
Evaluating the strength of
software protections

Bjorn De Sutter
Ghent University

Verona, Italy ISSISP
 30 July 2014

About me

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

2

¨  Research domain: system software
¤  compilers, binary rewriting tools, whole program

optimization (binary & Java), virtualization

¤  improve programmer productivity

¤  apply tools for different applications

¤  obfuscation, diversity and mitigating side channels

¨  Interrupts enabled , but not all handlers might be installed

¨  Also worked at

Evaluating the strength of software protection

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

3

¨  Four criteria (Collberg et al)

¤ Potency: confusion, complexity, manual effort

¤ Resilience: resistance against (automated) tools

¤ Cost: performance, code size

¤ Stealth: identification of (components of) protections

of what?

how computed?

what task?

by who?

existing and non-existing?

operated by who? to achieve what?

First: What do we want to achieve with the protection and the evaluation?

Overview

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

4

¨  ASPIRE in a nutshell

¨  Modelling attacks

¨  Evaluation Criteria

¤ Metrics of complexity

¤ Resilience

¨  Theory versus practice: involving the humans

SafeNet'use'case'

Gemalto'use'case'

Nagravision'use'case'

Protected'SafeNet'use'case'

Protected'Gemalto'use'case'

Protected'Nagravision'use'case'

So#ware(Protec,on(Tool(Flow(

 in a nutshell

ISSISP 2014 - 30 July

5

SafeNet'use'case'

Gemalto'use'case'

Nagravision'use'case'

Protected'SafeNet'use'case'

Protected'Gemalto'use'case'

Protected'Nagravision'use'case'

ASPIRE'Framework'
'
'
'
'
'
'

Decision'Support'System'

So9ware'Protec:on'Tool'Chain'

Data$Hiding$ Algorithm$Hiding$ An01Tampering$ Remote$A6esta0on$ Renewability$

 Goals
6

2.	 So&ware	 protec.on	 techniques	 and	 integrated	 tool	 flow	

1.	 Protected	 mobile	 services	

server	 (trusted)	
	
	
	

	
	
	

	 	
wireless/mobile	 network	 	
(untrusted,	 MITM	 a.ack)	
	
	
	
	
	
	
	

mobile	 device	 (untrusted,	 MATE	 a.ack)	
	
	
	
	
	

client-‐side	 app	
	
	
	

server-‐side	 logic	

	
	
	

secure	 channel	

ASPIRE	 protected	 program	

remote	 verifier	

bytecode	 provider	
renewability	 protec.on	

engine	

hidden	 data	 renewability-‐suppor.ng	
virtual	 machine	 hidden	 algorithms	

an.-‐tampering	 	
mechanisms	 remote	 aEestator	

annotated	
source	 code	

ASPIRE	
source	
level	

protec9on	

data	 hiding	

algorithm	 hiding	

an.-‐tampering	

par.ally	 protected	 source	 code	

standard	 compiler	

object	 code	

ASPIRE	
binary	
level	

protec9on	

remote	 aEesta.on	

renewability	

data	 hiding	

algorithm	 hiding	

an.-‐tampering	 security	 libraries	

ASPIRE	 protected	 program	

client-‐side	 app	 server-‐side	 logic	

 Goals
7

2.	 So&ware	 protec.on	 techniques	 and	 integrated	 tool	 flow	

annotated	
source	 code	

ASPIRE	
source	
level	

protec9on	

data	 hiding	

algorithm	 hiding	

an.-‐tampering	

par.ally	 protected	 source	 code	

standard	 compiler	

object	 code	

ASPIRE	
binary	
level	

protec9on	

remote	 aEesta.on	

renewability	

data	 hiding	

algorithm	 hiding	

an.-‐tampering	 security	 libraries	

ASPIRE	 protected	 program	

client-‐side	 app	 server-‐side	 logic	

!input!
provided!by!
the!user!

pla2orm!descrip5on!

annota5ons!

assets!

ASPIRE'Decision'Support'System'

ASPIRE!Knowledge!Base!

tool!chain!
instruc5ons!

3.	 Decision	 Support	 System	

-‐	 aEack	 models	 &	 evalua.on	 methodology	
-‐	 security	 metrics	
-‐	 experiments	 on	 human	 subjects	 (students	 +	 researchers)	
-‐	 public	 challenge	

Protection againts MATE attacks

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

8

FPGA sampler oscilloscope

developer boards JTAG debugger

software analysis tools

screwdriver

Economics of MATE attacks

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

9

engineering exploitation

pr
ot

ec
tio

n

€

time

Economics of MATE attacks

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

10

€

time engineering exploitation

protection

diversity

1.  What is the most appropriate protection?
2.  What does a protection really buy us?

Economics of MATE attacks

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

11

?

Economics of MATE attacks

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

12

€

time engineering exploitation

protection

diversity

1.  What is the most appropriate protection?
2.  What does a protection really buy us?

The Goal – Questions – Metrics Approach (Basili et al)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

13

¨  Goal: What am I trying to achieve?
¨  Questions: What matters for achieving that?

¨  Metrics: How do we evaluate that?

3

1. Conceptual level (GOAL): A goal is defined for an object, for a variety of reasons,
with respect to various models of quality, from various points of view, relative to a
particular environment. Objects of measurement are

• Products: Artifacts, deliverables and documents that are produced during
the system life cycle; E.g., specifications, designs, programs, test suites.

• Processes: Software related activities normally associated with time; E.g.,
specifying, designing, testing, interviewing.

• Resources: Items used by processes in order to produce their outputs; E.g.,
personnel, hardware, software, office space.

2. Operational level (QUESTION): A set of questions is used to characterize the way
the assessment/achievement of a specific goal is going to be performed based on
some characterizing model. Questions try to characterize the object of
measurement (product, process, resource) with respect to a selected quality issue
and to determine its quality from the selected viewpoint.

3. Quantitative level (METRIC): A set of data is associated with every question in
order to answer it in a quantitative way. The data can be

• Objective: If they depend only on the object that is being measured and not
on the viewpoint from which they are taken; E.g., number of versions of a
document, staff hours spent on a task, size of a program.

• Subjective: If they depend on both the object that is being measured and
the viewpoint from which they are taken; E.g., readability of a text, level of
user satisfaction.

Figure 1

Goal 1

Question Question

Metric Metric Metric

Goal 2

Question Question Question

Metric Metric Metric

The Goal – Questions – Metrics Approach

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

14

ASPIRE project level

¨  Goal:
¤  Optimize protection process

¨  Questions:
¤  Which assets, attack steps, tools, protections, ...

¤  What is their potency, resilience, cost, value, ...

¨  Metrics:
¤  Measurable features of attacks, of protections and of

(un)protected software

The Goal – Questions – Metrics Approach

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

15

Your Individual Protection

¨  Goal:
¤  Protect specific software assets against specific attack(s)

¨  Questions:
¤  What determines effort, what is delta in effort?

¨  Metrics:
¤  Measurable features of attack steps and of (un)protected software

The Goal – Questions – Metrics Approach

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

16

¨  Advance warning

¤  established metrics were designed for other goals!
n  maintainability, testability, reliability, ...

¤  custom metrics are very specific
¤  specific vs generic goals?

3

1. Conceptual level (GOAL): A goal is defined for an object, for a variety of reasons,
with respect to various models of quality, from various points of view, relative to a
particular environment. Objects of measurement are

• Products: Artifacts, deliverables and documents that are produced during
the system life cycle; E.g., specifications, designs, programs, test suites.

• Processes: Software related activities normally associated with time; E.g.,
specifying, designing, testing, interviewing.

• Resources: Items used by processes in order to produce their outputs; E.g.,
personnel, hardware, software, office space.

2. Operational level (QUESTION): A set of questions is used to characterize the way
the assessment/achievement of a specific goal is going to be performed based on
some characterizing model. Questions try to characterize the object of
measurement (product, process, resource) with respect to a selected quality issue
and to determine its quality from the selected viewpoint.

3. Quantitative level (METRIC): A set of data is associated with every question in
order to answer it in a quantitative way. The data can be

• Objective: If they depend only on the object that is being measured and not
on the viewpoint from which they are taken; E.g., number of versions of a
document, staff hours spent on a task, size of a program.

• Subjective: If they depend on both the object that is being measured and
the viewpoint from which they are taken; E.g., readability of a text, level of
user satisfaction.

Figure 1

Goal 1

Question Question

Metric Metric Metric

Goal 2

Question Question Question

Metric Metric Metric

What is the most appropriate protection?

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

17

programs which were protected by software tamper resistant
transformations they proposed is a NP-complete problem. S.
Chow et al. [18] did a similar work.

B. Evaluation based on Attack

Researches in this group measure or proof the effectiveness
of protection techniques from the view of attack.

M. Ceccato et al. [9] proposed two manual experiments to
empirically measure the effectiveness of identifier renaming,
which is an instance of layout obfuscation. I. Sutherland et al.
[10] did a similar work, but focused on the reverse engineering
process for binary code. Both M. Ceccato and I. Sutherland
analyzed factors affecting attack process, for example,
attacker’s ability, but none specific metric was proposed.

As well as manually assessment, several anti-protection
technologies were used too. C. Linn and S. Debray[19] used
three different disassemblers to evaluate the code obfuscation
techniques they proposed, and S. Udupa[11] proposed
deobfuscation approaches to evaluate control flow flattening
obfuscation. J. Hamilton and S. Danicic [22] evaluated Java
static watermarking algorithms by obfuscating, which can be
treated as a technique for distortive attacks. Except theoretical
analysis, C. Wang et al. [17] also proved the effectiveness of
the transformation they proposed with a control-flow analysis
tool.

