefully engineered code frag-
ments that can be executed at any point in time; they will work correctly when all verifications so 
far were successful, but cause havoc in unsuspicious ways if not, e.g., by causing corruption by 
means of free-after-free, and causing deadlocks by means of locking primitives) if not. Those 
are then compiled and linked in into the protected program. In the binary-level processing step, 
invocations to the reaction mechanisms are then injected throughout the protected application, 
and data structures are populated and linked in into the binary that describe the (randomized) 
layout of the regions to be attested in the final binary. Those data structures are then consumed 
at run time by the attestators. All tool support for this protection was integrated into the ASPIRE 
Compiler Tool Chain, and has been open sourced.  

The offline code guard protection composes well with the other protections: the code implement-
ing the attestators, verifiers, and reactions in the protected application can be made mobile, it 
can be moved into the self-debugger, it can be obfuscated, it can be cross-translated to 
bytecode, etc. The protection can guard all code in the protected binary, incl. the original appli-
cation code, the SoftVM, the debugger, the communication logic, the guard code itself and other 
anti-tampering checks. In that respect, the project goal of composing the existing state of the art 
in code guards with many other protections was certainly reached.  

On small programs, as in the public bounty, this protection proved to be vulnerable because 
when it is deployed on few program locations, it can be undone manually. Still, this protection 
delayed the attacks on the public bounty challenges significantly. Moreover, manual undoing of 
the protection does not scale to larger programs.  

A minor objective of this task in the DoW was the integration of pre-existing anti-code-injection 
techniques such as technique that prevent the inject of additional threads by checking that only 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 17 of 70 

valid, expected threads are present. This objective was abandoned based on three considera-
tions. First, no existing protections were found that actually can do this for dynamically linked 
libraries. Secondly, and obviously in line with the first reason, the consortium judged that design-
ing and developing such a protection for dynamically linked libraries such as the project use 
cases, which are loaded into third-party applications of which the threading behavior is unknown 
and not limited in scope, is extremely challenging, and that devoting resources to this topic is 
hence introducing a high risk. Finally, the consortium judged that, as the goal of this minor fore-
seen effort was to study the integration of yet one more technique into the protection tool chain, 
and not the development of a new state-of-the-art-pushing anti-code-injection techniques; and 
as many techniques are already integrated and demonstrated to be truly composable, the added 
value of yet another technique would be very small, and hence not worth the mentioned risk.  

 

Overall, it is therefore safe to claim that with respect to offline anti-tampering protection tech-
niques, the project achieved all major goals. 

 

1.3.3 WP3 Online Software Protections (M07-M36) 

The results of the research conducted in WP3 were presented in detail in deliverables D3.01, 
D3.04, D3.06, D3.08, and D3.09, all of which are public. The software prototypes were delivered 
in D3.02, D3.03, D3.05, and D3.07. 

1.3.3.1 Task T3.1 Client-server code and data splitting 
Client-server code and data splitting 
Client-server code and data splitting was a challenging protection, because it required to meet 
several contrasting requirements: 

• Moving a significant portion of code to the server, such that attacker comprehension is 
reduced and tampering opportunities are drastically reduces;  

• Moving a portion of code small enough to control server overhead (CPU time and 
memory consumption); 

• Minimizing communication between client and server, to control network overhead and 
to control the delay that could potentially impact the user experience. 

To meet all these requirements, FBK developed a novel splitting strategy based on program 
slicing, i.e., to follow control and data dependencies and split a logically contiguous portion of 
program. A prototype developed during the first year of the project highlighted a critical problem, 
related to the transitive inclusion of dependencies in the slice: The initial slicing algorithm in-
cluded too many library functions. This caused compatibility issues between the program to pro-
tect (that uses ARM libraries) and the slice to be run on the ASPIRE server (that uses x86 librar-
ies). During the second year, FBK elaborated a solution to this problem and refined the splitting 
algorithm into an improved solution that can reduce of the size of the slice (i) to avoid the inclu-
sion of the body of library functions in the slice and; (ii) to generate a smaller slice to be executed 
at server side, thus reducing the server load. 

It is important to note that whereas the DoW treated code splitting and data splitting as related, 
but different techniques (data splitting requiring extensions to code splitting) the developed ap-
proach actually inherently combines both, as both the data on which the slices are computed, 
and the code in the slices are moved onto the server.  

These research achievements have been implemented in a fully automatic transformation tool, 
that was subject to extensive validation, including of the performance cost of the transformation 
on a set of case studies in terms of execution time overhead, the memory overhead, and the 
network overhead for several configurations of the protection. This tool will be further developed 
and commercialized in the spin-off that FBK is initiating.  



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 18 of 70 

This protection was also subjected to extensive validation from the security point of view, as it 
was studied in isolation (i.e., combined with no other ASPIRE protection) in the second round of 
experiments with academic participants, and as it has been subjected to experimental validation 
combined with other ASPIRE protections in the experiments with industrial tiger teams and in 
the public challenge.  

Finally, this protection was combined with remote attestation: when tampering is detected with 
remote attestation, the server stops responding to the client, which can hence not continue ex-
ecuting. This reactive remote attestation technique published in a peer-reviewed paper: Alessio 
Viticchié, Cataldo Basile, Andrea Avancini, Mariano Ceccato, Bert Abrath, Bart Coppens. Reac-
tive attestation. Automatic detection and reaction to software tampering attacks. In Proceedings 
of the 2016 ACM Workshop on Software PROtection (SPRO 2016), pages 91-92, 2016, ACM. 

 

With respect to client-server code and data splitting, the project hence reached all of its goals. 

 
Code and Data Mobility 
At the beginning of the project, UEL brought its background knowledge of software protection 
based on mobile code delivered from a trusted network server. The initial Windows-based pro-
totype has been completely re-designed and re-implemented by UEL and UGent into a novel 
approach for Code Mobility, relying on binary rewriting features of the Diablo framework, so that 
the binary code transformation is correct and equivalent to the original ARM binary code. 
Once the binary has been compiled and protected, the developer can use code mobility to 
choose which functions or parts thereof will be transformed into mobile code blocks to be down-
loaded from a secure server at run time as soon as they will be invoked for the first time in the 
client application. 
The percentage of code to be made mobile and the different network configurations have been 
tried in many experiments, which have been documented in a published paper: Alessandro 
Cabutto, Paolo Falcarin, Bert Abrath, Bart Coppens, Bjorn De Sutter. Software Protection with 
Code Mobility, In Moving Target Defense International workshop (MTD-15), co-located with 
CCS-2015, ACM.  
UGent designed and developed the necessary extensions to support not only mobile code, but 
also mobile data, which has been a key enabler to support dynamic white-box cryptography (in 
which tables encoding new or re-randomized keys are made mobile) and SoftVM bytecode mo-
bility, in which case the bytecode is not stored statically in the client binary but downloaded from 
the secure server as well.  
The code and data mobility support code has been already exploited within the ASPIRE project 
as transport layer for mobile code blocks in the renewability framework (discussed later in Sec-
tion 0), and for remote attestation support (denying mobile blocks delivery in case of tampering 
detection). The code has been open sourced and published on GitHub, and it has been inte-
grated into the ASPIRE Compiler Tool Chain.  

This protection was also subjected to extensive validation from the security point of view, as it 
has been subjected to experimental validation combined with other ASPIRE protections in the 
experiments with industrial tiger teams and in the public challenge. 

Finally, is worth noting that the components (Binder and Downloader) injected into a protected 
application to deploy the mobility can be protected with all other binary-level protections of the 
ASPIRE Compiler Tool Chain. Here again, a high level of composability has been achieved.  

With respect to code and data mobility, the project has exceeded the original expectations from 
the DoW: not only can bytecode be delivered from a server, but so can native code. This is a 
great achievement, because it greatly improves the composability of code and data mobility with 
other techniques. 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 19 of 70 

Concretely, this achievement makes other techniques renewable without requiring the presence 
of a SoftVM. Renewability can therefore be implemented with less overhead, and is made avail-
able to users that do not have the necessary access rights for the client-side code splitting pro-
tection, such as users of the open-sourced prototypes.  

ASPIRE Common Communication Logic  
All online techniques owners successfully integrated client and server components using the 
ASPIRE Server-side Communication Logic and the ASPIRE Client-side Communication Logic 
ASCL libraries developed and provided by UEL. Together, these form a shared layer for bi-
directional communications between clients and server used in all the online protections. Such 
logic has been widely tested and validated against several scenarios including teams experi-
ments with industrial tiger teams, the public challenge, industrial use cases demos, and internal 
tests. 

The initial design has been extended, fully implemented and deeply tested to meet ASPIRE 
partners’ needs. The result of this work is a robust, reusable, easy to implement client-server 
support library based on well-known open source projects (curl library) and standardized proto-
cols, such as HTTP and WebSockets. The prototype implementations have been open-sourced.  

Finally, the libraries can be protected with all binary-level protections of the ASPIRE Compiler 
Tool Chain, thus achieving high composability.  

 

With this achievement, ASPIRE eases the take-up of the ASPIRE open sourced results, as it will 
greatly reduce the effort needed by future users to integrate new online protections.  

 

1.3.3.2 Task T3.2 Remote attestation   
Remote Attestation 
Attesting the integrity of a running application is a complex task; performing it without secure 
hardware, as for several mobile devices and embedded systems, is even more challenging. 
Taking advantage of a trusted remote server to determine when and what to attest, to emit trust-
worthiness verdicts and decide reactions, remote attestation (RA) gives the possibility of a (the-
oretically) higher protection compared to embedded software guards. However, it introduces 
several design and performance constraints we had to face in the ASPIRE project. 

While in literature several works exist that define the design of remote attestation techniques, in 
practice no open source tools were available to download, adapt and use in the ASPIRE project. 
The Consortium then decided to invest on implementing RA techniques to complete the five lines 
of defense and, given the increased importance of the automatic tool chain, to automate the RA 
application on target application, and integrate RA into the ASPIRE Compiler Tool Chain. 

We have selected a form of static remote attestation (Static RA) that attests the integrity of ap-
plications by checking that the binaries in memory have not been altered, and a dynamic form 
Remote Attestation (DynRA) that monitors the correct execution of an application based on 
(likely and true) invariants. Automated tool support has been developed for both the techniques. 
Moreover, static RA has been integrated into the ASPIRE Compiler Tool Chain and open 
sourced (https://github.com/aspire-fp7/remote-attestation), and applied to the project use cases, 
as well as several open source applications. DynRA has been tested on open source application 
on x86 platforms due to limitations of existing likely invariants extractors on the ARM platform 
for which the project use cases were developed.  To push the state of the art, we have investi-
gated several interesting research directions for Implicit Remote Attestation, a variant of RA that 
obliviously collects the information useful to decree about the trustworthiness of an application 
without the need for a client-side attestator explicitly sending evidences. Unfortunately, some 
advanced aspects of Implicit RA that were investigated, lead to negative results and were not 
implemented because of incompatibilities with the use cases and other protections.  



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 20 of 70 

The RA server side support has been designed to manage several instances of the same appli-
cation and several applications at the same time, independently of the actual remote attestation. 
All the server-side components are independent by design and only interact through a database. 
The RA-specific verifiers are dynamically instantiated when applications require them, and may 
be replicated and executed on different machines for load balancing purposes. Indeed, the 
server scalability is one main issue for companies that may have to face critical periods when 
thou-sands or millions of clients may be connected at the same time (e.g., streaming the world 
cup final). Moreover, pre-computations of verification tasks are performed offline to mitigate this 
risk. 

A framework for reactions has been implemented, where reaction strategies are defined with 
policies (which may be driven by business and security considerations) and can be individually 
associated to single instances of applications. ASPIRE has produced server-driven local reac-
tions, that render unusable applications when the server order them (time bombs). Moreover, 
we have pushed the state of the art with the concepts of positive attestation, i.e., applications 
are rendered unusable if they do not prove their integrity (and punished when fail), and delay 
data structures, i.e., covert channels that need to be created between server-side reaction logic 
and local reaction techniques. Moreover, server side reactions have been developed. The Re-
active Attestation instruments applications to make them not executable without interacting with 
a server, which is notified by the reaction logic and stops serving compromised applications. 
Analogously, applications that are also protected with code mobility can be rendered unusable 
by notifying and stopping pushing updated code blocks. 

As already mentioned in Section 1.3.3.1, one form of reactive attestation has already been pub-
lished, i.e., the form where remote attestation was combined with client-server code splitting.  

Finally, it is worth pointing out the integrated forms of RA compose well with all other protections. 
For example, fragments in the injected software components that implement static RA and dy-
namic RA can be cross-translated to bytecode, they can be made mobile, they can be obfus-
cated, etc.  

 

In conclusion, with the composable designs and implementations of static RA and dynamic RA, 
and with the novel server-side management logic that pushes the state of the art, we have 
achieved the project goals with respect to the fifth line of defense, remote attestation. We also 
explored more advanced forms of RA, but more research is still needed, on a broader set of use 
cases.  

 
Anti-cloning 

NAGRA has developed and integrated an anti-cloning protection. This technique allows to detect 
at the server-side if identical copies (clones) are executed on clients. The idea of the technique 
is to monitor the state of the application, and dynamically update this state as the application is 
interacting with a server. Since identical copies will interact independently with the server, their 
state will become de-synchronised, which can be detected by that server. In contrast to most 
techniques in ASPIRE (which focus on mitigating reverse engineering or tampering), this tech-
nique focuses on mitigating the large-scale exploitation of attacks. The technique itself needs to 
be further protected to avoid that copies can easily re-synchronize, and as such, this technique 
has been further composed with other protection techniques in the ASPIRE project.  

The anti-cloning technique is a source-level protection technique. Support has been imple-
mented for integrating the anti-cloning library during the build process of a client-side application 
by the ASPIRE Compiler Tool Chain, as well as server-side support for keeping track of client 
applications and potential clones. This technique is able to detect if applications have been 
cloned, and will track them such that (based on a pre-defined policy) action can be taken. An 
additional server-side interface as implemented such that other online protection techniques or 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 21 of 70 

the original application service can take appropriate action. For example, the mobile code tech-
nique can query this interface and decide not to send new mobile blocks to the client application 
when it has been flagged as being a cloned application. Or a streaming movie service can refuse 
to stream content to an application when this has been flagged. 

 

The project has a such achieved all objectives of the DoW with respect to anti-cloning. 

 
Control Flow Tagging and Reaction Mechanisms (a.k.a. Software time Bombs) 
GTO has developed the Control Flow Tagging (CFT) protection. It is an anti-tampering protection 
to detect an alteration of the binary code at run time. The initial idea was to combine a technique 
used in code coverage tools and a self-degradation of the application as reaction mechanism in 
case the application logic has been tampered with. 

It happened to be, however, that other techniques could use the reaction mechanism, so it has 
been decided in year 1 that the initial protection should be split in two distinct techniques. 

• The CFT protection sets Gates in the binary code on the application where a numeric 
counter check the number of time the activation has passed the Gate. Logical expres-
sions can control that Gate counters have expected values at  

• The reaction part called the Software Time Bombs in the DoW and generalized in the 
Reaction Mechanism in the deliverables. 

At compile time the logical expressions that combine the Gate counter values are put apart to 
be placed on the ASPIRE server under binary format to enable the Reaction Mechanism to eval-
uates the logical expressions. A logical expression combines Gate counters only with compari-
son operators and logical connectors, so this code can be compiled and executed remotely on 
the server provided the Gate counter values are sent to the server. 

Note that both the CFT and the Reaction Mechanism have also been implemented as offline 
techniques. In this case the logical expression is evaluated locally in the application and if not 
satisfied the reaction is triggered. The delay effect of the reaction is important to prevent the 
attacker to connect the Gates, the logical expression evaluation and the actual degradation due 
to the Reaction Mechanism. 

All developed tool support was integrated int he ASPIRE Compiler Tool Chain and deployed on 
GTO's use case.  

 

By broadening the initially foreseen designs and supporting both offline and online versions of 
the control flow tagging protection and the reaction mechanisms, the project has more than 
achieved its goals with respect to these anti-tampering protection components.  

 

1.3.3.3 Task T3.3 Renewability 
Code and data mobility provides excellent protection against static analysis attacks but once 
dynamic or hybrid techniques (such as taking memory dumps and analysing those) have suc-
ceeded, the offer little protection. The Renewability Framework designed and developed within 
the ASPIRE project overcomes this limitation by providing renewable and diversified mobile code 
blocks. Support for this framework was integrated into the ASPIRE tools and all prototype imple-
mentations are open-sourced.  

UGent put its effort on extending Diablo so that is possible to obtain diversified mobile code 
blocks. UEL designed and implemented the logic that invokes such support tool when necessary 
and delivers it to the client for deployment, depending on various configurable renewability poli-
cies. The client hence receives different code every time it is executed, which clearly is a form 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 22 of 70 

of renewability in time.  This necessary tool support, incl. script generation tools of which the 
produced scripts can be run on a server to generate additional diversified blocks, has been inte-
grated into the ASPIRE Compiler Tool Chain and has been open-sourced.  

SFNT contributed its diversifiable SoftVM and the corresponding diversifying cross-translator (as 
Background) to make the client-side code splitting approach renewable in space: each software 
instance can have a custom bytecode and interpreter to limit the attacker's learnability of the 
client-side code splitting protection. This is clearly a form of renewability in space: different cus-
tomers can get different versions. It can also be deployed as a form of renewability in time, 
however, when successive releases of a software product feature diversified bytecode and 
SoftVM. SFNT and UGent integrated the tool support for this form of renewability into the 
ASPIRE Compiler Tool Chain.  

NAGRA, UGent, and UEL worked on white-box crypto renewability, such that by delivering re-
randomized keys by combining code and data mobility, attackers can only reuse broken keys for 
very short time frames. The necessary tool support was developed and integrated into the 
ASPIRE Compiler Tool Chain. This includes script generation tools of which the produced scripts 
can be run on a server to generate the mobile blocks that implement new or re-randomized keys. 
This is clearly a renewability-in-time protection.  

Static, native code diversity in space was also researched: UGent generalized its existing frame-
work for static native code diversification in and on top of its Diablo link-time rewriter, and devel-
oped implemented support for the target platform of the project (ARMv7 Android). The tool sup-
port was integrated into the ASPIRE Compiler Tool Chain and is part of the open-sourced pro-
totypes. The deployment heuristics were also improved, as was the controllability by means of 
source code annotations.  

Furthermore, UGent focused on making diversification more feasible in practice. On challenge 
is that when diversified applications are delivered to end users, collecting accurate and usable 
crash reports is problematic because each collected stack dump implements a different layout 
(of both the stack and the code segment of the crashed binary). UGent designed and prototyped 
an extension of the widely used Breakpad crash reporting tool (from Google) that stores a mini-
mal amount of additional information in the diversified binary and sends it to the crash server 
together with the stack dump. With the additional information, the crash server can then recon-
struct a human-readable stack trace, without having to store debug information on the crashed, 
diversified software instance. Once the paper describing these results has been accepted for 
publication, the prototype tool support will be open sourced.  

Finally, UEL and FBK researched how to obtain maximally diversified application copies. They 
conducted that research work on diversity in space applied to Java code. They applied NCD 
metrics to measure diversity between diversified versions of the same application, clustered such 
versions to obtain maximally diversified versions; this work has been published in a conference 
paper: Mariano Ceccato, Paolo Falcarin, Alessandro Cabutto, Yosief Weldezghi Frezghi, Cris-
tian-Alexandru Staicu. Search Based Clustering for Protecting Software with Diversified Up-
dates. In Symposium on Search-Based Software Engineering SSBSE-2016. Springer, pp 159-
175. 

 

With these achievements, the project certainly met all its goals with respect to the fifth line of 
defense, renewability.  

 

1.3.4 WP4 Security Evaluation (M04-M36) 

All results obtained in WP4 are presented in the extensive deliverables D4.01, D4.02, D4.03, 
D4.05, and D4.06, all of which are public.  

1.3.4.1 Task T4.1 Security Model and Evaluation Methodology 
Models and Knowledge Base 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 23 of 70 

POLITO, UEL, and UGent contributed to the design of the ASPIRE Knowledge Base (AKB) to 
describe statically a conceptual model needed by the ASPIRE Decision Support System (ADSS) 
to perform its tasks.  

Modelling all the concepts and properly relating them was a foundational step to build all the 
evaluation methods and the decision support. The Consortium has thus developed the ASPIRE 
Security Model and continuously maintained it until the last version (ASMv1.2). 

The ASPIRE security model depicts both a priori general knowledge about the software protec-
tion scenario and relevant information about the applications to protect. These data are used to 
infer additional knowledge by means of the internal inferences of the ASPIRE Knowledge Base 
(AKB, which is a OWL-DL ontology) and ad hoc enrichment modules (which perform custom 
reasoning and inferences) coordinated by an enrichment framework, directly driven by the ADSS 
to perform its risk analysis. 

The security model is formed by a main model, which describes and the high-level concepts and 
the relationships among them, and a set of sub-models (Application, Asset, Attack, Attack path, 
Attacker, Software protection, Tools), which refine the concepts in the main model to increase 
reasoning precision. 

The ASMv1.2 is provided as a set of UML Class Diagram models, represented in XML and val-
iadated with an ad hoc XMLSchema. Moreover, the ASMv1.2 is also available with the AKB on-
tology. The ASMv1.2 and the related documentation has been open sourced with the ADSS 
(available here https://github.com/SPDSS/adss). 

Evaluation Methodology and ASPIRE Decision Support System-Light 
UEL developed the ADSS-Light, a tool that help the software developer in manually modelling 
the possible attacks to the application assets with Petri Nets and in assessing the strength of the 
protected program by evaluating combinations of binary code metrics.  

In our case a Petri Net represents a set of attack paths that the attacker can perform to achieve 
their goal on one or more assets in the application: each path is a sequence of attack steps, 
which corresponds to transitions in a Petri Net.  

The ADSS-Light aims at helping expert software developers with a semi-automated approach to 
assess the security strength (Protection Fitness) of a protection instantiation (i.e., a configuration 
of a set of protections in the ACTC). The user has to perform some initial configuration steps, 
such as associating binary code metrics and code regions to attack steps, customizing the met-
rics formulas, and finally choosing the type of assessment.  

The ADSS-Light has been applied to the NAGRA use case and it relies on metrics calculated by 
the metrics framework in the ACTC. 

In case of missing data and metrics for some attack steps, these data can be set as random 
variables and use to run a Petri Net simulator, whose initial results have been published in a 
conference, and received the best paper award: Gaofeng Zhang, Paolo Falcarin, Elena Gómez-
Martínez, Shareeful Islam, Christophe Tartary, Bjorn De Sutter, Jerome D’Annoville. Attack sim-
ulation based software protection assessment method.  In International Conference On Cyber 
Security and Protection of Digital Services (Cyber Security 2016), Pages 1-8, IEEE, (Best paper 
Award). 

A journal extension in going to be published soon: Gaofeng Zhang, Paolo Falcarin, Elena 
Gómez-Martínez, Shareeful Islam, Christophe Tartary, Bjorn De Sutter, Jerome D’Annoville. At-
tack Simulation based Software Protection Assessment Method with Petri Net. In International 
Journal on Cyber Situation-al Awareness, Vol 1:1, ISSN 2057-2182 2016 (in press). 

The ADSS-Light and the underlying software components have been open-sourced.  

With the developed, formalized models; the knowledge base and its tuned content; the security 
evaluation methodology and the tool support to deploy the methodology, the project has 
achieved all goals of this task.   



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 24 of 70 

1.3.4.2 Task T4.2 Complexity metrics    
First, the consortium proposed a comprehensive software metric framework that comprises a 
wide range of software complexity metrics to cover the relevant software features and repre-
sentations (e.g., static representations such as control flow graphs, and dynamic representations 
such as program traces and dynamic program slices) for a wide range of attack steps (i.e., the 
steps in the ASPIRE Attack Model). For modelling the effort an attacker needs to invest in a 
particular attack step on a particular code fragment, i.e., the time he will need and hence the 
delay towards reaching his end goal), a specific combination of metrics is to be computed and 
aggregated, with a formula that depends on the features of the specific attack step and the spe-
cific goal the attacker is trying to achieve with that step. With the software complexity metrics, 
the potency of protections can be computed. Moreover, some of the complexity metrics center 
on variability aspects when comparing multiple traces of multiple versions of a protected pro-
gram, and thus provide a mechanism to quantify important aspects of a protection's stealth.  

Around the start of this task in M04 of the project, the consortium became aware of the new line 
of research that was being conducted by Prof. Debray and his students at the University of Ari-
zona (USA). They developed a new approach to automated, generic de-obfuscation based 
on the simplification of program traces. The simplification is based on information about the se-
mantic relevance of operations occurring in the traces, and on the variability observed on the 
operations' operands. The consortium (in particular the coordinator, who had previously collab-
orated intensely with Prof. Debray) recognized that these simplifications to a large extent match 
with the heuristics/simplifications that attackers deploy to simplify their mental models (i.e., com-
prehension) of software under attack, and that it also was a generalization of existing code sim-
plification techniques as deployed by attackers while they tamper with code to remove protec-
tions such as opaque predicates or code guards.  

From that starting point, we then further generalized the approach to let it cover all the ASPIRE 
protections and a wide range of possible attacks thereon. Building on the concepts of semantic 
relevance and variability, a range of resilience metrics were then proposed. With these resili-
ence metrics, the aforementioned computation of the complexity metrics is parametrized (i.e., 
weighted) for each attack step, such that the computed potency takes into account the mental 
heuristics or executed attack scripts already deployed beforehand by an attacker to minimize his 
effort and hence his delay in the identification and engineering of an attack.  

Finally, we proposed a number of so-called unavailability metrics to measure the impact on 
attack delay of protections that move code from a client-side application running on an untrusted 
device onto a secure server, either permanently or temporarily. With these unavailability metrics, 
we can estimate the loss of information and the delay this causes for an attacker.  

With the three types of metrics and the extensive discussion of their relation to attack steps, to 
protections, and to fundamental software features in the public deliverables of WP4, we have 
proposed a comprehensive metrics framework for evaluation the strength (potency, resilience, 
and stealth) of the wide range of software protections studied and integrated in this project. For 
several of the proposed metrics, tool support to compute them was developed and integrated 
into the ASPIRE Compiler Tool Chain. Moreover, tool support was implemented to measure the 
cost (i.e., overhead) of the protections.  