Technically, the evaluation approach in this paper belongs
to the second group, but acts differently: firstly, we believe all
software (a program which is made up of a sequence of code)
are the same to attackers, therefore, the approach we proposed
does not aim at a specific protection technology; secondly, we
propose a metric and a method for counting the metric; thirdly,
rather than doing manual attacks or developing specific attack
tools, we use an attack model to describe software attacks.
Note that H. Goto et al. [21] applied parse tree to evaluate the
difficulty of reading tamper-resistant software, however,
instead of attacks, they used the model to describe software.

III. ATTACK MODELING BASED ON PETRI NET

Attack model has been widely used in information security.
Most time it focuses on how to document attacks in a
structured and reusable form [12]. J. Steffan and M.
Schumacher [13] compared attack models with programming
guidelines, pattern languages, evaluation criteria, and
vulnerability databases, and proved that attack model to be the
most suitable way to support discovery and avoidance of
security vulnerabilities.

In this section, we make a list of the key information
included in one software attack process, define the attack
model based on Marked Petri Net, and instantiate Token in it.

A. Key Information in Software Attack

[13] listed six types of information contained in an informal
attack description. Based on this list, we made a new list for
software attack description. (Fig. 1, Table I).

Software
Attack

Goal

Method 1

Method 2

……

State 1

State 2

……

Technique

Sub-goal

Action

Precondition

Influence

Figure 1. Key information and their relationship

TABLE I. KEY INFORMATION IN ONE SOFTWARE ATTACK PROCESS

Name Meaning

Goal
Goal is the purpose of one software attack process, and
normally stands for getting or modifying assets
contained in software.

Method
A Method stands for one possible way to achieve Goal.
Usually, more than one Method will be included in one
software attack process.

State
The sequence of States stands for the detailed process
of software attack. Sometimes, State can be treated as
step in software attack process.

Technique
Technique stands for the attack technique which may be
used in the software attack process.

Sub-goal A Sub-goal stands for the goal of a attack technique.

Action
Action is the dynamic information in software attack,
and stands for performing an attack technique.

Precondition
Precondition is the condition of performing an attack
technique.

Influence
Influence is the consequence of performing an attack
technique.

“What’s the condition of attack?”, “If attack can be
executed or not?”, and “What will happen after the execution?”
are some of the essential questions in the effectiveness
evaluation of software protection. Thus, precondition, action,
and influence are important elements needing to be described.

One of the most popular attack models is Attack Tree [14].
It is a tree structure to describe the security of systems, with the
Goal as the root node and different Methods as leaf nodes.
State and Sub-goal are the other nodes in the tree, and there are
two kinds of interdependencies of States: AND node and OR
node [14]. But Attack Tree cannot describe Precondition,
Action, and Influence precisely.

In this paper, we prefer Petri Net (C. A. Petri, 1962), which
is a net-like graph and carries more information than Attack
Tree.

B. Software Attack Model based on Marked Petri Net

Petri Net describes four aspects of a system: states, events,
conditions, and the relationships among them. When condition
was satisfied, related event would occur; the occurrence of
event would change the states in the system and cause some
other conditions to be satisfied [15]. A basic Petri Net is a tuple
PN= (P, T, F) where:

 P is a finite set of states, represented by circles.

 T is a finite set of events, represented by rectangles.

 F⊆ {T×P}∪{P×T} , is a multiset of directed arcs.

 P∪T≠Ø, P∩T＝Ø.

Fig. 2 is an example of Petri Net. P={p0, p1, p2, p3, p4}is a
set of states, T={t0, t1, t2, t3, t4, t5} is a set of events, p0 is input
of t0, and p1 is output of t0; at the same time, t0 is the output of
p0, and the input of p1. Besides, p0’s next Place is p1.

0p 1p

2p

3p 4p
0t

1t

2t 5t

4t

Figure 2. Example of Petri Net

P, T, F are static properties of Petri Net, and fit well with
Goal, State, Technique, Sub-goal, and Method in Table I. If we
treat Fig. 2 as a process of software attack, then the key

1) model the attack paths 2) evaluate impact of protections

Attack Modelling: Attack Graphs (AND-OR Graphs)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

18

¨  relate attack goal, subgoals, (and protections)

Trace Data

Polymorphic
selfcheckers

Compare trace
with binary

Locate
checksums

Forge correct
checksum

Breaking
checksum

Debug App
Trace
Process <-> O.S.
interaction

AND

thwarts OR

Attack Modelling: Petri Nets (Wang et al, 2012)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

19

¨  Model attack paths
¤  places are reached subgoals (with properties)

¤  transitions are attack steps

¤  can model AND-OR
¤  can be simulated for protected and unprotected applications

programs which were protected by software tamper resistant
transformations they proposed is a NP-complete problem. S.
Chow et al. [18] did a similar work.

B. Evaluation based on Attack

Researches in this group measure or proof the effectiveness
of protection techniques from the view of attack.

M. Ceccato et al. [9] proposed two manual experiments to
empirically measure the effectiveness of identifier renaming,
which is an instance of layout obfuscation. I. Sutherland et al.
[10] did a similar work, but focused on the reverse engineering
process for binary code. Both M. Ceccato and I. Sutherland
analyzed factors affecting attack process, for example,
attacker’s ability, but none specific metric was proposed.

As well as manually assessment, several anti-protection
technologies were used too. C. Linn and S. Debray[19] used
three different disassemblers to evaluate the code obfuscation
techniques they proposed, and S. Udupa[11] proposed
deobfuscation approaches to evaluate control flow flattening
obfuscation. J. Hamilton and S. Danicic [22] evaluated Java
static watermarking algorithms by obfuscating, which can be
treated as a technique for distortive attacks. Except theoretical
analysis, C. Wang et al. [17] also proved the effectiveness of
the transformation they proposed with a control-flow analysis
tool.

Technically, the evaluation approach in this paper belongs
to the second group, but acts differently: firstly, we believe all
software (a program which is made up of a sequence of code)
are the same to attackers, therefore, the approach we proposed
does not aim at a specific protection technology; secondly, we
propose a metric and a method for counting the metric; thirdly,
rather than doing manual attacks or developing specific attack
tools, we use an attack model to describe software attacks.
Note that H. Goto et al. [21] applied parse tree to evaluate the
difficulty of reading tamper-resistant software, however,
instead of attacks, they used the model to describe software.

III. ATTACK MODELING BASED ON PETRI NET

Attack model has been widely used in information security.
Most time it focuses on how to document attacks in a
structured and reusable form [12]. J. Steffan and M.
Schumacher [13] compared attack models with programming
guidelines, pattern languages, evaluation criteria, and
vulnerability databases, and proved that attack model to be the
most suitable way to support discovery and avoidance of
security vulnerabilities.

In this section, we make a list of the key information
included in one software attack process, define the attack
model based on Marked Petri Net, and instantiate Token in it.

A. Key Information in Software Attack

[13] listed six types of information contained in an informal
attack description. Based on this list, we made a new list for
software attack description. (Fig. 1, Table I).

Software
Attack

Goal

Method 1

Method 2

……

State 1

State 2

……

Technique

Sub-goal

Action

Precondition

Influence

Figure 1. Key information and their relationship

TABLE I. KEY INFORMATION IN ONE SOFTWARE ATTACK PROCESS

Name Meaning

Goal
Goal is the purpose of one software attack process, and
normally stands for getting or modifying assets
contained in software.

Method
A Method stands for one possible way to achieve Goal.
Usually, more than one Method will be included in one
software attack process.

State
The sequence of States stands for the detailed process
of software attack. Sometimes, State can be treated as
step in software attack process.

Technique
Technique stands for the attack technique which may be
used in the software attack process.

Sub-goal A Sub-goal stands for the goal of a attack technique.

Action
Action is the dynamic information in software attack,
and stands for performing an attack technique.

Precondition
Precondition is the condition of performing an attack
technique.

Influence
Influence is the consequence of performing an attack
technique.

“What’s the condition of attack?”, “If attack can be
executed or not?”, and “What will happen after the execution?”
are some of the essential questions in the effectiveness
evaluation of software protection. Thus, precondition, action,
and influence are important elements needing to be described.

One of the most popular attack models is Attack Tree [14].
It is a tree structure to describe the security of systems, with the
Goal as the root node and different Methods as leaf nodes.
State and Sub-goal are the other nodes in the tree, and there are
two kinds of interdependencies of States: AND node and OR
node [14]. But Attack Tree cannot describe Precondition,
Action, and Influence precisely.

In this paper, we prefer Petri Net (C. A. Petri, 1962), which
is a net-like graph and carries more information than Attack
Tree.

B. Software Attack Model based on Marked Petri Net

Petri Net describes four aspects of a system: states, events,
conditions, and the relationships among them. When condition
was satisfied, related event would occur; the occurrence of
event would change the states in the system and cause some
other conditions to be satisfied [15]. A basic Petri Net is a tuple
PN= (P, T, F) where:

 P is a finite set of states, represented by circles.

 T is a finite set of events, represented by rectangles.

 F⊆ {T×P}∪{P×T} , is a multiset of directed arcs.

 P∪T≠Ø, P∩T＝Ø.

Fig. 2 is an example of Petri Net. P={p0, p1, p2, p3, p4}is a
set of states, T={t0, t1, t2, t3, t4, t5} is a set of events, p0 is input
of t0, and p1 is output of t0; at the same time, t0 is the output of
p0, and the input of p1. Besides, p0’s next Place is p1.

0p 1p

2p

3p 4p
0t

1t

2t 5t

4t

Figure 2. Example of Petri Net

P, T, F are static properties of Petri Net, and fit well with
Goal, State, Technique, Sub-goal, and Method in Table I. If we
treat Fig. 2 as a process of software attack, then the key

Attack Modelling: Petri Nets

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

20

¨  What is outcome of transition?
¤  Identification of feature or asset?
¤  Simplified program (representation)
¤  Tampered program
¤  Reduced search space
¤  Analysis result

¨  What determines effort?
¨  What code fragments are relevant?

¨  Generic attack steps vs. concrete attack steps?

¨  How to aggregate information?
¤  Effort
¤  Probability of success

¨  How to build the Petri Net? (backward reasoning & knowledge base)

programs which were protected by software tamper resistant
transformations they proposed is a NP-complete problem. S.
Chow et al. [18] did a similar work.

B. Evaluation based on Attack

Researches in this group measure or proof the effectiveness
of protection techniques from the view of attack.

M. Ceccato et al. [9] proposed two manual experiments to
empirically measure the effectiveness of identifier renaming,
which is an instance of layout obfuscation. I. Sutherland et al.
[10] did a similar work, but focused on the reverse engineering
process for binary code. Both M. Ceccato and I. Sutherland
analyzed factors affecting attack process, for example,
attacker’s ability, but none specific metric was proposed.

As well as manually assessment, several anti-protection
technologies were used too. C. Linn and S. Debray[19] used
three different disassemblers to evaluate the code obfuscation
techniques they proposed, and S. Udupa[11] proposed
deobfuscation approaches to evaluate control flow flattening
obfuscation. J. Hamilton and S. Danicic [22] evaluated Java
static watermarking algorithms by obfuscating, which can be
treated as a technique for distortive attacks. Except theoretical
analysis, C. Wang et al. [17] also proved the effectiveness of
the transformation they proposed with a control-flow analysis
tool.

Technically, the evaluation approach in this paper belongs
to the second group, but acts differently: firstly, we believe all
software (a program which is made up of a sequence of code)
are the same to attackers, therefore, the approach we proposed
does not aim at a specific protection technology; secondly, we
propose a metric and a method for counting the metric; thirdly,
rather than doing manual attacks or developing specific attack
tools, we use an attack model to describe software attacks.
Note that H. Goto et al. [21] applied parse tree to evaluate the
difficulty of reading tamper-resistant software, however,
instead of attacks, they used the model to describe software.

III. ATTACK MODELING BASED ON PETRI NET

Attack model has been widely used in information security.
Most time it focuses on how to document attacks in a
structured and reusable form [12]. J. Steffan and M.
Schumacher [13] compared attack models with programming
guidelines, pattern languages, evaluation criteria, and
vulnerability databases, and proved that attack model to be the
most suitable way to support discovery and avoidance of
security vulnerabilities.

In this section, we make a list of the key information
included in one software attack process, define the attack
model based on Marked Petri Net, and instantiate Token in it.

A. Key Information in Software Attack

[13] listed six types of information contained in an informal
attack description. Based on this list, we made a new list for
software attack description. (Fig. 1, Table I).

Software
Attack

Goal

Method 1

Method 2

……

State 1

State 2

……

Technique

Sub-goal

Action

Precondition

Influence

Figure 1. Key information and their relationship

TABLE I. KEY INFORMATION IN ONE SOFTWARE ATTACK PROCESS

Name Meaning

Goal
Goal is the purpose of one software attack process, and
normally stands for getting or modifying assets
contained in software.

Method
A Method stands for one possible way to achieve Goal.
Usually, more than one Method will be included in one
software attack process.

State
The sequence of States stands for the detailed process
of software attack. Sometimes, State can be treated as
step in software attack process.

Technique
Technique stands for the attack technique which may be
used in the software attack process.

Sub-goal A Sub-goal stands for the goal of a attack technique.

Action
Action is the dynamic information in software attack,
and stands for performing an attack technique.

Precondition
Precondition is the condition of performing an attack
technique.

Influence
Influence is the consequence of performing an attack
technique.

“What’s the condition of attack?”, “If attack can be
executed or not?”, and “What will happen after the execution?”
are some of the essential questions in the effectiveness
evaluation of software protection. Thus, precondition, action,
and influence are important elements needing to be described.

One of the most popular attack models is Attack Tree [14].
It is a tree structure to describe the security of systems, with the
Goal as the root node and different Methods as leaf nodes.
State and Sub-goal are the other nodes in the tree, and there are
two kinds of interdependencies of States: AND node and OR
node [14]. But Attack Tree cannot describe Precondition,
Action, and Influence precisely.

In this paper, we prefer Petri Net (C. A. Petri, 1962), which
is a net-like graph and carries more information than Attack
Tree.

B. Software Attack Model based on Marked Petri Net

Petri Net describes four aspects of a system: states, events,
conditions, and the relationships among them. When condition
was satisfied, related event would occur; the occurrence of
event would change the states in the system and cause some
other conditions to be satisfied [15]. A basic Petri Net is a tuple
PN= (P, T, F) where:

 P is a finite set of states, represented by circles.

 T is a finite set of events, represented by rectangles.

 F⊆ {T×P}∪{P×T} , is a multiset of directed arcs.

 P∪T≠Ø, P∩T＝Ø.

Fig. 2 is an example of Petri Net. P={p0, p1, p2, p3, p4}is a
set of states, T={t0, t1, t2, t3, t4, t5} is a set of events, p0 is input
of t0, and p1 is output of t0; at the same time, t0 is the output of
p0, and the input of p1. Besides, p0’s next Place is p1.

0p 1p

2p

3p 4p
0t

1t

2t 5t

4t

Figure 2. Example of Petri Net

P, T, F are static properties of Petri Net, and fit well with
Goal, State, Technique, Sub-goal, and Method in Table I. If we
treat Fig. 2 as a process of software attack, then the key

Backward Reasoning

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

21

¨  Start from
¤ assets & threats
¤ application features (attack paths)
¤ code features (protections, effort)
¤ knowledge base on

n attack steps
n  methods
n  tools & techniques
n  preconditions, postconditions

n attack paths

Assets & Threats (B. Wyseur)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

22
Asset category

Security
Requirements Examples of threats

Private data
(keys, credentials, tokens,
private info)

Confidentiality
Privacy
Integrity

Impersonation, illegitimate authorization
Leaking sensitive data
Forging licenses

Public data
(keys, service info)

Integrity Forging licenses

Unique data
(tokens, keys, used IDs)

Confidentiality
Integrity

Impersonation
Service disruption, illegitimate access

Global data (crypto & app
bootstrap keys)

Confidentiality
Integrity

Build emulators
Circumvent authentication verification

Traceable data/code
(Watermarks, finger-prints,
traceable keys)

Non-repudiation Make identification impossible

Code (algorithms, protocols,
security libs)

Confidentiality Reverse engineering

Application execution
(license checks & limitations,
authentication & integrity
verification, protocols)

Execution
correctness Integrity

Circumvent security features (DRM)
Out-of-context use, violating license terms

Attack Attributes (B. Wyseur)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

23

¨  Identification: quantifies the effort to break an
 application once

¨  Exploitation: expresses the possibility that the
 attack can be repeated and scaled

Assets,Threats, and Attacks

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

24
Asset category

Security
Requirements Examples of threats

Private data
(keys, credentials, tokens,
private info)

Confidentiality
Privacy
Integrity

Impersonation, illegitimate authorization
Leaking sensitive data
Forging licenses

Public data
(keys, service info)

Integrity Forging licenses

Unique data
(tokens, keys, used IDs)

Confidentiality
Integrity

Impersonation
Service disruption, illegitimate access

Global data (crypto & app
bootstrap keys)

Confidentiality
Integrity

Build emulators
Circumvent authentication verification

Traceable data/code
(Watermarks, finger-prints,
traceable keys)

Non-repudiation Make identification impossible

Code (algorithms, protocols,
security libs)

Confidentiality Reverse engineering

Application execution
(license checks & limitations,
authentication & integrity
verification, protocols)

Execution
correctness Integrity

Circumvent security features (DRM)
Out-of-context use, violating license terms

Attack (Step) Classification (B. Wyseur)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

25

¨  static attacks
¤  structural code and data recovery (e.g., disassembly, CFG reconstruction)

¤  structural matching of binaries

n  against known code (e.g., library identification)
n  of related binaries (e.g., diffing)

¤  tampering (e.g., code editing)

¨  dynamic attacks
¤  attacks on communication channels (e.g., sniffing, spoofing, replay attacks)

¤  fuzzing

¤  debugging (e.g., software or hardware debugger, emulation)

¤  structure and data analysis (e.g., unpacking, taint analysis)

¤  tampering (e.g., code injection, custom emulation, custom OS)

¨  hybrid attacks (e.g., concolic execution, static analysis on dynamic graphs)

Example attack: One-Time Password Generator (P. Falcarin)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

26

¨  Step 1: get working provisioning & OTP generation

identify PIN code
static or dynamic

bypass PIN code
tampering

steal PIN
code injection

Example attack: One-Time Password generator (P. Falcarin)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

27

¨  Step 2: retrieve seed of OTP generation
¤  during OTP generation

isolate OTP
generation code

debugging

isolate XOR chain
structural matching observe seed

debugging

Example attack: One-Time Password generator (P. Falcarin)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

28

¨  Step 2: retrieve seed of OTP generation
¤  alternatively, during provisioning

dummy

preparation:
fake server (T4)

tampering for multiple runs (T5)

T7: identify AES code
dynamic analysis on

untampered, reinstalled app

identify AES code
dynamic analysis

debugging

observe seed
debugging

Overview

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

29

¨  ASPIRE in a nutshell

¨  Modelling attacks

¨  Evaluation Criteria

¤ Metrics of complexity

¤ Resilience

¨  Theory versus practice

Cyclomatic number (McCabe, 1976)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

30

¨  control flow complexity

 V(cfg) = #edges − #nodes + 2 * #connected components

¨  single components: V(cfg) = #edges − #nodes + 2

¨  related to the number of linearly independent paths

¨  related to number of tests needed to invoke all paths
MC CABE: A COMPLEXITY MEASURE

Theorem 1 is applied to G in the following way. Imagine that
the exit node (f) branches back to the entry node (a). The
control graph G is now strongly connected (there is a path
joining any pair of arbitrary distinct vertices) so Theorem 1
applies. Therefore, the maximum number of linearly indepen-
dent circuits in G is 9-6+2. For example, one could choose
the following 5 independent circuits in G:

Bi: (abefa), (beb), (abea), (acfa), (adcfa).