The metrics thus cover the four axes of the long established software protection evaluation tax-
onomy developed by Collberg et al.:  potency, resilience, stealth, and cost.  

The metrics framework together with the models and evaluation methodology have been pre-
sented in two keynote talks and a presentation at the 2014 ARO Workshop on Continuously 
Upgradeable Software Security and Protection by the project coordinator.   

 

The project has hence achieved all of its goals with respect to the metrics framework for evalu-
ating software protections and for making them measurable.  

 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 25 of 70 

1.3.4.3 Task T4.3 Experiments with academic subjects 
Experiments with human participants are a way to practically observe what we conjectured with 
the (theoretical) modelling of protections and attacks. 

In Task 4.3 we run experiments in “controlled” environments, i.e., in-vitro settings where the 
experimenter can control (i.e., set) or measure all the relevant variables. This allowed us to elab-
orate measurable and objective relations between the independent variables (e.g., presence of 
obfuscation, background on participants) and dependent variables such as success rates and 
attack times. 

We crafted an experimental design that fitted our settings, i.e., doable by (skilled) students in a 
class time slot. For some student, this required to make them work on source code, so source-
level protections have been considered: data obfuscation and client-server code splitting. Both 
these protections were available when the experiments started. 

Several experiments were then replicated in different conditions, to study also variants of the 
same protections. The different replications included 

• Different participants with different background; 
• Different variants of data obfuscation (static and dynamic residue number coding (RNC), 

variable merging, and array reord7ering) and combinations of them (RNC + Array Reor-
dering); 

• Different representations of code to be attacked (source code and binary code); 
• Different configurations of client-server code splitting (split-small, split-medium). 

All four the academic partners conducted two rounds of experiments, and all rounds consisted 
of two lab sessions, with the following number of participants:  

• First round: 
o 16 participants, all Master students, from University of Trento; 
o 12 participants (6 Bachelor/Master students and 6 PhD students/post-docs) from Uni-

versity of East London; 
o 15 participants (14 Master students and 1 PhD student) from Politecnico di Torino; 
o 10 participants (5 Bachelor/Master students and 5 PhD students/post-docs) from Uni-

versiteit Gent. 
• Second round: 

o 34 participants (32 Master and 2 Bachelor students) from Universiteit Gent; 
o 10 participants (1 bachelor student, 4 master students, 2 PhD students and 3 post-

doc researches) from UEL; 
o 19 participants (17 master students and 2 PhD students) from University of Trento; 
o 86 Master students from Politecnico di Torino. 

From these experiments, two forms of results were obtained:  

• Objective results in terms of success rate and attack time 
• More subjective results from open questions about: 

o How participants cope with attack tasks and what attack strategy they adopt; 
o What are the winning attack strategies lead to success and what strategies are not 

effective; 
o What attack tools are used most; 
o Commonalities between experiments on source code and on binary code (this vali-

date the use of source code to assess protections on code that will be eventually 
delivered as binary); 

The precise qualitative and quantitative results are all documented all in public deliverables, i.e., 
in D4.03, D4.04, and D4.06.  

Moreover, the knowledge obtained from these experiments has been used to tune the data in 
the ASPIRE Knowledge base, and the results have been included int he validation performed in 
WP1.  



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 26 of 70 

Finally, the experiments form the two publications: 

• Alessio Viticchié, Leonardo Regano, Marco Torchiano, Cataldo Basile, Mariano Ceccato, 
Paolo Tonella, Roberto Tiella. Assessment of Source Code Obfuscation Techniques. In 
Proceedings of the 16th IEEE International Working Conference on Source Code Analy-
sis and Manipulation, pages 11-20, New York, NY, USA, 2016. IEEE Computer Society. 

• Mariano Ceccato. On the need for more human studies to assess software protection. In 
ARO Workshop on Continuously Upgradeable Software Security and Protection, pages 
55-56, November 2014.  

 

With respect to the academic security evaluation experiments, the project clearly reached all of 
its goals.  

 

1.3.4.4 Task T4.4 Experiments with industrial tiger teams 
While the original ideas for this task were very similar to those of the previous task, i.e., to run 
two rounds of smaller experiments but then do that with professional penetration testers, the 
consortium adopted a more suitable approach. The main goal of this adaptation was to avoid 
some of the observed pitfalls of penetration tests conducted on small software pieces protected 
with few protections. Most importantly, it was decided that such penetration tests, in particular 
by professional tiger teams, would quickly converge on manual attack paths of least resistance 
that are actually not very relevant for real-world uses cases, because manual attacks do not 
scale up to the size and complexity of real-world use cases where many protections are com-
bined.  

Instead, three larger experiments, one for each industrial partner, were prepared that consisted 
of multiple phases. In each phase, the project uses cases protected with different combinations 
of many protections, were attacked. In two of the three experiments, both internal and external 
professional pen testers conducted the experiments, which lasted multiple weeks.  

The experiments were meticulously designed, prepared, executed, and evaluated, as reported 
in deliverables D4.04 (June 2016) and D4.06 (end of the project). During the execution of the 
pen-tests, weekly and bi-weekly conference calls were organized between the designers of the 
experiments, the project coordinator, and the involved industrial partners and their pen-testers 
to keep track of the pen-testers' progress and to adapt the plan where necessary. In all of the 
experiments, multiple attack vectors and multiple combinations of protections were considered.  

The pen-testers provided (confidential) reports, and exit interviews were conducted by the task 
leader (FBK) and the project coordinator based on those reports. The results that can be pub-
lished (without hurting the commercial interests of the industrial project partners) are all pre-
sented in the public deliverable D4.06.  

The conclusions of the experiments and the lessons learned were used as a primary input to the 
validation effort conducted in WP1. Overall, the conclusions confirmed the expert knowledge 
already available within the consortium regarding the protections' weaknesses and strengths. 
Most importantly, the protections proved successful in delaying attacks, either by forcing the 
attackers to perform more manual attack steps, or by pushing them off the original attack paths 
of least resistance (i.e., the easiest attack vectors on vanilla applications). The results of these 
experiments have also been used to tune the knowledge in the ASPIRE Knowledge base that 
was developed in Task T4.1.   

 

Even though a different design was adopted for the professional penetration tests, the original 
goals of these tiger experiments were achieved.  

 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 27 of 70 

Even though the project has formally ended, the academic partners are still building on these 
experiments and the reports. Currently, a joint effort is ongoing to formalize attack models on 
the basis of the informal reports by means of grounded theory study.  

1.3.4.5 Task T4.5 Public challenge 
In July 2016, the design of the public ASPIRE challenge was presented in deliverable D4.05. It 
consisted of eight smaller (diversified) binaries, each of which checked the validity of an input 
string in a different manner, with the checking code and the checked string being protected with 
different combinations of protections. The goal set forward for attacks was to reveal the value of 
the valid input string. This design of the challenges differed from the design proposed in the DoW 
(i.e., a game anti-cheat engine) because the personnel with the necessary expertise in its do-
main had left UGent before the public challenge effort was about to start.  

A special website and server infrastructure was set up to enable hackers to download chal-
lenges, to track those downloads, and to allow the hackers to submit responses (i.e., candidates 
for the valid strings) and get feedback on their correctness.  

In order to attract more hackers, a bounty of 200 euro was put forward for the first successful 
attack on each of the eights binaries. As not all versions were attacked successfully by the orig-
inal end date of the challenge (31 Sep 2016), it was extended until the end of the project.  

In the end, one hacker captured the bounty for five out of eight challenges. Extensive exit-inter-
views by email revealed the used attack methods, and mostly confirmed the existing suspicions 
from the project consortium w.r.t. the weaknesses of the deployed protections. The exit-interview 
information, as well as insights obtained from all the attack scripts and descriptions that the 
hacker handed over to the consortium, were used as a primary input to the validation effort 
conducted in WP1. The results and insights were also presented in the public deliverable D4.06. 

 

With the launch, execution, and result analysis of the public challenge, we reached all goals set 
forward in the DoW for this external security evaluation validation task.   

 

1.3.5 WP5 Framework (M04-M36) 

The designs of the ASPIRE Framework and the evolution over time have been extensively doc-
umented in deliverables D5.01, D5.03, D5.06, D5.07, D5.11, and D5.13. The software proto-
types, evolving from the first basic implementation to the complete implementation via continu-
ous integration, were delivered in D5.02, D5.04, D5.05, D5.08, D5.09, D5.10, and eventually 
open sourced as D5.12.  

1.3.5.1 Task T5.1 ASPIRE tool chain 
To protect applications with the ASPIRE protections, we designed and implemented a tool flow 
that automatically transforms annotated C code into a protected binary application or library. This 
tool flow applies the different source-level and binary-level protection techniques in the correct 
order. To that extent, the tool support for the different protections function as plug-ins. 

Additionally, this tool flow includes computing metrics associated with the protected application, 
and correctly deploying the applied protections on protection servers in the case of server-as-
sisted, inline protection techniques. This tool flow is driven by a central component called the 
ASPIRE Compiler Tool Chain (ACTC), which is programmed in Python on top of the open-source 
DoIt task automation Framework.  

We designed and documented a set of source code annotations with which a tool chain user can 
specify the protections to be deployed, the fragments on which they should be deployed, and 
the parameters to be used. The tool flow extracts these annotations to steer all the protections.  

The tool flow consists of twenty different steps in total. All these steps have different input and 
output files, all of which have been extensively documented. In the source-level part, all plug-ins 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 28 of 70 

actually produce either plain C code or pre-processed C code. So in essence all source-level 
plug-ins are source-to-source rewriters. In the source-level processing and in the binary-level 
processing, which is mostly based on link-time rewriting tools developed on top of UGent's link-
time rewriting framework Diablo, the ACTC correctly propagates all the output files produced by 
the enabled steps to the correct input arguments of the following enabled steps. Passes can be 
skipped if the necessary plug-ins are not available or if specific protections need not be applied. 

The ACTC implementation is highly configurable by end users, and can be instructed to ena-
ble/disable the individual steps and to configure their invocation by means of human-readable 
JSON files. This use of JSON files for configuration forms a user-friendly alternative to a GUI, 
which would have required much more effort to implement.  

All of the discussed design aspects facilitate the addition of additional protections and plug-ins 
in the future, or replacements of existing ones.  

To improve the performance of the tool flow when it is used to evaluate different combinations 
of protections (as can be requested by the ASPIRE Decision Support System), we also designed 
and implemented a caching system. This caching system keeps track of the annotations that 
each plug-in consumes, thus enabling it to reuse a plug-in's cached output if nothing has 
changed to the its input code and its annotations, rather than re-invoking the potentially time-
consuming plug-in. 

The source-level part of the tool flow currently implements the following protection steps in the 
listed order: insertion of annotations generated by the ADSS, white-box cryptography, source 
code pre-processing, data-hiding obfuscations, client-server code splitting, source-level trans-
formations required for offline code guards, anti-cloning protection, reaction unit insertion, 
(SLP10), diversified cryptography library insertion, control flow tagging, source code annotation 
extraction for the binary tools, and generation of  the source parts of remote attestation. 

Next in the tool flow, the final set of source files is compiled and linked with a slightly patched 
standard compiler (gcc or LLVM). Depending on which protections have been enabled and ap-
plied, additional source files are compiled and additional libraries are linked in. 

The binary object files are then further analysed and protected with different runs of the Diablo 
link-time rewriter. As the ASPIRE project targets ARMv7/Android binaries, UGent extended the 
support of their Diablo tool to include ARMv7 instructions and to add support for Android. Fur-
thermore, UGent wrote several small patches for the already mentioned modern C(++) compilers 
and for the GNU binutils such that the generated binaries can be transformed correctly with 
Diablo. 

During the different runs of Diablo and other invoked binary-level tools, the following protection 
deployments and processing steps are executed: a self-profiling version of the application with-
out binary-level protections applied is generated and run on a development board, extractable 
chunks for the SoftVM protection are identified and extracted, the X-Translator creates bytecode 
and stubs to replace the extractable chunks. These bytecode and stubs are then linked with the 
application, which is then protected in a final run of Diablo. Diablo then applies the following 
binary protection steps in the listed order: SoftVM bytecode integration, call stack checks, binary 
obfuscations, code mobility, code guards, and remote attestation. 

Furthermore, different metrics are computed. Static metrics are automatically generated by the 
different binary-level steps. However, to compute dynamic metrics, the protected application 
needs to be run on a development board, and it needs to be instrumented in such a way that 
profile information is collected. We extended Diablo to generate self-profiling versions of pro-
tected binaries, and the ACTC includes additional steps to automatically run the self-profiling 
binaries on development boards, and to collect and process the produced profile information. 

Some of the protection techniques have a server-side component. The ACTC invokes scripts to 
update the relevant databases and directories with the information associated with the protected 
binary. The following server-side scripts are invoked in the listed order: code-splitting deploy-



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 29 of 70 

ment, code mobility deployment, and remote attestation deployment. Finally, the ACTC has sup-
port for renewing some of the protections as a means to implement diversity in time. It generates 
scripts to renew the white-box cryptography tables, and scripts to renew the mobile code blocks 
through diversifying the binary code of the blocks. 

Also worth mentioning is that the ACTC has extensive logging support: all source-level and bi-
nary-level transformations are logged, and for the binary-level transformations, control flow 
graphs of the code fragments before and after each transformation step can be generated on 
disk.  

The ACTC and the integrated protections were validated successfully on the project use cases, 
as discussed in Section 0. All techniques developed in WP2 and WP3 and foreseen to be inte-
grated into the ACTC in the DoW have been integrated, and more (some forms of RA were not 
foreseen to be integrated). As discussed in Sections 0 and 0, excellent composability of the 
integrated protections has been achieved in the ACTC's plug-in architecture.  

 

We can hence conclude that the project achieved all of its protection tool chain integration goals.  

 

To achieve that level of integration of contributions from all project partners, a major effort was 
invested in the development of a common build environment consisting of a VM image and many 
scripts to update and maintain the image consistently at all partner sites. This VM facilitates the 
continued collaboration between project partners after the end of the project, and it also formed 
the basis of the Docker container that was developed for the open-sourcing of ASPIRE software 
as will be discussed in Section 0. 

1.3.5.2 Task T5.2 ASPIRE Decision Support System    
The ASPIRE Decision Support System (ADSS) is a framework whose aim is to help software 
protection experts in automating the process of protecting software applications. Starting from 
the annotated source code, the ADSS generates the golden combinations, i.e., the set of pro-
tections that best mitigate the risks against the application assets, and drives, by means of pro-
tection specific annotations, the ACTC to apply the golden combination. The ADSS also outputs 
logs and reports that explain the entire decision process. 

The golden combination is selected with a complex work-flow. Initially, all the information about 
the application to protect is gathered using compiler tools from the source code. A series of 
analyses tools extract significant information form the application to protect by means of static 
analysis tools (e.g., CodeSurfer or CDT). The parts of the application that may deserve to be 
protected are identified, listed and related with the ASPIRE Security Model with an instantiation 
of the ASPIRE Knowledge Base which completes the knowledge about the application to protect 
for risk analysis purposes. 

Then, the threats against the application assets are determined via a backward reasoning sys-
tem that identifies all the attack paths. The reasoning system can be fine-tuned by enabling 
analysis based on different types of attackers (based on their expertise, available tools) and at-
tack strategies (static vs. dynamic, compromising of the attacker or victims’ copy), and by limiting 
the search space to have results in useful time. 

Next, the possible mitigations to the identified attack paths (i.e., the software protections that 
may delay attacks against the target assets) are identified by means of further inference meth-
ods. However, protections in isolation are not the most effective way to protect applications’ as-
sets, as protection show synergies (which have been carefully analyzed during the project) that, 
once correctly exploited, strengthen each other. 

The golden combination is selected by means of an ADSS component that implements a game 
theoretic approach based on customized minimax search tree (named level 1 protection). Sev-
eral pruning and reduction techniques have been supported in order to reduce the search space 
and find golden combinations reasonably close to the real optimum in useful time (alpha-beta 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 30 of 70 

pruning with aspiration windows, iterative deepening with transposition tables, razoring, futility 
margin, extended futility margin and reductions based on the node scores). Evaluation of pro-
tections effectiveness (in isolation and in combination) used by the optimization function has 
been built on expert judgments formally captured in the knowledge base. Judgements are tightly 
coupled the metrics computed with the ASPIRE metrics framework which are used by a fast 
(linear) evaluation engine that has been implemented to estimate the effectiveness of combina-
tions of protections to meet the very strict requirements of the ADSS (i.e., to evaluate millions of 
combinations of protections in seconds). The engine accuracy is configurable to meet the users’ 
requirements and a proper performance vs. precision trade-off. 

Finally, an optional ILP optimization model (named level 2 protection) finds the best way to hide 
the protected assets and delay attacks. Assets are hidden by protecting with same protection 
techniques in the golden combination other parts of the application or by extending the protec-
tions proposed in the golden combinations to areas outside the assets, until a set of user defined 
overhead constraints are saturated. 

The ADSS has been trained with the inputs and feedback from the experts in the ASPIRE pro-
ject, in order to allow the tool to first determine reasonable combinations of protections then to 
fine tune the entire optimization process towards optimal protection. Then, during its extensive 
validation, the interaction with several experts has further improved the ADSS ability to propose 
excellent protection. 

The ADSS has been open-sourced at https://github.com/SPDSS/adss. The ADSS foundations 
have also been published and presented 10th IFIP WG 11.2 International Conference. 

 

With respect to the challenging goal of developing a decision support system to help a protection 
tool chain user obtain measurable protection at a controlled level of overhead, the project has 
achieved its goal. While the ADSS might not be ready yet for commercial use, it has shown great 
potential, and with its availability, the project delivered a great research tool for further improving 
the state of the art with respect to software protection decision support.  

 

1.3.5.3 Task T5.3 Open Source 
Near the end of the project, the coordinator's team has set up an ASPIRE-FP7 GitHub reposi-
tory at https://github.com/aspire-fp7 that makes the vast majority of the prototype software 
developed in the project and integrated into the ACTC available under open-source software 
licenses. In particular, all protections contributed by academic partners and integrated in the 
ASPIRE Compiler Tool Chain are available, with the exceptions of protections being exploited 
in a spin-off from FBK. Also the ASPIRE Decision Support Systems (full and light) are available 
through the repository.  

Some components are released in the main aspire-fp7 repository, other components are re-
leased in other repositories and linked by the main repository. The reason is to allow for account-
ing of the downloads in the future, and for facilitating future development of components outside 
the context of ASPIRE. 

From the repository, third parties can retrieve all components necessary to deploy the ASPIRE 
Compiler Tool Chain on their software. Moreover, a Docker container setup has been devel-
oped and released to facilitate setting up build and development environments in which to deploy 
the ASPIRE Compiler Tool Chain.  

Public deliverable D5.13 documents the repository structure and the Docker container, and de-
scribes how to setup and deploy the tools on a small example. This document hence serves as 
a manual to the open sourced ASPIRE framework, together with the public deliverables of the 
project, in particular D5.11 which provides a comprehensive overview of all aspects of the 
ASPIRE Compiler Tool Chain and the ASPIRE Decision Support System, and D1.04, the 
ASPIRE Reference architecture. 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 31 of 70 

With the GitHub repositories of the open sourced prototypes, the Docker container to ease the 
take-up, and the public deliverables serving as manuals, the project has achieved all open-
sourcing goals.  

 

1.3.6 WP6 Use Cases - Demonstration (M04-M36) 

In three tasks, the industrial partners developed and implemented the three use cases they had 
designed in Task T1.1 at the beginning of the project.  

In all use cases, the components to be protected with ASPIRE protections are native dynamically 
linked libraries. In the Digital Rights Management (DRM) use case contributed by NAGRA, two 
such libraries are loaded as plug-ins into the Android DRM and media server processes. There, 
the perform the necessary video decryption and DRM license management necessary to play 
videos in a video player that NAGRA developed for this project, along with the two libraries 
themselves.  

In the One-Time Password (OTP) use case, contributed by GTO, the purpose is to generate a 
temporary password called OTP that can be used to authenticate later on a banking site or any 
business site that needs a stricter authentication process than the static identifier/password 
method. The application is split in two phases. During the provisioning phase a secure channel 
is opened with the OTP server to retrieve various data including the Device Key that is used in 
the second phase to generate the OTP values. The provisioning phase can be executed only 
once while the OTP generation in the second phase is required each time the user wants to 
authenticate on the web site. As a real mobile application, there are some constraints: user in-
teractions are managed by the GUI that is specific to Android; and the application needs to 
access a Service Provider server. In this use case, the security sensitive functionality is imple-
mented in the library that needs to be protected with ASPIRE protections, and this library is 
embedded in an Android Application Package, together with the GUI frontend. GTO developed 
that app, the library, and the necessary server support for the provisioning phase.  

In the Software License Management use case, contributed by SFNT, a license manager is 
implemented in a dynamically linked library. This library is linked/loaded into software applica-
tions to manage the credentials and access to restricted content or functionality. In the toy ex-
ample application developed by SFNT, the content are secret answers to quiz questions. In one 
developed form, the application consists of a GUI Android Dalvik app, and the library to be pro-
tected is embedded in the app's package. In another developed form, the app is a Linux com-
mand-line application, for which the library is loaded on demand by the Linux. SFNT developed 
both versions as well as the library itself. Having versions for two platforms helped the project in 
ensuring that the developed technology can be exploited on multiple platforms.   

All industrial partners adapted their specific build systems to enable the use cases' compilation 
and protection with the ASPIRE Compiler Tool Chain. The industrial partners identified the as-
sets in the use case code, and together with the academic partners, source code annotations 
were developed to let the tool chain deploy a combination of protections as an expert would 
choose manually. Where necessary, minor modifications were made to enable the deployment 
of the ASPIRE tool chain and its plug-ins.  

Protected use cases (with combinations of many protections) were prepared for the tiger exper-
iments of Task T4.4, for the validation in Task T1.5, and for demonstration.  

 

In the end, al foreseen and developed software protection technology can be deployed, evalu-
ated, and demonstrated successfully on the three use cases. The project has hence achieved 
all of its goals with respect to the use cases.  

 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 32 of 70 

In year 3, the consortium drafted and implemented a demonstration plan. The consortium took 
up the recommendation from the project reviewers to create some videos to disseminate the 
project results to industrial target audiences, and expanded this idea to cover all demonstrable 
results of the ASPIRE project, plus some overall presentations on the project goals, its outcomes, 
lessons learned, etc.  

In total, 30 videos will eventually be created, of which 29 will be released on the ASPIRE-FP7 
Software Protection Demonstration video channel at https://www.youtube.com/chan-
nel/UCntMGBjHr_oW5wEd5JgjD6g. In total, those public videos will provide over three hours 
of demonstration material. At the time of writing of this report, 22 videos were already pub-
lished, totalling more than two and a half hours. The rest will be published before the final project 
review. In addition, all partners can of course still use the project use cases to provide live 
demonstrations to selected audiences.  

 

With the many demonstration videos on the YouTube demonstration channel, and the available 
live demonstration options, the project has achieved all its demonstration goals.  

 

1.4 Potential Impact, Dissemination Activities and Exploitation of Re-
sults  

1.4.1 Main Impact 

1.4.1.1 Impacts expected in the work programme 
Of all the users and stakeholders that have assets stored on mobile devices with which mobile 
services are accessed, ASPIRE focuses on protecting the assets of the content and service 
providers. The ASPIRE results contribute to the expected impacts from the ICT 2013.1.5 Trust-
worthy ICT objective, which we quote and then discuss here in detail. 

 

"Demonstration of secure and privacy-preserving technical solutions in clouds, mobile 
services and management of cyber incidents applying state-of-the-art research results, 
..."   

State-of-the-art results: A range of state-of-the-art technical solutions covering five lines of de-
fence has been developed to mitigate a wide range of attacks on the assets and software of 
mobile content and service providers. The result of this R&D have been integrated into the 
ASPIRE Framework consisting of the ASPIRE Compiler Tool Chain and the ASPIRE Decision 
Support System.  

Mobile services: ASPIRE demonstrated the framework and its security solutions on three real-
world use cases from the industrial partners' domains in mobile services. The demonstration is 
not limited to the concepts of the proposed solutions, but to the fully functional tool chain and its 
decision support system. 

Privacy-preserving technical solutions: When a mobile app is designed correctly to protect 
the privacy of data, then ASPIRE's anti-tampering protections, which are themselves reinforced 
by the other protection layers, are able to prevent modifications that subvert the intended privacy-
preserving behaviour. Moreover, ASPIRE results make it much easier to develop such correctly 
designed apps, as the ASPIRE tool chain facilitates and automates the use of data hiding tech-
niques such as white-box cryptography and advanced data obfuscation.  

Management of cyber incidents: ASPIRE's remote attestation solutions enables server-side 
monitoring of the clients connected to a service. A provider can keep track of the trustworthiness 
of the client's software execution and manage incidents. This can be done semi-automatic, with 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 33 of 70 

policies that enable/disable services to clients where malicious activity is detected. ASPIRE's 
renewability also allows automatic upgrades to be integrated in those policies.  

 

" ... ensuring interoperability ..."  

Interoperability of services and access devices: By raising the level of protection against 
man-at-the-end attacks, ASPIRE results help to secure what is currently considered the weakest 
point in many data networks: the (mobile) end devices. ASPIRE improves interoperability of de-
vices by enabling the provision of security services that previously required custom secure hard-
ware components to meet the security requirements on a zoo of untrustworthy mobile devices 
and platforms.  

Interoperability of servers and client devices: The technology developed in ASPIRE to inte-
grate and set-up the server-side logic of many online protections, and the common communica-
tion layer that was developed constitutes an important abstraction that facilitates interoperability.   

Interoperability of networks: ASPIRE's network-agnostic protections are deployed ‘over the 
top’. They do not impose any requirements on the network beyond additional bandwidth that can 
be controlled and adapted.   