It follows that Bi forms a basis for the set of all circuits in G
and any path through G can be expressed as a linear combina-
tion of circuits from Bi. For instance, the path (abeabebebef)
is expressable as (abea) +2(beb) + (abefa). To see how this
works its necessary to number the edges on G as in

10,

Now for

follows:

(abefa)
(beb)
(abea)
(acfa)
(adcfa)

each member of the basis Bi associate a vector as

1 23456
1 0 0 1 0 0
000 1 1 0
1 00 1 00
0 1 0 0 0 1
00 1 00 1

7 8 9 10
0 1 0 1
000 0
0 00 0

000 1
1 00 1

The path (abea(be)3 fa) corresponds to the vector 200420011 1
and the vector addition of (abefa), 2(beb), and (abea) yields
the desired result.
In using Theorem 1 one can choose a basis set of circuits

that correspond to paths through the program. The set B2 is a

basis of program paths.

B2: (abef), (abeabef), (abebef), (acf), (adcf),

Linear combination of paths in B2 will also generate any path.
For example,

(abea(be)3f) = 2(abebef) - (abef)

and

(a(be)2abef) = (a(be)2f) + (abeabef) - (abef).

The overall strategy will be to measure the complexity of a

program by computing the number of linearly independent
paths v(G), control the "size" of programs by setting an upper
limit to v(G) (instead of using just physical size), and use the
cyclomatic complexity as the basis for a testing methodology.
A few simple examples may help to illustrate. Below are the

control graphs of the usual constructs used in structured pro-
grammning and their respective complexities.

CONTROL STRUCTURE

SEQUENCE

IF THEN ELSE

WHILE

UNTIL

CYCLOMATIC COMPLEXITY
*v = e - n + 2p

v = 1 - 2 + 2 = 1

v = 4 - 4 + 2 = 2

v = 3 - 3 + 2 = 2

v = 3 - 3 + 2 = 2

Notice that the sequence of an arbitrary number of nodes al-
ways has unit complexity and that cyclomatic complexity
conforms to our intuitive notion of "minimum number of
paths." Several properties of cyclomatic complexity are stated
below:

1) v(G)>1.
2) v(G) is the maximum number of linearly independent

paths in G; it is the size of a basis set.
3) Inserting or deleting functional statements to G does not

affect v(G).
4) G has only one path if and only if v(G) = 1.
5) Inserting a new edge in G increases v(G) by unity.
6) v(G) depends only on the decision structure of G.

III. WORKING EXPERIENCE WITH THE
COMPLEXITY MEASURE

In this section a system which automates the complexity
measure will be described. The control structures of several
PDP-10 Fortran programs and their corresponding complexity
measures will be illustrated.
To aid the author's research into control structure complex-

ity a tool was built to run on a PDP-10 that analyzes the
structure of Fortran programs. The tool, FLOW, was written
in APL to input the source code from Fortran files on disk.
FLOW would then break a Fortran job into distinct subrou-
tines and analyze the control structure of each subroutine. It
does this by breaking the Fortran subroutines into blocks that
are delimited by statements that affect control flow: IF, GOTO,
referenced LABELS, DO, etc. The flow between the blocks is
then represented in an n by n matrix (where n is the number
of blocks), having a 1 in the i-jth position if block i can branch
to block j in 1 step. FLOW also produces the "blocked"' listing
of the original program, computes the cyclomatic complexity,
and produces a reachability matrix (there is a 1 in the i-jth
position if block i can branch to block i in any number of
steps). An example of FLOW'S output is shown below.

IMPLICIT INTEGER(A-Z)
COMMON / ALLOC / MEM(2048),LM,LU,LV,LW,LX,LY,LQ,LWEX,

NCHARS,NWORDS
DIMENSION MEMORY(2048),INHEAD((4),ITRANS(128)
TYPE 1

1 FORMATCDOMOLKI STRUCTURE FILE NAME?" $)
NAMDML= S
ACCEPT 2,NAMDML

2 FORMAT(A5)
CALL ALCHAN (ICHAN)
CALL IFILE(ICHAN,'DSK',NAIDML,'AT',Oo0)
CALL READB'ICHAN,INHEAD,1?2,NREAD,$990,$990)
NCHARS=INHEA1)(1)
NWORDS =INHEAD(2)

*The role of the variable p will be explained in Section IV. For these
examples assume p = 1.

309

Cyclomatic number (McCabe, 1976)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

31

310 IEEE TRANSACTIONS ON SOFTWARE EN(

NTCT= (NCHARS+ 7) "NWORDS
LTOT= (NCHARS+ 5) *NWORDS

******:* BLOCK NO. 1 ********************
IF(LTOT,GT,2048) GO TO 900

****** BLOCK NO. 2 ***************************
CALL READB(ICHANT,EMORY,LTOT,NREAD,$99 0,$9S0)
.LIN=O
LU= NCHARS *NWORDS+ LM
LV=NWORDS+ LU
LW=NWORDS+ LV
LX=NWORDS+ LW
LY-NWORDS+ LX
LQ=NWORDS+ LY
LWEX=NWORDS+LQ

BLOCK NO. 3
700 I=,NWORD0************************** 2 V(G) =2

MEMORY(LWEX+I)=(MEMORY(LW+I),OR,(MEMORY(LW+I)*2))
700 CONTINUE

******** BLOCK NO. 4 *************************
CALL EXTEXT(ITRANS)
STOP

********BLOCK NO. 5 ***************************
900 TYPE 3,LTOT
3 FORNAT(STRUCTURE TOO LARGE FOR CORE; ',18,' WORDS'

t SEE COOPER /)
STOP

********BLOCK NO. 6 ************************** 2
990 TYPE $
4 FORMAT(' READ ERROR, OR STRUCTURE FILE- ERROR; J

' SEE COOPER I)
STOP
END

V(G)=3

CONNECTIVITY MATRIX

1 2 3 4 5 6 7

1 011 0 0 0 0

2 O O O O O 1 O0
32 O 1 0 0 0

4 0 0 0 1 1 0 0

5 0 0 0 0 01
6 0 0 0 0 0 0 1

7 0 000000 1 6 5

.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL CYCLOMATIC COMPLEXITY = V(G) =

CLOSURE OF CONNECTIVITY MATRIX

1 2 3 4 5 6 7

1 0 1 1 1 1 1 1

2 0 0 0 0 0 1 1

3 0 0 0 1 1 1 1

4 0 0 0 1 1 1 1 7

5 0 0 0 0 0 1 1

6 0 0 0 0 0 0 1

7 0000000 8

,END

V(G)=6

At this point a few of the control graphs that were found in
live programs will be presented. The actual control graphs
from FLOW appear on a DATA DISK CRT but they are hand
drawn here for purposes of illustration. The graphs are pre-
sented in increasing order of complexity in order to suggest
the correlation between the complexity numbers and our in-
tuitive notion of control flow complexity.

GINEERING, DECEMBER 1976

310 IEEE TRANSACTIONS ON SOFTWARE EN(

NTCT= (NCHARS+ 7) "NWORDS
LTOT= (NCHARS+ 5) *NWORDS

******:* BLOCK NO. 1 ********************
IF(LTOT,GT,2048) GO TO 900

****** BLOCK NO. 2 ***************************
CALL READB(ICHANT,EMORY,LTOT,NREAD,$99 0,$9S0)
.LIN=O
LU= NCHARS *NWORDS+ LM
LV=NWORDS+ LU
LW=NWORDS+ LV
LX=NWORDS+ LW
LY-NWORDS+ LX
LQ=NWORDS+ LY
LWEX=NWORDS+LQ

BLOCK NO. 3
700 I=,NWORD0************************** 2 V(G) =2

MEMORY(LWEX+I)=(MEMORY(LW+I),OR,(MEMORY(LW+I)*2))
700 CONTINUE

******** BLOCK NO. 4 *************************
CALL EXTEXT(ITRANS)
STOP

********BLOCK NO. 5 ***************************
900 TYPE 3,LTOT
3 FORNAT(STRUCTURE TOO LARGE FOR CORE; ',18,' WORDS'

t SEE COOPER /)
STOP

********BLOCK NO. 6 ************************** 2
990 TYPE $
4 FORMAT(' READ ERROR, OR STRUCTURE FILE- ERROR; J

' SEE COOPER I)
STOP
END

V(G)=3

CONNECTIVITY MATRIX

1 2 3 4 5 6 7

1 011 0 0 0 0

2 O O O O O 1 O0
32 O 1 0 0 0

4 0 0 0 1 1 0 0

5 0 0 0 0 01
6 0 0 0 0 0 0 1

7 0 000000 1 6 5

.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL CYCLOMATIC COMPLEXITY = V(G) =

CLOSURE OF CONNECTIVITY MATRIX

1 2 3 4 5 6 7

1 0 1 1 1 1 1 1

2 0 0 0 0 0 1 1

3 0 0 0 1 1 1 1

4 0 0 0 1 1 1 1 7

5 0 0 0 0 0 1 1

6 0 0 0 0 0 0 1

7 0000000 8

,END

V(G)=6

At this point a few of the control graphs that were found in
live programs will be presented. The actual control graphs
from FLOW appear on a DATA DISK CRT but they are hand
drawn here for purposes of illustration. The graphs are pre-
sented in increasing order of complexity in order to suggest
the correlation between the complexity numbers and our in-
tuitive notion of control flow complexity.