Interoperability of protections: As has extensively been documented in Section 3 of this final 
project report, the ASPIRE Compiler Tool Chain integrates tool support for many protection, 
spanning the foreseen five layers of defense. And as discussed on multiple occassions, the 
supported protections are highly composable. Clearly, the interoperability of software protections 
has been given a boost by the ASPIRE results.   

 

"... and compliance with privacy legislation." 

Privacy against competitors: By providing mobile service providers with a framework to protect 
the privacy of their assets installed on mobile devices, ASPIRE results help those providers to 
ensure compliance with privacy legislation. It will help them, e.g., by letting the software-based 
protection ensure that the legal provisions in end-user agreements regarding illegal analysis by 
competitors, unfair and illegal use and leakage by end-users, illegal modification and redistribu-
tion by cybercriminals, and against combinations thereof, are complied with.   

Legal compliance: ASPIRE's protection strength evaluation methodology and tool support, 
while still requiring more research and development, will eventually enable service and content 
providers to operate in an environment dominated by legally binding security requirements.   

 

"Widen take-up of research outcomes by service providers and wider adoption of ICT 
security solutions by European companies and users."  

Take-up by partners: The industrial ASPIRE partners will use the project results to expand their 
own product portfolios and the portfolios of their customers to face the competition and become 
more independent from big DRM companies like Google, Apple and Microsoft. 

Take-up by SMEs and increasing the number of European spin offs in the ICT field: The 
automated, integrated, and open-sourced ASPIRE tool chain can help in lowering the market 
entry ticket price and the time-to-market for SMEs and spin offs by freeing them from investing 
effort and time in protection, and enable them to sell protected software without facing diversifi-
cation and deployment costs related to hardware-based solutions. The portability of the ASPIRE 
tool chain enables a unified software protection strategy, lowering the cost to secure software 
on a plurality of devices. Furthermore, the ASPIRE tools can open up new business opportunities 
such as pirate activity monitoring based on the remote attestation activities; or dynamic response 
and patching based on renewability mechanisms.  



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 34 of 70 

Take-up by service providers: Once matured, the ASPIRE Decision Support System can en-
able software providers, their content providers and ISVs —all of which can use ASPIRE tech-
nology— to make an informed selection for the protection level of their applications. ICT market 
leaders adopting software-only protections with demonstrated qualities will give a strong signal 
to increase the confidence in such solutions and will help a wider adoption. ASPIRE's enabling 
of much cheaper any-device-any-where secure access functionality will enable content providers 
to protect their content very strongly on a wide range of devices. They therefore will no longer 
risk their customers becoming annoyed because by fair use restrictions. As a result the custom-
ers will become aware that running legitimate, protected, reasonably priced software is prefera-
ble over living at risk with an uncontrolled environment on their device, which in turn leads to an 
improved customer relationship to the benefit of the service providers.  

Take-up in traditional sectors: Companies in sectors such as banking risk having to refund 
customers that became the victim of security breaches. The banks' responsibilities are so high 
that they cannot take the risk of validating the trustworthiness of their customers' computers (i.e., 
hardware and complete software stacks) to perform and authorize transactions. So instead those 
banks have to really on expensive, cumbersome hardware devices such as digipasses to au-
thorize online banking transactions. ASPIRE's remote attestation technology can help in ensur-
ing the credibility of applications by proving their authenticity irrespectively of the trustworthiness 
of the underlying platform. This may enable sectors like banking to migrate to pure software-
based online services.  

"Unlock the market restrictions, reveal the incentives to create a functioning cyber security 
market and increase the number of European spin offs in the field."  

Unlock the market restrictions: Europe faces the major problem that software needs to be 
secured on mobile platforms that do not give user-space applications access to hardware secu-
rity. For example, most mobile devices include secure boot mechanisms but do not let third-party 
vendors benefit from it. Such market restrictions can only be mitigated with pure software pro-
tection techniques, as provided by the ASPIRE project. 

Incentives for alternative secure markets: Validated metrics and security models, together 
with provably strong white-box encryption as developed in ASPIRE will increase confidence, 
turning protection against man-at-the-end attacks into a science long after cryptography started 
protecting against man-in-the-middle attacks. The real-world potential of software protection as 
an important aspect of trustworthy ICT has become measurable through the ASPIRE metrics 
and security evaluation tools, thus revealing the true potential of software-based protection as 
an incentive for further development of a functioning software-based cyber security market.  
Incentives for alternative inexpensive markets: ASPIRE's incorporation of renewability as a 
core protection concept ensures that successful attacks (if any) can be stopped from doing dam-
age extremely fast, which will lower the cost of successful attacks considerably. This reveals 
another important incentive, as does the significant cost and effort reduction that ASPIRE solu-
tions will bring for providing adequate protection. As such, access to the ASPIRE tool chain can 
boost the application development economy. 

Incentives for market players: Besides revealing the aforementioned incentives to create a 
market, ASPIRE's solutions will also allow individuals and companies, i.e., the market players, 
with potentially good software protection ideas to evaluate the true potential of their ideas. They 
inherit all the ASPIRE framework to work with; its metrics and measurability, highlighting the 
weakest points, can permit the players to select the best areas to invest. The open source avail-
ability of all evaluation software developed in the project certainly helps here.  

 

"Development and implementation of European strategies for internet security." 

Security as a practice: Whereas software protection in practice still suffers from an almost 
complete lack of best practices and generally accepted evaluation and testing methods, the 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 35 of 70 

ASPIRE protection evaluation and modelling aims for realizing a de facto standard for software 
protection models and evaluation practices. The first steps in that direction have now been taken.  

 

"Significant contribution to making Internet a medium that can be used to exercise human 
rights, including in hostile environments. " 

Right to share information: The ASPIRE results can help with the development of safe-to-use 
social media applications and services that can run on any device anywhere and that play a vital 
role to document violations of human rights and to organize resistance activities in hostile envi-
ronments where human rights such as the freedom of opinion and expression (Universal Decla-
ration of Human Rights, Art 19) and freedom of peaceful assembly (Art 20) are at stake. The 
combination of ASPIRE's white-box crypto with renewability will enable applications such as im-
age capturing/sharing, planners and social media to overcome unacceptable restrictions to those 
freedoms. ASPIRE's white-box cryptography and anti-tampering technology, protected by the 
other layers of defence, will also enable the distribution of videos captured by trusted applica-
tions, i.e., videos that are guaranteed to be free of editing and of which the embedded recording 
place and time (obtained through, e.g., the GPS) cannot be disputed.  

1.4.1.2 Macro-Economic and Societal Impact 
Cyber security is a growing economic and societal concern, as is also witnessed in the recent 
initiatives such as the EC cyber security PPP and the creation of the European Cyber Security 
Organization (ECSO).  

 

Since the start of the ASPIRE project, the use of mobile devices has further exploded. Not only 
do many people use tablets and smartphones on a daily basis, also connected camera's and 
smart watches are omnipresent these days.  

The market for mobile software, ranging from simple apps to full blown online applications, is 
therefore still growing fast. And so is hence the market for software monetization technologies, 
such as license management technologies.  

Also in the entertainment industry, traditional distribution and consumption patterns are gradually 
but quickly being replaced by online methods. The rise of Netflix and the availability of the pro-
grammes of television networks via online streaming are just two examples thereof.  

Online banking has also grown significantly, with not only traditional banking services such as 
money transfers being handled in online apps these days, but also with innovations such as 
apps that help people to automatically split bills.  

In all of the mentioned technologies, security-sensitive assets are embedded in and handled by 
the software. A growing fraction of the European economy (of service providers, content provid-
ers, and software providers) hence has become a stakeholder in mobile software, and in the 
protection of its assets in that software. And so have the consumers and end users of the mobile 
software. 

In the future, the importance of secure mobile software will only continue to grow and expand to 
more and more sectors. For example, the insurance industry is studying how to exploit the ca-
pabilities of mobile devices that track their customer's behavior (e.g., in traffic) and health. And 
as mobile computing devices take over manual tasks of safety-critical systems (e.g., autono-
mous vehicles), the trustworthiness and hence the attestation of the control software will become 
critical to handle disputes following accidents.  

It is clear that in the short-term future, the success or failure of the protection of assets embedded 
in mobile software will impact all European citizens, and many sectors. The latter is also clear of 
the list of sectors assembled in Section 2.2.3 that can benefit from protected assets, be it in 
mobile or in other software. 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 36 of 70 

Even if only a fraction of ASPIRE's improvements of the state of the art reach the market, its 
improvements in the strength of software protection techniques, its improvements in making this 
strength measurable, and its improvements in easing the deployment of combinations of soft-
ware protections through its (largely open-sourced) framework, will have a huge economic and 
societal impact.  

In terms of euros and the concrete potential for economic growth, we can quote the European 
Cybersecurity Industry Proposal for a contractual Public Private Partnership report produced in 
June 2016 by the newly founded European Cyber Security Organisation: "Cybersecurity is one 
of the fastest growing ICT sub-domains as the critical processes in the society are becoming 
increasingly dependent on IT solutions. The sustainability of most important government pro-
cesses, provision of vital services and even day-to-day actions of all the citizens rely more and 
more on well-working and secure ICT solutions. [...] The main difficulty is the evaluation of the 
percentage of the world market secured by companies having their origin in Europe (not being 
European subsidiaries or European HQ of external companies). A rough estimation, gives a 
value of about 6 bln €, corresponding only to 35% of the European market and 8,5% of the world 
market (a value close to an estimation given by Gartner specific to “system and network security 
software” sector), thus showing the progress that the European cybersecurity industry can make! 
The corresponding number of highly skilled experts in European cybersecurity industry is sug-
gesting a figure of about 100.000 direct jobs.". The report also states "According to the market 
study made in the F7 project IPACSO the European civil cybersecurity market reached the level 
of €18.8 bln in 2014 (yet, including Russia). It is forecasted to grow at an annual rate of 7.4% 
reaching the level of €26.7 bln (including Russia) in 2019. The European market is however 
smaller than the US market which is estimated to be around €26 bln in 2014. The UK, Germany 
and France constitute the biggest market sub segments and about 60% of the European market 
and estimated to achieve growth rates of between 5-6%." There is hence a clear potential for 
economic growth in the software protection sector and all sectors that consume its products.  

Obviously ASPIRE has not solved all problems, and more research and development is needed 
to arrive at satisfactory, complete solutions, but the ASPIRE consortium is confident that the 
project has contributed significantly towards the realisation of such solutions, and that the 
ASPIRE results will be taken up in future research projects and products. With its contributions, 
this project provided a direct response to one of the major societal challenges of our time.  

1.4.1.3 Business Impact on Participating Industrial Partners 
The impact section of the DoW of the ASPIRE project already projected market sizes and shares, 
as well as trends for the economic sectors in which the industrial ASPIRE partners wish to exploit 
the results of the project, i.e., in which they intend to gain a competitive advantage by exploiting 
the project results.  

The market sizes projected in the DoW need to be revised significantly. For example, the over-
the-top and multiscreen media market sizes were estimated to be around EUR 0.5 billion in 2017 
in the DoW, but are estimated to be more than 100 times larger in 2017 in recent market analysis 
reports.  

Detailed market analyses are reported in the confidential deliverable D7.06 Exploitation Report, 
but the precise numbers and the specific markets in which the industrial partners plan to exploit 
the ASPIRE results cannot be disclosed publicly here.  

Still, it is clear that competitive advantages, or even simply keeping up with the international 
competition, will generate millions of euros of income for the industrial ASPIRE partners.  

1.4.2 Dissemination Activities 

The DoW concentrated on three aspects: raising public awareness, dissemination of results, and 
exploration preparation. These aspects covered different methods and activities that needed to 
be initiated in order to achieve the goal of establishing ASPIRE as a successful and sustainable 
project.   



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 37 of 70 

Later sections in this report discuss and list the different dissemination activities of the project. 
Public deliverable D7.05 Dissemination Report presents them in even more detail. The execu-
tive/highlights summary is as follows:  

• a project logo; 
• Word and LaTeX document templates and a PowerPoint presentation template; 
• a 4-page A4 project leaflet and an A0 project poster; 
• the project website; 
• an open source repository; 
• 25 scientific publications (of which 17 peer-reviewed); 
• 18 participation activities in Conference or Workshops, incl. keynotes and an ASPIRE 

tutorial; 
• 35 presentation activities where ASPIRE results were disseminated to expert audiences; 
• 29 demonstration movies on YouTube; 
• the organization of 2 international workshops on software protection, co-located with top 

conferences (ICSE 2015 and CCS 2016); 
• 11 dissemination activities to the general public, including press releases taken up by 

ACM TechNews, and an interview with the coordinator broadcasted on Flemish local 
public television at the time of the project kick-off meeting. 

1.4.3 Exploitation of Results 

1.4.3.1 Exploitation activities in the ASPIRE project 
Section 5 in the confidential Deliverable D7.06 lists the exploitation activities already performed 
by each partner during the project. This in line with the observation that the main exploitation of 
ASPIRE results was and still is foreseen through each partner's own organization. For the in-
dustrial partners, a more extensive description of their confidential plans and actions already 
taken can be found in the annexes of D7.06. As the companies are competitors, their annexes 
are not accessible to one another.  

A consortium-wide activity already conducted to foster exploitation of Foreground by the indus-
trial partners as soon as the project is finished, is the SWOT analysis and TRL assessment of 
all developed technology in D7.06. Moreover, to maximize the exploitation potential in de aca-
demic and industrial research communities, the project invested heavily in open-sourcing its 
software prototypes, in providing documentation for the open-sourced software, and in producing 
and publishing 29 demonstration videos on YouTube.  

Other exploitation highlights from within the project duration are  

• FBK's plans and ongoing activities towards the creation of a start-up centred around their 
data obfuscation and client-server code splitting Foreground; 

• UGent's transfer of obfuscation technology to Samsung Research UK, for which the pro-
ject coordinator was awarded a HiPEAC Technology Transfer Award; 

• UGent's ongoing discussions with a company to transfer its anti-debugging IP developed 
in the project; 

• POLITO's agreement with Christian Collberg (University of Arizona) to integrate the re-
mote attestation developed during the ASPIRE project into the Haathi framework 
(http://haathi.cs.arizona.edu/). 

1.4.3.2 Contribution to standards 
Throughout its development and integration activities, the consortium has put high priority on the 
use of existing tools, processes and formal and de facto standards: 

• The ACTC can handle programs written in the standard programming language C. 
• The code generated by the ACTC source-level protection tools will meet the C standards. 
• For the ACTC Tool chain, users can select multiple compilers. Tests have been con-

ducted with several generations of LLVM, GCC for both Linux and Android targets.  
• The native binary code formats used by the ACTC are standard object file formats. 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 38 of 70 

• The means used to pass information about code fragments from one tool to another rely 
on standard forms of information, such as relocation, symbol, and debugging information 
as defined in the object file standards.   

• The configuration files used to configure the tool chain are standard XML and JSON files. 
• The generated programs only rely on commonly available features in standard libraries 

and operating systems. This was tested for, e.g., Android and the anti-debugging tech-
niques and the code mobility techniques.  

• Compatibility of the developed protections with the latest releases of those OSes was 
also tested.  

• To facilitate the take-up of the open-sourced software, industry standards such as Docker 
containers are used.  

No formal activities targeting standardization organizations and bodies have been initiated yet 
in the ASPIRE project. 

  



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 39 of 70 

1.5 Miscellaneous 
1.5.1 Project website 

To serve the broadest possible visibility of the project, the project website was launched in the 
first month of the project. All pages on this public website are available to everyone, it is not 
necessary to login. 

The public part of the website consists of the following pages:  

• Home: General introduction to the project, brief overview of consortium by means of partner 
logos.  

• Consortium: Description of all project partners and principal investigators  
• Contact: Contact form 
• Resources: container of all public resources:  

o ASPIRE papers: includes published papers, all public project deliverables which 
have been accepted and other resource, such as videos; 

o Knowledge base: includes published papers as well and related sites interesting for 
the project.  

o Project Deliverables: includes a list of ASPIRE project deliverables; 
o Source code: contains the link to the GitHub repositories in which most of the 

ASPIRE code has been published with open-source licenses; 
o Demo Videos: contains the link to the ASPIRE YouTube channel with all the videos 

on different project results; 
o Other Resources: contains various resources, such as a TV interview, project leaf-

lets, keynote talks, invited lectures, and press-releases.  

The ASPIRE website allows consortium members to register and log in to the website. After 
doing so, the private part of the website can be accessed.  

The private part of the website includes: 

• Wiki pages used for internal dissemination of relevant information that needs to be up-
dated regularly; 

• A Steering Board page linking and listing all information regarding the boards' meetings, 
such as agendas and minutes; 

• An action tracker page listing all ongoing actions, deadlines, progress states, etc.; 
• mailing list archives; 
• The project SVN repository for documents; 
• The project SVN repository for source code. 
• An EC downloads page where reviewers and the EC program officer could access all 

relevant reports.  

The ASPIRE project website is available at https://www.aspire-fp7.eu.  
The project website was updated continuously by the project Coordinator, whereas all partners 
participated in the process by notifying the Coordinator of important news, publications and de-
velopments. Detailed website statistics have been presented in deliverable D7.05 Dissemina-
tion Report.  

1.5.2 ASPIRE Logo 

In order to establish the immediate recognition of the ASPIRE project, the official project logo 
was designed. The logo was used in all dissemination tools from internal documents and report-
ing templates to external communication tools such as the website, presentations and brochure. 



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 40 of 70 

 
Along with the logo, two buttons were developed that could be used in all kinds of graphical 
dissemination material.  

 

1.5.3 ASPIRE Templates 

In order to streamline the dissemination of ASPIRE results and create a recognition of ASPIRE 
graphical material in the software protection community, a Word template was created, and a 
similar looking LaTeX style was also created along with a PowerPoint presentation template. 
The templates, which were prepared at the beginning of the project also helped to save time and 
effort for the members of the consortium, since no further design work was necessary.  

1.5.4 ASPIRE Leaflet 

As soon as the project had started, the communication company Magelaan was hired to design 
a project leaflet that can be handed out by the project partners at networking events. This flyer 
was distributed at multiple local and international events by multiple project partners. A digital 
copy is available on the project website.  

1.5.5 ASPIRE Poster 

On the basis of the project leaflet graphics, we also designed (internally) a general ASPIRE 
poster that could be reused by all partners at poster events. A digital copy is available on the 
project website.  

1.5.6 ASPIRE Social Media 

Social media can help in spreading project-related information to a wide audience. They are 
therefore a valuable tool to disseminate project ideas and results. To start using social media, 
we waited until enough results were becoming available, to avoid so-called sleeping social media 
accounts. 

In September 2014, the ASPIRE FP7 Twitter account was launched 
(https://twitter.com/aspirefp7), where project members could tweet about the project and related 
subjects.  

In November 2014, the ASPIRE FP7 LinkedIn group was launched 
(https://www.linkedin.com/groups/Aspire-FP7-7300827), for stakeholders and other interested 
people. 

On the ASPIRE website direct links to the ASPIRE Twitter Account and the LinkedIn-Group can 
be found. 

1.5.7 Software Protection Workshops 

With two successful workshops, the consortium organized one more workshop than foreseen in 
the DoW.  

ASPIRE Workshop: 1st International Workshop on Software PROtection 
The first Software PROtection (SPRO) workshop was co-located with the ACM/IEEE Interna-
tional Conference on Software Engineering (ICSE) in Florence (Italy) on 19th May 2015, one of 
the three top conferences in software engineering.  



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 41 of 70 

In this workshop, Paolo Falcarin served as general chair and Brecht Wyseur served as program 
chair. They first assembled and submitted a proposal for a workshop to the ICSE workshops 
chairs, and after the workshop proposal was accepted, they assembled the program committee 
(in which all ASPIRE Principal Investigators were involved), and launched the workshop website 
at https://aspire-fp7.eu/spro/.  

The programme committee of experts followed a very thorough review process to ensure high 
quality papers and presentations. Each research paper was reviewed by at least four program 
committee members. We received 19 submissions from 60 authors of 13 countries. The nine 
best papers were accepted as full papers for publication and presentation at the workshop; of 
the accepted papers, 12 authors were from industry and 18 from academia. 

Five of the nineteen papers submitted came from the ASPIRE consortium, and three of them 
were accepted. About 40 people registered for the workshop, coming from North America, Eu-
rope, and Asia.  

We also included in the final workshop programme two keynote talks: one from Prof. Bart Preneel 
in the morning and one from Prof. Bjorn De Sutter in the afternoon. The first keynote from Prof. 
Preneel provided an overview of the challenging problems faced by software security, while the 
second keynote from Prof. De Sutter (the project coordinator) presented the ASPIRE initial re-
sults, and introduced the overall aims and objectives of the ASPIRE framework.   

ASPIRE Workshop: 2nd International Workshop on Software PROtection 
The second SPRO workshop was co-located with the ACM CSS conference in Vienna on 28 
October 2016, one of the three tier-1 conferences in the domain of computer security.  

For the second workshop, Brecht Wyseur served as general chair and Bjorn De Sutter served 
as program chair. They first assembled and submitted a proposal for a workshop to the ACM 
workshop chairs, and after the workshop proposal was accepted, they assembled the 25-person 
program committee (including ASPIRE Principal Investigators), and launched the workshop web-
site at https://aspire-fp7.eu/spro/. 

Fourteen papers were submitted, of which three from within the ASPIRE consortium. Of those, 
eight papers were accepted, of which one from within the ASPIRE consortium.  

About 80 people registered for the workshop, coming from North America, Europe, Asia, and the 
Middle East. The vast majority of the registered attendants did show up, with the peak attend-
ance being about 55 people.  

The ASPIRE tutorial presented by Bjorn De Sutter and Cataldo Basile proved a great way to 
disseminate the ASPIRE outcomes, and to introduce the ongoing open-source effort and the 
publication of demonstration videos on the project's YouTube channel.  

The workshop was concluded with a very interactive panel discussion. At the end of the panel 
discussion, the workshop organizers also announced their intention to keep organizing the 
SPRO workshop in the years to come, and people were invited to join the SPRO steering com-
mittee. If possible, the workshop will be aligned with other efforts in the new H2020 EC PPP on 
Cyber Security and the activities of the new European Cyber Security Organization (ECSO, 
http://www.ecs-org.eu/).  Offers to join forces with PPREW/SSPREW were discussed, but they 
were considered suboptimal: bringing together European software protection industry experts 
and academics will only be successful when done within Europe.  

The workshop ended with a dinner sponsored by NAGRA, to which all attendants could partici-
pate if they registered. In the end, about 30 people attended the dinner, resulting in long and 
interesting discussions of many topics relevant to the workshop and to the ASPIRE partners and 
research.  



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 42 of 70 

1.5.8 YouTube Channel 

In September 2016, the ASPIRE-FP7 Software Protection YouTube Channel was launched 
(https://www.youtube.com/channel/UCntMGBjHr_oW5wEd5JgjD6g). This channel shows (will 
show) about 30 video demonstrations of project results. 

1.5.9 Open Sourcing 

Part of the source code developed in the ASPIRE project has been open sourced. We also 
created an online presence for the open source parts of the project. 

We decided to put all of our source code in git repositories. We created an ‘aspire-fp7’ team on 
the GitHub repository sharing website as the central point for our repositories, which can be 
found at https://github.com/aspire-fp7.  

Most of the code written by the academic partners is open sourced. The only exception is the 
source-to-source techniques developed by FBK, as they are planning to commercialize this tech-
nique in a spin-off. The ACTC, which is joint work between NAGRA, GTO, and UGent, has also 
been open sourced. 

We have also written and published scripts to set up and to run Docker containers that contain 
all of the open sourced tools. Docker is a lightweight Linux virtualization technology. Users can 
thus clone our docker repository at https://github.com/aspire-fp7/docker, run the scripts, and im-
mediately start running the ACTC on applications to apply both offline and online protections to 
applications. 

On the ASPIRE website, we have added a new page that contains links to the open source 
repositories. We have written documentation on how to set up the Docker container, how to run 
the ACTC and how to apply offline and online techniques to a demo application. This documen-
tation is based on the D5.13 ASPIRE Open Source Manual Deliverable. 

Furthermore, we have open sourced and documented the ADSS Full at 
https://github.com/SPDSS/adss. We have also open sourced and documented the ADSS Light 
at https://github.com/uel-aspire-fp7/adss-light . 

1.5.10 Cooperation with other projects 

UGent collaborated with the TETRACOM FP7 project (http://www.tetracom.eu) to further pre-
pare its IP for exploitation by an industrial partner, as documented more extensively in delivera-
ble D7.03.  

UGent's ASPIRE team also provides input to the vision building processes in the HiPEAC Net-
work of Excellence (http://www.hipeac.net), in particular for drafting the HiPEAC vision docu-
ments and roadmaps on compiler technology and their use for protecting and securing software 
and computer systems. 

Furthermore, the project coordinator has been active in the Digital Asset Protection Association 
(DAPA) project/organization (http://www.digitalassetprotectionassociation.org/), where he has 
been working with the scientific board members to draft a whitepaper on best practices for pub-
lishing and evaluation software protection papers and results. That effort is not finalized yet, 
however, and unfortunately, as DAPA has become a sleeping organization, this effort is cur-
rently stalled.  

Within POLITO, there is a collaboration between the ASPIRE researchers and the researchers 
of the SECURED project. The SECURED project needs to remotely attest the software that has 
to execute the user security applications.  

Nagravision participates to the Celtic-plus project (http://celticplus.eu/) on HEVC Hybrid Broad-
cast Video Services (H2B2VS, http://h2b2vs.epfl.ch). That project investigates the hybrid distri-
bution of TV programs and services over heterogeneous networks.  



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 43 of 70 

1.5.11 The ASPIRE Consortium 

ASPIRE was an FP7 collaborative research project that brings together three market leaders in 
security ICT solutions and four academic institutions from 6 European countries. Gemalto SA 
(FR) is the world leader in the smart card business. SFNT GmbH (DE) is the world leader in 
token-based software licensing1. Nagravision SA (CH) is the world's leading supplier of end-to-
end security solutions for set-top box TV operators. Combined, these three companies under-
stand the varying requirements of security solutions in the diverse markets that need such solu-
tions. Ghent University, Politecnico di Torino, Fondazione Bruno Kessler and University of East 
London provide the necessary expertise in state-of-the-art software protection techniques and 
tool chains that cover offline as well as online techniques. They also provide extensive expertise 
in evaluation methodologies and metrics for software protection. 
 