GINEERING, DECEMBER 1976

310 IEEE TRANSACTIONS ON SOFTWARE EN(

NTCT= (NCHARS+ 7) "NWORDS
LTOT= (NCHARS+ 5) *NWORDS

******:* BLOCK NO. 1 ********************
IF(LTOT,GT,2048) GO TO 900

****** BLOCK NO. 2 ***************************
CALL READB(ICHANT,EMORY,LTOT,NREAD,$99 0,$9S0)
.LIN=O
LU= NCHARS *NWORDS+ LM
LV=NWORDS+ LU
LW=NWORDS+ LV
LX=NWORDS+ LW
LY-NWORDS+ LX
LQ=NWORDS+ LY
LWEX=NWORDS+LQ

BLOCK NO. 3
700 I=,NWORD0************************** 2 V(G) =2

MEMORY(LWEX+I)=(MEMORY(LW+I),OR,(MEMORY(LW+I)*2))
700 CONTINUE

******** BLOCK NO. 4 *************************
CALL EXTEXT(ITRANS)
STOP

********BLOCK NO. 5 ***************************
900 TYPE 3,LTOT
3 FORNAT(STRUCTURE TOO LARGE FOR CORE; ',18,' WORDS'

t SEE COOPER /)
STOP

********BLOCK NO. 6 ************************** 2
990 TYPE $
4 FORMAT(' READ ERROR, OR STRUCTURE FILE- ERROR; J

' SEE COOPER I)
STOP
END

V(G)=3

CONNECTIVITY MATRIX

1 2 3 4 5 6 7

1 011 0 0 0 0

2 O O O O O 1 O0
32 O 1 0 0 0

4 0 0 0 1 1 0 0

5 0 0 0 0 01
6 0 0 0 0 0 0 1

7 0 000000 1 6 5

.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL CYCLOMATIC COMPLEXITY = V(G) =

CLOSURE OF CONNECTIVITY MATRIX

1 2 3 4 5 6 7

1 0 1 1 1 1 1 1

2 0 0 0 0 0 1 1

3 0 0 0 1 1 1 1

4 0 0 0 1 1 1 1 7

5 0 0 0 0 0 1 1

6 0 0 0 0 0 0 1

7 0000000 8

,END

V(G)=6

At this point a few of the control graphs that were found in
live programs will be presented. The actual control graphs
from FLOW appear on a DATA DISK CRT but they are hand
drawn here for purposes of illustration. The graphs are pre-
sented in increasing order of complexity in order to suggest
the correlation between the complexity numbers and our in-
tuitive notion of control flow complexity.

GINEERING, DECEMBER 1976

310 IEEE TRANSACTIONS ON SOFTWARE EN(

NTCT= (NCHARS+ 7) "NWORDS
LTOT= (NCHARS+ 5) *NWORDS

******:* BLOCK NO. 1 ********************
IF(LTOT,GT,2048) GO TO 900

****** BLOCK NO. 2 ***************************
CALL READB(ICHANT,EMORY,LTOT,NREAD,$99 0,$9S0)
.LIN=O
LU= NCHARS *NWORDS+ LM
LV=NWORDS+ LU
LW=NWORDS+ LV
LX=NWORDS+ LW
LY-NWORDS+ LX
LQ=NWORDS+ LY
LWEX=NWORDS+LQ

BLOCK NO. 3
700 I=,NWORD0************************** 2 V(G) =2

MEMORY(LWEX+I)=(MEMORY(LW+I),OR,(MEMORY(LW+I)*2))
700 CONTINUE

******** BLOCK NO. 4 *************************
CALL EXTEXT(ITRANS)
STOP

********BLOCK NO. 5 ***************************
900 TYPE 3,LTOT
3 FORNAT(STRUCTURE TOO LARGE FOR CORE; ',18,' WORDS'

t SEE COOPER /)
STOP

********BLOCK NO. 6 ************************** 2
990 TYPE $
4 FORMAT(' READ ERROR, OR STRUCTURE FILE- ERROR; J

' SEE COOPER I)
STOP
END

V(G)=3

CONNECTIVITY MATRIX

1 2 3 4 5 6 7

1 011 0 0 0 0

2 O O O O O 1 O0
32 O 1 0 0 0

4 0 0 0 1 1 0 0

5 0 0 0 0 01
6 0 0 0 0 0 0 1

7 0 000000 1 6 5

.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL.DL CYCLOMATIC COMPLEXITY = V(G) =

CLOSURE OF CONNECTIVITY MATRIX

1 2 3 4 5 6 7

1 0 1 1 1 1 1 1

2 0 0 0 0 0 1 1

3 0 0 0 1 1 1 1

4 0 0 0 1 1 1 1 7

5 0 0 0 0 0 1 1

6 0 0 0 0 0 0 1

7 0000000 8

,END

V(G)=6

At this point a few of the control graphs that were found in
live programs will be presented. The actual control graphs
from FLOW appear on a DATA DISK CRT but they are hand
drawn here for purposes of illustration. The graphs are pre-
sented in increasing order of complexity in order to suggest
the correlation between the complexity numbers and our in-
tuitive notion of control flow complexity.

GINEERING, DECEMBER 1976

MC CABE: A COMPLEXITY MEASURE 311

Cyclomatic number (McCabe, 1976)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

32

¨  Quite some problems:
¤  no recognition of

familiar structures

¤  what about obfuscated
unstructured CFGs?

¤  what to do when
functions are not
identified well?

¤  no recognition of data
dependencies

¤  what about object-
oriented code?

¤  what about conditional
statements?

¤  combinatoric issues

MC CABE: A COMPLEXITY MEASURE 311

Combinatorics – cognitive problem
 (Auprasert and Limpiyakorn, 2008)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

33

¨  V(cfg) = 20 - 13 + 2 = 9

¨  But number of paths is 5 * 5 = 25

¨  Do these switch statements
depend on each other?

¨  Extension by Stetters (1984):
F(cfg) computed on ~ PDG

Knot Count (Woodward et al, 1979)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

34

¨  Try to measure the "unstructuredness":

 knots = #edge crossings in drawn CFG

¨  Depends on ordering of (Fortran) code

¨  Complementary to cyclomatic number

Knot Count (Woodward et al, 1979)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

35

WOODWARD et al.: CONTROL FLOW COMPLEXITY

GOTO (1,2,3), M
1 CONTINUE

ol T -GOTO 4
- 2 CONTINUE

G-OTO 4
3 CONTINUE

14 CONTINUE

Fig. 11. An example of a 3-way case construct in Fortran having 3
knots.

program and it can be stated that a structured program will
have zero essential knots. This is analogous to McCabe's calcu-
lation of the cyclomatic complexity of the reduced graph
V(G') which equals his essential complexity EV(G) provided
each proper subgraph with unique entry and unique exit is one
of the structured programming primitives. Note that EV(G) =
V(G') = 1 for a structured program.

V. EXPERIENCE

We have an automatic tool for obtaining the number of
knots in Fortran programs using a list ofjumps in terms of line
numbers. In a survey of some 330 Fortran subroutines from a
numerical algorithms library it was found that one third of the
routines had zero knots, another third had less than 10 knots,
and only 50 routines had more than 20 knots.
We also have a tool for determining the knots interval for

the directed graph using the incidence matrix representation.
It also performs the previously described reduction process
and enables us to determine the cyclomatic complexity and
the essential knots. In Fig. 12 we give a list of various metrics
mentioned in this paper for a sample of 26 Fortran subroutines
from a numerical algorithms library. From this small random
sample it would appear that V(G) increases almost linearly
with the size of a program. In fact the correlation coefficient
between V(G) and the number of lines was 0.98 and was the
highest correlation encountered between any pair of columns
in Fig. 12. It could be argued that this is a desirable feature of
a complexity metric especially since size in source statements
has been shown in a study by TRW [14] to be the metric that
correlated best with the occurrence of actual software errors.
We note that only one routine (Routine Q) with more than 50
lines has V(G) less than 10, the upper limit on cyclomatic com-
plexity for a single module suggested by McCabe.
However we feel that the knot count provides a much clearer

indication of program readability. From Fig. 12 it is possible
to see that the cyclomatic complexity V(G) is usually greater
than the number of knots. Routines R and V are significant

Routine Lines f s Ifs V(l) Knots EV(G) Essential
Knots

A 3 0 0 1 0 1 0:0
a 7 1 1 3 0 1 0:0
C 8 0 1 2 0 1 0:0
D 16 1 1 3 0 1 0:0
E 17 2 3 7 0 1 0:0
F 21 2 5 5 3 5 2:3
G 21 1 1 7 0 1 0:0
H 24 2 3 8 0 1 0:0
I 39 0 0 6 0 1 0:0
J 43 7 9 17 0 1 0:0
K 47 4 10 10 11 7 6:7
L 50 11 11 14 9 7 5:6
M 51 4 4 13 1 1 0:0
N 55 9 7 13 2 4 0:2
0 58 6 8 19 3 8 1:3
P 59 5 15 17 12 14 10:11
n 68 7 2 7 2 3 2:2
R 69 4 18 19 27 8 15:16
S 74 7 7 22 1 1 0:0
T 77 12 12 18 7 9 3:6
U 93 13 13 22 5 6 2:4
V 95 11 19 27 83 25 79:83
w 112 15 14 24 15 5 3:4
X 210 52 42 62 30 14 4:6
Y 249 23 32 62 42 22 30:31
Z 310 59 54 85 33 15 13:17

Fig. 12. Table of metrics for a sample of 26 Fortran subroutines from
a numerical algorithms library.