 
Figure 2: The ASPIRE Consortium at its kick-off meeting in Gent (Nov 2013) 

 

 

 

 

 

                                                
1 After the start of the project, SFNT GmbH was acquired by Gemalto SA.  



Project Final Report according to the EC regulations of the model contract 
  

ASPIRE  Page 44 of 70 

Section 2 Use and Dissemination of Foreground 

2.1 Dissemination Measures (public)  
Dissemination represents a key part within any research project since the awareness and pub-
licity of a project is important to ensure the project success.  

A list of all scientific (peer reviewed) publications relating to the foreground of the project as well 
as a list of all dissemination activities (publications, conferences, workshops, web sites/applica-
tions, press releases, flyers, articles published in the popular press, videos, media briefings, 
presentations, exhibitions, thesis, interviews, films, TV clips, posters) is provided below. These 
tables are cumulative which means that they show all publications and activities from the begin-
ning until after the end of the project. 

More information about the dissemination activities in the project can be found in the public De-
liverable D7.05 Dissemination Report.  

 



Project Final Report according to the EC regulations of the model contract   

ASPIRE  Page 45 of 70 

2.1.1 List of scientific (peer reviewed) publications (public) 
With respect to the open access column in the table below, we note that we confirmed open access availability if the publication is accessible via the 
author's personal websites or via their institutes' repositories.  

 

TEMPLATE A1: LIST OF SCIENTIFIC (PEER REVIEWED) PUBLICATIONS, STARTING WITH THE MOST IMPORTANT ONES 

NO
. Title Main author Title of the periodical or 

the series 

Number, 
date or fre-

quency 
Publisher Place of pub-

lication 

Year of 
publica-

tion 

Rele-
vant 

pages 

Permanent identi-
fiers2  

(if available) 

Is/Will 
open ac-

cess3 
provided 

to this 
publica-

tion? 

1 Automatic Generation 
of Opaque Constants 
Based on the K-clique 
Problem for Resilient 
Data Obfuscation 

Roberto 
Tiella, 
Mariano Cec-
cato 

IEEE International Con-
ference on Software 
Analysis, Evolution, and 
Reengineering (SANER-
2017) 

21-24 Febr 
2017 

IEEE Klagenfurt, 
AU 

2017   yes 

2 A Tightly-Coupled Self-
Debugging Software 
Protection 

Bert Abrath, 
Joris Wijnant, 
Bart Cop-
pens, Bjorn 
De Sutter, 
and Stijn 
Volckaert  

 

International Workshop 
on Software Security, 
Protection and reverse 
Engineering (SSPREW-
2016) 

5-6 Dec 
2016 

ACM Los Angeles, 
US 

2016 7:1-7:10 https://doi.org/10.
1145/3015135.30
15142 

Yes 

                                                
2 A permanent identifier should be a persistent link to the published version full text if open access or abstract if article is pay per view) or to the final manuscript accepted for publication 
(link to article in repository).  
3 Open Access is defined as free of charge access for anyone via Internet. Please answer "yes" if the open access to the publication is already established and also if the embargo 
period for open access is not yet over but you intend to establish open access afterwards. 
 



Project Final Report according to the EC regulations of the model contract   

ASPIRE  Page 46 of 70 

3 Static Analysis and 
Penetration Testing 
from the Perspective of 
Maintenance Teams 

Mariano Cec-
cato, Ric-
cardo Scan-
dariato 

ACM/IEEE International 
Symposium on Empirical 
Software Engineering 
and Measurements 
ESEM 2016 

8-9 Sept. 
2016 

ACM Ciudad Real, 
ES 

2016 25:1-
25:6 

https://doi.org/10.
1145/2961111.29
62611 

Yes 

4 Search Based Cluster-
ing for Protecting Soft-
ware with Diversified 
Updates 

Mariano Cec-
cato, Paolo 
Falcarin, 
Alessandro 
Cabutto, 
Yosief Wel-
dezghi 
Frezghi, Cri-
stian-Alexan-
dru Staicu 

Symposium on Search-
Based Software Engi-
neering SSBSE 2016 

8-10 Oct 
2016 

Springer Raleigh, 
North Caro-
lina, US 

2016 159-175 https://doi.org/10.
1007/978-3-319-
47106-8_11 

Yes 

5 Reactive attestation. 
Automatic detection 
and reaction to soft-
ware tampering attacks 
 

Alessio Vitic-
chié, Cataldo 
Basile, An-
drea Avan-
cini, Mariano 
Ceccato, Bert 
Abrath, Bart 
Coppens 

ACM Workshop on Soft-
ware PROtection (SPRO 
2016) 

24-28 Oct 
2016 

ACM Vienna, AU 2016 91-92 https://doi.org/10.
1145/2995306.29
95315 

Yes 

6 Towards Automatic 
Risk Analysis and Miti-
gation of Software Ap-
plications 

Regano, Leo-
nardo; Cana-
vese, Da-
niele; Basile, 
Cataldo; Vi-
ticchié, Ales-
sio; Lioy, 

10th IFIP WG 11.2 In-
ternational Confer-
ence, WISTP 2016 

26-27 Sep 
2016 

Springer Heraklion 
(GR) 

2016 120-135 https://doi.org/10.
1007/978-3-319-
45931-8_8 

 

yes 

7 Assessment of data 
obfuscation with resi-
due number coding 

Biniam Fis-
seha Demis-
sie, Mariano 
Ceccato, Ro-
berto Tiella 

IEEE/ACM International 
Workshop on Software 
Protection 

19 May 
2015 

IEEE Firenze, IT 2015 38-44 https://doi.org/10.
1109/SPRO.2015.
15 

Yes 

8 Automatic Discovery of 
Software Attacks via 
Backward Reasoning 

Cataldo Ba-
sile, Daniele 
Canavese, 
Jerome D'An-
noville, Bjorn 

IEEE/ACM International 
Workshop on Software 
Protection 

19 May 
2015 

IEEE Firenze, IT 2015 52-58 https://doi.org/10.
1109/SPRO.2015.
17 

Yes 



Project Final Report according to the EC regulations of the model contract   

ASPIRE  Page 47 of 70 

De Sutter, 
Fulvio Va-
lenza 

9 A reference architec-
ture for software pro-
tection 

Bjorn De Sut-
ter, Paolo 
Falcarin, Bre-
cht Wyseur, 
Cataldo Ba-
sile, Mariano 
Ceccato, Je-
rome d'Anno-
ville, Michael 
Zunke 

Working IEEE/IFIP Con-
ference on Software Ar-
chitecture. (WICSA) 

4–8 Apr 
2016 

IEEE Venice (IT) April 
2016 

291-294 https://doi.org/10.
1109/WICSA.201
6.43 

No 

10 Software Protection 
with Code Mobility 

Alessandro 
Cabutto, 
Paolo Fal-
carin, Bert 
Abrath, Bart 
Coppens, 
Bjorn De Sut-
ter 

Workshop on Moving 
Target Defense 
MTD@CCS 2015 

12-16 Oct 
2015 

ACM Denver, US 2015 95-103 https://doi.org/10.
1145/2808475.28
08481 

Yes 

11 Assessment of Source 
Code Obfuscation 
Techniques 

Alessio Vitic-
chié, Leo-
nardo Re-
gano, Marco 
Torchiano, 
Cataldo Ba-
sile, Mariano 
Ceccato, 
Paolo To-
nella, Ro-
berto Tiella 

IEEE International Work-
ing Conference on 
Source Code Analysis 
and Manipulation SCAM 
2016 

2-3 Oct 
2016 

IEEE Raleigh, 
North Caro-
lina, US 

2016 11-20 https://doi.org/10.
1109/SCAM.2016
.17 

Yes 

12 Attack simulation 
based software protec-
tion assessment 
method (Best Paper 
Award) 

Gaofeng 
Zhang, Paolo 
Falcarin, 
Elena 
Gómez-Mar-
tínez, 
Shareeful Is-
lam, Chris-

International Conference 
On Cyber Security and 
Protection of Digital Ser-
vices (Cyber Security 
2016) 

13-14 Jun 
2016 

IEEE London, UK 2016 1-8 https://doi.org/10.
1109/Cyber-
SecPODS.2016.7
502352 

Yes 



Project Final Report according to the EC regulations of the model contract   

ASPIRE  Page 48 of 70 

tophe Tar-
tary, Bjorn De 
Sutter, Je-
rome D’An-
noville 

13 Attack Simulation 
based Software Pro-
tection Assessment 
Method with Petri Net 

Gaofeng 
Zhang, Paolo 
Falcarin, 
Elena 
Gómez-Mar-
tínez, 
Shareeful Is-
lam, Chris-
tophe Tar-
tary, Bjorn De 
Sutter, Je-
rome D’An-
noville 

International Journal on 
Cyber Situational Aware-
ness 

Vol 1:1, 
ISSN 2057-
2182 

Centre for 
Multidiscipli-
nary Re-
search, In-
novation and 
Collabora-
tion 

 2016 8 pages http://www.c-
mric.org/ijcsa/arti-
cle8.pdf 

Yes 

14 A Measurement 
Framework to Quantify 
Software Protections 
(Poster + Extended Ab-
stract) 

Paolo 
Tonella, 
Mariano Cec-
cato, Bjorn 
De Sutter, 
Bart Coppens 

ACM SIGSAC Confer-
ence on Computer and 
Communications Secu-
rity 

3-7 Nov 
2014 

ACM Scottsdale, 
Arizona (US) 

2014 1505-
1507  

https://doi.org/10.
1145/2660267.26
62360 

Yes 

15 Towards a Unified 
Framework for Evaluat-
ing the Strength of 
Software Protections 
(Extended Abstract) 

Bjorn De Sut-
ter 

ARO Workshop on Con-
tinuously Upgradeable 
Software Security and 
Protection 

7 Nov 2014  Scottsdale, 
Arizona (US) 

2014 34-35  No 

16 Reflections on Soft-
ware Renewability from 
an Industry Perspec-
tive (Extended Ab-
stract) 

Brecht 
Wyseur 

ARO Workshop on Con-
tinuously Upgradeable 
Software Security and 
Protection 

7 Nov 2014  Scottsdale, 
Arizona (US) 

2014 36-37  No 

17 On the Need for More 
Human Studies to As-
sess Software Protec-
tion (Extended Ab-
stract) 

Mariano Cec-
cato  
 

ARO Workshop on Con-
tinuously Upgradeable 
Software Security and 
Protection 

7 Nov 2014  Scottsdale, 
Arizona (US) 

2014 55-56  Yes 

 



Project Final Report according to the EC regulations of the model contract   

ASPIRE  Page 49 of 70 

2.1.2 List of dissemination activities (public) 
Possible types of audience mentioned in the table: a) Scientific Community (higher education), b) Industry, 3) Civil Society, 4) Policy Makers, 5) Media 

 



Project Final Report according to the EC regulations of the model contract   

ASPIRE  Page 50 of 70 

Nr Type of Ac-
tivities 

Main Leader Title Day Place Type of audience Size of Au-
dience 

Nat/Int 

a) b) c) d) e) 