Edges * 3n+2.

nnested Nodes- 2n+3.
loops

V(G) = (3n+2)-(2n+3)42

n+ a H)n+1.
Knots: 0

Fig. 13. An example with V(G) increasing linearly as a function of n,
but having zero knots.

exceptions to this. The high knot counts for these routines
confirm not only the visual impression of high complexity but
also the difficulty actually encountered in translating them to
other languages (viz., Algol 60 and Algol 68). In the correla-
tion analysis it was found that the correlation coefficient be-
tween V(G) and the number of knots was 0.60. The lowest
correlation was between the essential knots and the number of
gotos with a coefficient of 0.21.
To highlight the differences between V(G) and the knot

count consider a program of n nested loops as represented by
the directed graph of Fig. 13. Since this has (3n+2) edges and
(2n+3) nodes the cyclomatic complexity is given by:

V(G) = (3n+2) - (2n+3) + 2= n+l.

However it has zero knots. If now any extra exits are inserted
from the center of the nested loops at node n+2, we start to
obtain a nonzero knot count. Indeed if we consider n exits
from the center of the nest, as represented by Fig. 14, we find

49

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 1, JANUARY 1979

Edges- 5n+2 .

nested Nodes - 3n+3.
loops

n OOS,15 V(G) = (5n+2)-(3n.3).2

0,2;) =2=n1.

nl,X Knots - n2

\ eneits

Fig. 14. An example with V(G) increasing linearly as a function of n,
but with the number of knots increasing as a function of n2.

that V(G) increases linearly as a function of n but the number
of knots increases as a function of n2.

It is this feature of knots in penalizing those areas of code
for which the control flow is highly interwoven which we have
found useful. Furthermore, if the knots remain, even after re-
duction of structured programming constructs to single nodes,
then this would appear to indicate a code segment in need
of reevaluation.

ACKNOWLEDGMENT
The authors would like to acknowledge the NAG (Numerical

Algorithms Group) organization for permission to analyze their
library.

REFERENCES
[1] S. J. Amster, E. J. Davis, B. N. Dickman, and J. P. Kuoni, "An ex-

periment in automatic quality evaluation of software," in Proc.
Symp. Computer Software Eng., MRI Symposia Series, vol.
XXIV, J. Fox, Ed., Polytechnic Institute of New York, Apr.
1976, pp. 171-197.

[2] B. W. Boehm, J. R. Brown, and M. Lipow, "Quantitative evalua-
tion of software quality," in Proc. 2nd Int. Conf Software Eng.,
San Francisco, Oct. 1976, pp. 592-605.

[3] T. B. Boffey, "The linearisation of flow charts," BIT, vol. 15,
pp. 341-350, 1975.

[4] J. R. Brown and E. C. Nelson, "Functional programming," Final
Tech. Rep. on contract F30602-76-C-0315 by TRW Defense and
Space Systems Group for Rome Air Development Center, July
15, 1977.

[5] E. W. Dijkstra, "Goto statement considered harmful," Commun.
Ass. Comput.Mach.,vol. 11,pp. 147-148, 1968.

[6] L. Farr and H. J. Zagorski, "Quantitative analysis of programming
cost factors: A progress report," in "Economics of automatic
data processing" in 1965 ICC Symp. Proc., Rome, A. B. Frielink,
Ed. Amsterdam, The Netherlands: North-Holland, 1965.

[7] L. D. Fosdick, "BRNANL-A FORTRAN program to identify
basic blocks in FORTRAN programs," Tech. Rep. CU-CS-040-74,
Dep. Comput. Sci., Univ. Colorado, Boulder, Mar. 1974.

[8] T. Gilb, Software Metrics. Cambridge, MA: Winthrop, 1977.
[9] M. A. Hennell and D. Hedley, "An experimental testbed for nu-

merical software: I I Algol 68," Comput. J., to be published.
[10] T. J. McCabe, "A complexity measure," IEEE Trans. Software

Eng., vol. SE-2, pp. 308-320, Dec. 1976.

[11] G. J. Myers, "An extension to the cyclomatic measure of pro-
gram complexity," Sigplan Notices, vol. 12, pp. 61-64, Oct.
1977.

[12] P. M. Neely, "The new programming discipline," Software-
Practice and Experience, vol. 6, pp. 7-27, 1976.

[13] C. V. Ramamoorthy and S. F. Ho, "Testing large software with
automated software evaluation systems," in Proc. 1975 Int. Conf.
Reliable Software, Los Angeles, Apr. 1975, pp. 382-394.

[14] T. A. Thayer, "Understanding software through empirical re-
liability analysis," in 1975 Spring Joint Comput. Conf., AFIPS
Conf Proc., vol. 44. Montvale, NJ: AFIPS Press, May 1975,
pp. 335-341.

[15] M. R. Woodward, M. A. Hennell, and D. Hedley, "The analysis of
control flow structure in computer programs," in Proc. Liverpool
Univ. Conf Combinatorial Programming (CP77), T. B. Boffey,
Ed., Sept. 1977, pp. 190-201.

gffl _ X Martin R. Woodward was born in Trowbridge,
England, in 1948. He received the B.Sc. and
Ph.D. degrees in mathematics from Nottingham
University, Nottingham, England, in 1969 and
1972, respectively.
From 1972 to 1975 he worked for the U.K.

Atomic Energy Authority at the Culham Re-
search Laboratory. Since 1975 he has been a
Post-Doctoral Research Fellow in the Depart-
ment of Computational and Statistical Science,
University of Liverpool, Liverpool, England,

engaged in the development of automatic tools to analyze programs
and aid program testing. He is also an industrial consultant on software
engineenng.

Michael A. Hennell received the B.Sc., M.Sc.,
l and Ph.D. degrees from the University of

London, London, England, in 1961, 1962, and
1968, respectively.
He has been a Lecturer in the Department of

Computational and Statistical Science, Uni-
versity of Liverpool, Liverpool, England, since
1969. His current interests cover variational
methods for solving partial differential equa-
tions, numerical algorithms libraries, design of
high level languages, and software engineering.

He is a Director of a software house and an industrial consultant on
software testing methodologies.

David Hedley was born in Newcastle-upon-
_ Tyne, England, in 1949. He received the B.Sc.

_ degree in computational science and mathe-
nmatics from the University of Leeds, Leeds,
England, in 1971.
He then worked for a short period at City

College, Sheffield, England, before moving to
the Department of Computational and Statisti-
cal Science, University of Liverpool, Uverpool,
England, where he has been a Research Fellow
in program testing since 1975.

so

Entropy (Giacobazzi & Toppan, 2012)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

36

¨  Shannon entropy:

with X = {nodes/paths/... in a CFG graph}
and px = probability of "observing" x

¨  Different distributions are possible

¨  Can also be applied to traces:
 ...(234)10... (234)10... (234)10 ...
 ...(234)6 ... (234)3 ... (234)9 ...

2

by itself. We introduce this idea through an example.

A. Program example and explanation of the new approach

Consider the program computing the distance from the
origin of a point in the Cartesian plane (javascript example).

f u n c t i o n D() {
x=document .A. B . v a l u e ;
y=document .A. B2 . v a l u e ;
n =0;
n=Math . s q r t (x*x+y*y) ;
document . w r i t e (n+"< br / > ") ;

r e t u r n n ;
}

After an obfuscation transformation (whose details we omit)
we may obtain the following code. The first thing that the
transformation evidences is not only a longer program, but
also many different sequential portions of code (about three
new ones), basically a program that is not as easy to memorize
and grasp as the program before the transformation.

f u n c t i o n d () {
x=document .A. B . v a l u e ;
y=document .A. B2 . v a l u e ;
b=new Boolean () ;
i =0 ;
j =0 ;
k =0;
n =0;
nn =0;

w h i l e (i <x) {
k=k+ i ;
i = i +1 ;
j = j + i ;
}
nn= j +k ;
i =0 ;
k =0;
j =0 ;
b=nn ==16;
i f (b) {
nn=nn+y*y ;
}
e l s e {

w h i l e (i <y) {
k=k+ i ;
i = i +1 ;
j = j + i ;

}
nn=nn+ j +k ;
}

n=Math . s q r t (nn) ;
document . w r i t e (n+"< br / > ") ;
r e t u r n n ;
}

In this paper we model programs both as sources of different
nodes and as source of traces (intended as sequences of
control-flow outcomes). The source corresponding to the first
program, e.g., analyzed in a debugger, transmits a sequence
of symbols (command lines or code blocks) which is in-
creased in the second program due to obfuscation. Moreover,
a conditional statement in the transformed program shows that
the program traces are more than the original one: a higher
unpredictability in overall program behavior can be pointed

out by measuring its entropy. Random behavior corresponds
here to the setting of a random watch point along the execution
of the two programs, as typically done in a debugging activity
for reverse engineering, e.g., by stopping program execution
and watching memory contents. Another entropy measure
can be associated with the control flow execution. Here the
randomness is associated with the probability of a sequence of
transitions of control points generated from a source of inputs
with a given (e.g, equivalent) probability. In the first program
there is a sequential piece of code that computes a distance
after variables initializations (the sequential piece of code has
probability one and entropy zero). In the second program there
are six different sequential pieces of code having probability
greater than zero (entropy greater than zero). In the first
program there is only one trace: it has zero entropy no matter
the inputs. Changing the inputs, the second program has two
reachable traces (one associated with the if path, the other with
the else path): the entropy is greater than zero.