1 Workshop FBK Internal seminar 17/10/2013 Trento, IT x     20 Nat 

2 Presentation NAGRA NAGRA internal presentation 22/10/2013 Cheseaux, 
CH 

 x    10 Nat 

3 Workshop FBK Internal seminar 24/10/2013 Trento x     20 Nat 

4 Web UGENT Website/logo available 1/11/2013 online x x x x x N/A Int 

5 Press Re-
lease 

UGENT ASPIRE startup announcement Belgian 
Press 

4/11/2013 online   x x x N/A Nat 

6 Interview UGENT Interview with CO on local television 
station AVS 

5/11/2013 online  x x x x thousands Nat 

7 Presentation NAGRA NAGRA internal presentation 28/11/2013 Cheseaux, 
CH 

 x    50 Int 

8 Web UEL ASPIRE project advertised on UEL 
website: 460.000 EUR to develop soft-

ware protection 

1/12/2013 online x x x x x N/A Int 

9 Presentation POLITO ASPIRE: Advanced Software Protec-
tion: Integration, Research, and Exploi-

tation 

5/12/2013 Torino, IT x     150 Nat 

10 Web GTO Wiki page on the Intranet describing 
the project and expected results 

6/12/2013 online  x    whole com-
pany 

Int 

11 Presentation POLITO ASPIRE: Advanced Software Protec-
tion: Integration, Research, and Exploi-

tation 

9/12/2013 Torino, IT x     100 Nat 

12 Flyer UGENT Official ASPIRE-leaflet available on the 
website 

15/01/2014 online x x x x x N/A Int 



Project Final Report according to the EC regulations of the model contract   

ASPIRE  Page 51 of 70 

13 Presentation UGENT Keynote speech at CS2 workshop col-
located with HiPEAC conference: A 

Golden Standard for Evaluating Soft-
ware Protection against Man-at-the-

End Attacks 

20/01/2014 Vienna, AU x x    25 Int 

14 Presentation UEL Software Protection research overview 20/01/2014 London, UK x  x   10 Nat 

15 Presentation UEL Software Protection Research Over-
view 

20/01/2014 London, UK x     20 Nat 

16 Presentation UEL Software protection seminar - ASPIRE 
overview 

2/12/2014 Torino, IT x     20 Nat 

17 Presentation POLITO ASPIRE: Advanced Software Protec-
tion: Integration, Research, and Exploi-

tation 

26/02/2014 Torino, IT x     15 Nat 

18 Thesis FBK Code Diversity: Code Obfuscation and 
Clustering Heuristic to Prevent Code 

Tampering 

12/03/2014 Trento, IT x     30 Nat 

19 Web NAGRA ASPIRE Project advertised on 
Nagravision Intranet 

13/03/2014 Cheseaux, 
CH 

 x    3000+ Int 

20 Presentation POLITO ASPIRE: Advanced Software Protec-
tion: Integration, Research, and Exploi-

tation 

14/03/2014 Torino, IT x     20 Nat 

21 Presentation UEL Software Protection overview 21/03/2014 London, UK  x x   20 Nat 

22 Exhibition NAGRA EU CyberSecurity Strategy - High-
Level Conference 

28/03/2014 Brussels, BE x x x x x 480 Int 

23 Press Re-
lease 

UGENT Final version of Press Release sent out 
to the partners 

17/04/2014 online      7 Int 

24 Press Re-
lease 

UGENT Press Release published on CORDIS 
Wire 

18/04/2014 online x   x  N/A Int 

25 Press Re-
lease 

UGENT Press Release published on Alpha Gal-
ileo 

25/04/2014 online x x x   4000 Int 



Project Final Report according to the EC regulations of the model contract   

ASPIRE  Page 52 of 70 

26 Press Re-
lease 

UGENT Press Release sent to our contacts at 
ACM Tech News 

25/04/2014 online      N/A Int 

27 Press Re-
lease 

UGENT Press Release published by ACM Tech 
News 

25/04/2014 online x x x x x 100000 Int 

28 Presentation UEL UEL Expert Series: ASPIRE 30/04/2014 London, UK x     20 Int 

29 Interview UGENT Interview by Olga Gadyatskaya from 
the SECCORD project 

30/04/2014 online x     1 Int 

30 Press Re-
lease 

UGENT Short Press Release sent to: European 
Cyber Security Round Table 

7/05/2014 online x   x  N/A Int 

31 Press Re-
lease 

UGENT Short Press Release published by Eu-
ropean Cyber Security Round Table in 

their Newsflash 

7/05/2014 online x   x  N/A Int 

32 Publication UGENT Making Advanced Software Protection 
Tools Usable for Non-Experts 

19/05/2015 Firenze, IT X     N/A Int 

33 Conference POLITO Annual Privacy Forum 2014 20-
21/05/2014 

Athens, GR x x x x x TDB Int 

34 Conference POLITO Cyber Security & Privacy Forum 2014 21-
22/05/2014 

Athens, GR x x x x x TDB Int 

35 Conference UGENT Evaluating the Strength of Software 
Protections 

25-30 May 
2014 

Dagstuhl, DE X     50 Int 

36 Conference FBK 36th International Conference on Soft-
ware Engineering 

31/05/2014 Hyderabad, 
IN 

x x    1200 Int 

37 Presentation UGENT Evaluating the strength of software pro-
tections 

11/06/2014 Dagstuhl, DE x x    44 Int 

38 Publica-
tion/Thesis 

FBK Code Diversity: Code Obfuscation and 
Clustering Heuristic to Prevent Code 

Tampering 

June 2014 Trento, IT x     N/A Int 

39 Publica-
tion/Thesis 

FBK Implementation and Assessment of 
Data Obfuscation for C/C++ Code 
Based on Residue Number Coding 

June 2014 Trento, IT x     N/A Int 



Project Final Report according to the EC regulations of the model contract   

ASPIRE  Page 53 of 70 

40 Press Re-
lease 

UGENT FP7 ASPIRE Project 13/07/2014 Gent, BE x x     Int 

41 Presentation NAGRA White-Box Cryptography 28/07/2014 Verona, IT x x    35 Int 

42 Interview UGENT Scuola anti pirati 30/07/2014 Verona, IT x x    N/A Nat 

43 Presentation UGENT Evaluating the strength of software pro-
tections 

30/07/2014 Verona, IT x x    35 Int 

44 Presentation UGENT The ASPIRE project 1/08/2014 Verona, IT x x    35 Int 

45 Presentation NAGRA NAGRA internal security workshop 10/09/2014 Cheseaux, 
CH 

 x    50 Int 

46 Presentation NAGRA NAGRA use case presented during in-
ternal workshop 

11/09/2014 Cheseaux, 
CH 

 x    20 Nat 

47 Presentation FBK Research Seminar: A Study on the Ef-
fect of Code Obfuscation: Quality of 

code and Efficiency of attacks 

23/09/2014 Luxembourg, 
LU 

x     30 Nat 

48 Thesis FBK Implementation and Assessment of 
Data Obfuscation for C/C++ Code 
Based on Residue Number Coding 

14/10/2014 Trento, IT x     50 Nat 

49 Conference FBK/UGENT/ 

NAGRA 

2014 ACM SIGSAC Conference on 
Computer and Communications Secu-

rity 

3-7:11/2014 Scottsdale, 
Arizona, US 

x x    250 Int 

50 Workshop FBK/UGENT/ 

NAGRA 

ARO Workshop on Continuously Up-
gradeable Software Security and Pro-

tection 

7/11/2014 Scottsdale, 
Arizona, US 

x x    50 Int 

51 Presenation UEL Software protection seminar - ASPIRE 
overview 

2/12/2014 Milan, IT x     50 Nat 

52 Presentation UEL Software protection seminar - ASPIRE 
overview 

2/12/2014 Milan, IT x     10 Nat 

53 Thesis POLITO Modellazione di protezioni software 
attraverso 

ontologie formali 

12/12/14 Turin, IT x     50 Nat 



Project Final Report according to the EC regulations of the model contract   

ASPIRE  Page 54 of 70 

54 Poster UGENT ASPIRE Project Presentation at 
HiPEAC2015 Conference 

19-
21/01/2015 

Amsterdam, 
NL 

x x    600 Int 

55 Thesis POLITO Attestazione remota del software 13/03/15 Torino, IT x     50 Nat 

56 Presentation UGENT System Software Lab Research Over-
view 

21/04/2015 Gent, BE x     40 Nat 

57 Exhibition UGENT ASPIRE Booth and Poster at the Cy-
bersecurity & Privacy Innovation Forum 

28-
29/04/2015 

Brussels, BE x x  x  400 Int 

58 Presentation UGENT Making Advanced Software Protection 
Tools Usable for Non-Experts 

18/05/2015 Firenze, IT x x    43 Int 

59 Conference POLITO 1st International Workshop on Software 
PROtection (SPRO 2015) 

19/05/2015 Florence, IT x x    40 Int 

60 Publication FBK Assessment of data obfuscation with 
residue number coding 

19/05/2015 Florence, IT x x    40 Int 

61 Presentation UGENT ASPIRE project presentation 8/06/2015 Gent, BE x     1 Int 

62 Thesis UGENT Automatische injectie van flexibele 
opake predicaten 

23/06/2015 Ghent, BE x     Public the-
sis 

Nat 

63 Thesis UGENT SAD Droid: Zelf-Anti-Debugging voor 
Android 

4/09/2015 Ghent, BE x     Public the-
sis 

Nat 

64 Presentation FBK ASPIRE - Trustworthy software execu-
tion on untrusted mobile platforms 

10/09/2015 Luxembourg, 
LU 

x     30 Nat 

65 Conference UEL/UGENT CCS 2015 12-
16/10/2015 

Denver, US x x    20 Int 

66 Workshop UEL/UGENT Second Workshop on Moving Target 
Defense MTD 

15/10/2015 Denver, US x x    20 Int 

67 Press Re-
lease 

NAGRA NAGRA Internal Press Release: 
ASPIRE 

16/10/2015 Cheseaux, 
CH 

x x    3500 Int 

68 Presentation NAGRA White-Box Cryptography and Smart 
Cards: Friend or Foe? 

15/11/2015 Bochum, DE x x    100 Int 

69 Thesis POLITO Attestazione remota basata su controllo 
di invarianti 

1/12/2015 Torino, IT x x    50 Nat 



Project Final Report according to the EC regulations of the model contract   

ASPIRE  Page 55 of 70 

70 Poster UGENT ASPIRE Poster Presentation at the 
HiPEAC2016 Conference 

18-
20/01/2016 

Prague, CZ x x    650 Int 

71 Workshop NAGRA NAGRA-EDSI Exploitation worrkshop 23/02/2016 Rennes, FR  x    10 Int 

72 Poster UGENT ASPIRE Tool Demonstration 8/03/2016 Cheseaux, 
CH 

x x    100 Nat 

73 Thesis FBK An Experimental Study on Run-Time 
Overhead Introduced by Data Obfusca-

tion Transformations 

24/03/2016 Trento, IT x     50 Nat 

74 Conference UEL A reference architecture for software 
protection 

7/04/2016 Venice, IT x x    30 Int 

75 Presentation UEL Software Protection seminar 20/05/2016 Hangzhou, 
CH 

x     60 Nat 

76 Presentation UGENT ASPIRE project presentation 8/06/2016 Gent, BE x     1 Int 

77 Conference UEL Attack Simulation based Software Pro-
tection Assessment Method for Protec-
tion Optimisation at the Cypber Secu-

rity 2016 

14/06/2016 London, UK x x    50 Int 

78 Poster UEL Poster: Software protection assess-
ment with code metrics and petri nets 

16/06/2016 London, UK x x x x  100 Nat 

79 Interview UGENT Written interview for security special 
feature of HiPEACInfo48: Locking The 

Back Door 

29/06/2016 online x x    500 Int 

80 Publication, 
Thesis 

FBK An Experimental Study on Run-Time 
Overhead Introduced by Data Obfusca-

tion Transformations 

June 2016 Trento, IT x     N/A Int 

81 Poster UEL Poster:  A Light Process for the Soft-
ware Protection Assessment Based on 

Petri Nets 

1/07/2016 Valencia, ES x     100 Nat 

82 Presentation NAGRA Talk at WhibOx workshop 14/08/2016 Santa Bar-
bara, Califor-

nia, US 

x x x x x 90 Int 



Project Final Report according to the EC regulations of the model contract   

ASPIRE  Page 56 of 70 

83 Conference FBK Static Analysis and Penetration Testing 
from the Perspective of Maintenance 

Teams 

8/09/2016 Ciudad Real, 
ES 

x     100 Int 

84 Interview UGENT Combined protections for greater mo-
bile app security 

9/09/2016 online x x x x x N/A Int 

85 Video UGENT 22 Youtube video’s posted about the 
ASPIRE project and its research results 

Sept - 
Dec/2016 

online x x x x x N/A Int 

86 Workshop POLITO Towards Automatic Risk Analysis and 
Mitigation of Software Applications 

26/09/2016 Heraklion, 
Crete, GR 

x     50 Int 

87 Interview UGENT Written interview for Cordis website: 
Towards Automatic Risk Analysis and 

Mitigation of Software 

26/09/2016 Gent, BE      N/A Int 

88 Conference FBK/POLITO Assessment of Source Code Obfusca-
tion Techniques 

2/10/2016 Raileigh, NC, 
US 

x     100 Int 

89 Conference FBK/UEL Search Based Clustering for Protecting 
Software with Diversified Updates 

8/10/2016 Raileigh, NC, 
USA- 

x     100 Int 

90 Presentation UGENT ASPIRE: Advanced Software Protec-
tion: Integration, Research, and Exploi-

tation 

18/10/2016 Gent, BE x x    50 Nat 

91 Presentation UGENT ASPIRE: Advanced Software Protec-
tion: Integration, Research, and Exploi-

tation 

18/10/2016 Gent, BE x x x   50 Nat 

92 Publication UGENT The ASPIRE Framework for Software 
Protection. 

24-
28/10/2016 

Gent, BE x     N/A Int 

93 Press Re-
lease 

UGENT Successful ASPIRE SPRO workshop 24-
28/10/2016 

Gent, BE x x x x x N/A Int 

94 Films FBK/POLITO Reactive Attestation: Automatic Detec-
tion and Reaction to Software Tamper-

ing Attacks 

28/10/2016 Vienna, AU x x    50 Int 

95 Workshop UGENT 25nd International Workshop on Soft-
ware Protection (SPRO 2016) 

28/10/2016 Vienna, AU x x    50 Int 



Project Final Report according to the EC regulations of the model contract   

ASPIRE  Page 57 of 70 

96 Exhibition UGENT The ASPIRE Framework for Software 
Protection 

28/10/2016 Vienna, AU x x    50 Int 

97 Presentation UEL ASPIRE: Advanced Software Protec-
tion: Integration, Research, and Exploi-

tation 

31/10/2016 London, UK x     25 Nat 

98 Conference UGENT Tightly-Coupled Self-Debugging Soft-
ware Protection 

6/12/2016 LA, US x     N/A Int 

99 Conference FBK 24th International Conference on Soft-
ware Analysis, Evolution and Reengi-

neering (SANER-2017) 

24-
24/02/2017 

Klagenfurt, 
AU 

X     N/A Int 

 