B. Preliminaries

For an exhaustive introduction to information theory and
random variables see [15]. The concept used in this paper
is the one of a discrete random variable. Given a finite and
discrete set of elements X = {x1, x2, ..., xk

}, named alphabet,
a random variable X is characterized by its distribution

P
X

=
�

p
X

(x) 2 [0, 1]
�

� x 2 X

where p
X

(x) = P [X = x] = p
x

, that is the probability of
X taking the value x belonging to the alphabet X . Each p

x

is nonnegative and
P

x2X p
x

= 1. Shannon’s Entropy [22] is
defined as

H(X) = �
X

x2X
p
x

· log2(px)

Moreover, conditional probabilities are defined as

P [A|B] =
P [AB]

P [B]

where P [A|B] is the probability of event A conditioned by
event B, and P [AB] is the probability of events A and B.
When A and B are independent P [AB] = P [A] · P [B] and
P[A|B]=P[A]. The probability of union of disjoint events A\
B = ; is given by P [A [B] = P [A] + P [B], which is the
probability that either A or B happens.

II. MODELING PROGRAMS AS INFORMATION THEORETIC
WHITE-BOX SOURCES OF CONTROL-FREE BLOCKS

Among the existing models for the analysis of programs the
most complete ones are found in [20] (e.g. discrete dynamic
systems). The field of this work tackles reverse engineering,
which can become a very hard game played by dynamic
attackers of a program that take several glimpses on it by
mean of advanced automatic tools, and pause at most nodes
to figure them out: it is the situation in which a solution like
[2] is supposed to put an attacker in: forcing a limited local
visibility of the control-flow graph. We begin introducing a
simple notion of entropy, that takes into account only local
computations, defining a control-free block of code, that is

7

2

1

3

5

6

8

4

Program size & derivatives (Halstead, 1977)

ISSISP 2014 - 30 July

37

¨  Lines of code
¨  Derivatives

identifiers in R that depend on the processing in P, the
complexity in understanding P; R should be regarded more
than the sum of complexity of P and R individually (|P;R| >
|P|+|R|). However, when P and R are completely independent,
the complexity in understanding P; R should be the same as
the complexity in understanding them simultaneously (|P;R| =
|P|+|R|).

VI. SUGGESTIONS FOR FUTURE IMPROVEMENT

According to the analysis in section 5, this section proposes
some improvements on the cognitive complexity measures to
enable satisfying all nine Weyuker’s properties.

A. Complexity Measures Fusion

From TABLE II, the two measures, i.e. Halstead’s effort
measure, and data flow complexity measure manage to satisfy
Property 6, while CFS lacks. Therefore, integrating the
principles of these measures into the calculation of Wc would
result in the measure satisfying all nine properties. Here, the
data flow complexity [11] seems to fit for improving CFS,
since the method’s concept is to measure the possibility for
control to transfer from one program block to another by
counting “the number of variable definitions which reach the
block” as the complexity of that block. This is precisely what
CFS fails to cover as being analyzed in the previous sections.

1) Oviedo’s data flow complexity measure

Oveido’s [11] is a software complexity measure based on
the data flow characteristics of the program, defined as per
below:

“A program can be uniquely decomposed into a set of
disjoint blocks of ordered statements having the property that
whenever the first statement of the block is executed, the other
statements are executed in the given order. Furthermore, the
first statement of the block is the only statement which can be
executed directly after the execution of a statement in another
block. Intuitively, a block is a chunk of code which is always
executed as a unit.”

A program flow graph is a directed graph in which each
node corresponds to a block of the program and the edges
correspond to the program branches. If the nodes ni and nj of
the flow graph correspond to the program blocks ni and nj
then there is an edge (ni , nj) from node ni to node nj if it is
possible for control to transfer directly from block ni to block
nj in the program.

A variable definition takes place in a PROGRAM statement
or in an assignment statement. A variable reference takes
place when the variable is used in an expression (i.e., in an
assignment statement or predicate) or an OUTPUT statement.

A locally available variable definition for a program block
is a definition of the variable in the block. A locally exposed
variable reference in a block is a reference to a variable which
is not preceded in the block by a definition of that variable.

A variable definition in block ni is said to reach block nk if
the definition is locally available in block ni and there is a
path from ni to nk (i.e., nk is a successor of ni) along which
the variable is not locally available in any block on the path,
i.e. the variable is not redefined along that path. A variable
definition in a block overrides all other definitions of this
variable that might otherwise reach the block.

Data flow complexity of block i is defined as “the sum of
the numbers of available definition of variables whose
references are locally exposed in block i” [4], [11].

Measuring the data flow complexity of each BCS block
along with the cognitive weight of that BCS would help
eliminate the sense that the measure does not consider the
complexity of each block as disjoint.

2) Halstead’s Software Metrics

Halstead [12] proposed a set of software metrics for
measuring the algorithmic complexity by counting operators
and operands from software codes. Let

n1 = number of distinct operators,
n2 = number of distinct operands,
N1 = total number of operator occurrences, and
N2 = total number of operand occurrences.

Based on the above notations, the definition of Halstead’s
measures can be summarized as displayed in TABLE III

TABLE 3. DEFINITIONS OF DERIVED MEASURES OF HALSTEAD’S SOFTWARE

METRICS [1], [12]

Measure Symbo
l

Formula

Program length N N = N1 + N2

Program vocabulary n n = n1 + n2

Volume V V = N*(log2 n)

Estimated abstraction
level

L L= (2 n 2) /
 (n1*N2)

Difficulty D D= 1 / L

Effort E E = V * D

Time T T = E / 18

Remaining bugs B B = E2/3 / 3000

Using Halstead’s metrics to measure the operators and
operands inside each BCS along with the cognitive weight of
that BCS would help eliminate the sense that the measure
considers all BCS’s of the same kind as having the same
cognitive complexity no matter what they contain inside.

B. Cumulative Variables Counting Scheme

Another possible resolution for the issue of complexity that
may flow between BCS’s blocks when calculating Wc is to

World Academy of Science, Engineering and Technology
Vol:2 2008-09-29

404

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
 V

ol
:2

, N
o:

9,
 2

00
8

w
as

et
.o

rg
/P

ub
lic

at
io

n/
11

56
4

identifiers in R that depend on the processing in P, the
complexity in understanding P; R should be regarded more
than the sum of complexity of P and R individually (|P;R| >
|P|+|R|). However, when P and R are completely independent,
the complexity in understanding P; R should be the same as
the complexity in understanding them simultaneously (|P;R| =
|P|+|R|).

VI. SUGGESTIONS FOR FUTURE IMPROVEMENT

According to the analysis in section 5, this section proposes
some improvements on the cognitive complexity measures to
enable satisfying all nine Weyuker’s properties.

A. Complexity Measures Fusion

From TABLE II, the two measures, i.e. Halstead’s effort
measure, and data flow complexity measure manage to satisfy
Property 6, while CFS lacks. Therefore, integrating the
principles of these measures into the calculation of Wc would
result in the measure satisfying all nine properties. Here, the
data flow complexity [11] seems to fit for improving CFS,
since the method’s concept is to measure the possibility for
control to transfer from one program block to another by
counting “the number of variable definitions which reach the
block” as the complexity of that block. This is precisely what
CFS fails to cover as being analyzed in the previous sections.

1) Oviedo’s data flow complexity measure

Oveido’s [11] is a software complexity measure based on
the data flow characteristics of the program, defined as per
below:

“A program can be uniquely decomposed into a set of
disjoint blocks of ordered statements having the property that
whenever the first statement of the block is executed, the other
statements are executed in the given order. Furthermore, the
first statement of the block is the only statement which can be
executed directly after the execution of a statement in another
block. Intuitively, a block is a chunk of code which is always
executed as a unit.”

A program flow graph is a directed graph in which each
node corresponds to a block of the program and the edges
correspond to the program branches. If the nodes ni and nj of
the flow graph correspond to the program blocks ni and nj
then there is an edge (ni , nj) from node ni to node nj if it is
possible for control to transfer directly from block ni to block
nj in the program.

A variable definition takes place in a PROGRAM statement
or in an assignment statement. A variable reference takes
place when the variable is used in an expression (i.e., in an
assignment statement or predicate) or an OUTPUT statement.

A locally available variable definition for a program block
is a definition of the variable in the block. A locally exposed
variable reference in a block is a reference to a variable which
is not preceded in the block by a definition of that variable.

A variable definition in block ni is said to reach block nk if
the definition is locally available in block ni and there is a
path from ni to nk (i.e., nk is a successor of ni) along which
the variable is not locally available in any block on the path,
i.e. the variable is not redefined along that path. A variable
definition in a block overrides all other definitions of this
variable that might otherwise reach the block.

Data flow complexity of block i is defined as “the sum of
the numbers of available definition of variables whose
references are locally exposed in block i” [4], [11].

Measuring the data flow complexity of each BCS block
along with the cognitive weight of that BCS would help
eliminate the sense that the measure does not consider the
complexity of each block as disjoint.

2) Halstead’s Software Metrics

Halstead [12] proposed a set of software metrics for
measuring the algorithmic complexity by counting operators
and operands from software codes. Let

n1 = number of distinct operators,
n2 = number of distinct operands,
N1 = total number of operator occurrences, and
N2 = total number of operand occurrences.

Based on the above notations, the definition of Halstead’s
measures can be summarized as displayed in TABLE III

TABLE 3. DEFINITIONS OF DERIVED MEASURES OF HALSTEAD’S SOFTWARE

METRICS [1], [12]

Measure Symbo
l

Formula

Program length N N = N1 + N2

Program vocabulary n n = n1 + n2

Volume V V = N*(log2 n)

Estimated abstraction
level

L L= (2 n 2) /
 (n1*N2)

Difficulty D D= 1 / L

Effort E E = V * D

Time T T = E / 18

Remaining bugs B B = E2/3 / 3000

Using Halstead’s metrics to measure the operators and
operands inside each BCS along with the cognitive weight of
that BCS would help eliminate the sense that the measure
considers all BCS’s of the same kind as having the same
cognitive complexity no matter what they contain inside.

B. Cumulative Variables Counting Scheme

Another possible resolution for the issue of complexity that
may flow between BCS’s blocks when calculating Wc is to

World Academy of Science, Engineering and Technology
Vol:2 2008-09-29

404

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
 V

ol
:2

, N
o:

9,
 2

00
8

w
as

et
.o

rg
/P

ub
lic

at
io

n/
11

56
4

Nesting Depth (Harrison, 1981)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

38

¨  Halstead metrics for local complexity (basic blocks)

¨  Complexity node = local complexity + complexity range of selection nodes

-65-

Often, a node will exist in G with an outdegree of two or
greater. We shall refer to such a node as a selection node.

Even though we cannot determine every path possible from
a selection node since it may be an infinite number if we allow
backward branches, we can determine the nodes that lay upon any
possible parh from a selection node using the above concepts.
If we accept the fact that the complexity of a control structure
such as an if-then-else is dependent upon the statements within
its range, then ~owing what nodes lie upon the paths within its
range can be useful.

We may determine which nodes lie within the selection node's
range by forming a subgraph of all the nodes which lie between
the selection node itself, and the greatest lower bound of the
subgraph formed of all nodes which immediately succeed the
selection node. This subgraph, G' will contain every node which
lies within the range of the selection node. For example:

if Pi then

if P2 then

S1;

else

$2;
e lse

$3;

$4;
It can be said that all nodes, except for S~ lie within the

range of the node Pi (i.e., the outer if-then-el~e construct).
The greater lower b6und for this constru-~ Is S-4~ Likewise,

- o lie withinthe range o~ noae P~. ~or F~ ~ also
S and S als ~ ' for ~ ~ P
i~ the g~eatest lower bound. The subgraph G i
contains the nodes S x, P2' S1 and S 2. The subgraph G' for
P2 contains the nodeg S 1 and S 2.

We may utilize this technique to compute the complexity of
a computer program by assigning each node a "raw" complexity
value which would consist of the Halstead measure for that node.
In addition, each node would possess an additional complexity
measure shich we shall refer to as that node's "adjusted" com-

plesity.

Information Flow (Henry & Kafura, 1981)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

39

¨  Metric for procedures, interfaces and modules

¨  Measures complexity in relation to bug fixes
¤  Count data dependencies between entities

¤  Combine with code length

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 5, SEPTEMBER 1981

buf file filesys inode kill Ipil mount proc text

buf
file
filesys
inode
klll
lpi 1
mount
proc
text

0(15)
49(3)

323 (20)
O(0)
0(0)

42 (0)
8(3)
0(0)

2(0)

2(14)
18(20)
0(0)
0(0)
0(0)
2(2)
O(0)

24 (0)
0(18)

88 (20)
0(0)
O(0)

42(8)
0(3)
O(0)

12 (0)
90(68)
35 (32)

0(0)
0(0)

48(0)
12 (4)
0(0)

0(4)
0(28)
0(14)
0(39)

0(0)
0(0)
2(14)
0(2)

0(4)
0(8)
0(8)
0(10)
0(0)

0(0)
0(8)
0(2)

4(0)
0(0)
0(0)
4(0)
0(0)
0(0)

0(3)
O(0)

6(4)
12(15)
12(6)
56(45)
6(0)
O(0)
6(2)

0(0)

0(0)
0(0)
0(0)
6(12)
0(0)
0(0)
0(0)
0(2)

Fig. 13. Coupling through direct flows (coupling through transfer
procedures).

Measurement Features

Procedure measurements 1. lack of functionality
2. stress points in the system
3. inadequate refinement

Module measurements 1. poorly designed data structures
2. improper modularization
3. poor module design
4. poor functional decomposition

Interface measurements 1. strength of the coupling
between modules

2. measure of modifiability

Fig. 14. Summary of the measurements and corresponding features.

Measure

(fan-in * fan-out)**2

length*(fan-in * fan-out)**2

(fan-in * fan-out)

(length**2)

Correlation Level of
to Changes Significance

.98 .028

.94 .021

.83 .042

.60

(32] D. M. Ritchie and K. Thompson, "The UNIX time-sharing sys-
tem," Commun. Ass. Comput. Mach., vol. 17, pp. 365-375, July
1974.

[331 D. Schuster, "On the specification and quantification of software
performance objectives," in Proc. ACM 1977 Annu. Conf., Oct.
1977, pp. 181-188.

[341 N. L. Soong, "A program stability measure," in Proc. ACM 1977
Annu. Conf., Oct. 1977, pp. 163-173.

[351 W. P. Stevens, G. J. Myers, and L. L. Constantine, "Structured
design,"IBMSyst. J., vol. 2, pp. 115-139, 1974.

[36] T. A. Thayer, M. Liplow, and E. C. Nelson, Software Reliability.
New York: North-Holland, 1978.

[37] E. Yourdon, Techniques of Program Structure andDesign. Engle-
wood Cliffs, NJ: Prentice-Hall, 1975.

[38] B. H. Yin and J. W. Winchester, "The establish and use of mea-
sures to evaluate the quality of software designs," in Proc. ACM
Software Quality Assurance Workshop, vol. 3, no. 5, 1978, pp.
45-52.

[39] E. Yourdon, Techniques of Program Structure and Design.
Englewood Cliffs, NJ: Prentice-Hall, 1975.

[40] B. W. Boehm, "Software engineering," IEEE Trans. Comput.,
vol. C-25, pp. 1221-1241, Dec. 1976.

.078

Fig. 15. Summary of correlation coefficients.

[21] E. L. Ivie, "The programmer's workbench-A machine for soft-
ware development," Commun. Ass. Comput. Mach., vol. 20,
pp. 746-753, Oct. 1977.

[22] J. Lions, "A commentary on the UNIX operating system," Dep.
Comput. Sci., Univ. of New South Wales, 1977.

[23] B. Liskov, "The design of the Venus operating system,"Commun.
Ass. Comput. Mach., vol. 15, no. 3, pp. 144-149, 1972.

[24] T. J. McCabe, "A complexity measure," IEEE Trans. Software
Eng., vol. SE-2, Dec. 1976.

[25] G. J. Myers, Software Reliability Principles and Practices. New
York: Wiley-Interscience, 1976.

[26] -, The Art ofSoftware Testing. New York: Wiley-Interscience,
1979.

[27] D. L. Parnas, "Information distribution aspects of design meth-
odologies," in Proc. IFIP 1971, New York: North-Holland, pp.
339-344.

[28] -, "On the design and development of program families," IEEE
Trans. Software Eng., vol. SE-2, pp. 1-9, Jan. 1976.

[29] -, "Some hypothesis about the 'USES' hierarchy for operating
systems," Tech. Hochschule Darmstadt, Fachbereich Inform.,
Darmstadr, West Germany, Res. Rep. BSI 76/1, 1976.

[30] -, "Use of abstract interfaces in the development of software
for embedded computer systems," Naval Res. Lab., Washington,
DC, NRL Rep. 8047, 1977.

[31] C. V. Ramamoorthy and R. T. Yeh, Tutorial: Software Method-
ology. New York: IEEE Computer Society, 1978.

Saffie Henry (M'81) received the B.S. degree in
_JI E mathematics from the University of Wisconsin,
_ | l LaCrosse, in 1972 and the M.S. and Ph.D. de-
* | grees in computer science from Iowa State Uni-

versity, Ames, in 1977 and 1979, respectively.
C She is currently an Assistant Professor of
omputer Science at the University of Wiscon-.

sin, LaCrosse. Her current research interest is
the quantitative measurement of the structure
and quality of large-scale systems.
Dr. Henry is a member of the Association for

Computing Machinery, SIGOPS, and SIGSOFT.

Dennis Kafura received the M.S. and Ph.D. de-
grees in computer science from Purdue Univer-
sity, West Lafayette, IN, in 1972 and 1974,
respectively.
He is currently an Associate Professor of

Computer Science at Iowa State University,
Ames. His recent research, involving the quan-
titative evaluation of software structure, has
been reported in the 1981 SIGMETRICS Sym-

ffE posium on Software Quality. Other papers
dealing with operating system performance

analysis have previously appeared in Performance Analysis, Journal of
the ACM, and SIAM Joumal on Computing.

518

Combined code & data flow complexity (Oviedo, 1980)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

40

C(cfg) = a * #edges + b * #live-in variables all nodes

Chunks (Davis, 1984)

Cognitive Functional Size (Wang and Shao, 2003)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

41

¨  Based on cognitive sciences – psychology

¨  Different weight for different types of basic control structures

¨  What about unstructured programs?

This rule indicates that “multiplication” is used when the
two sets we are counting, are dependent on each other.
Applying this rule to counting the cognitive complexity
implies that the total cognitive complexity of two blocks of
software code should be calculated from the product of the
amount of the cognitive complexity of each block if and only
if the understanding of a particular block of code requires the
preceding comprehension of the other block.

The rule of sum [10] states that “the number of ways to do a
task in one of the two ways is the sum of the number of ways
to do these tasks if they cannot be done simultaneously”.

This rule reflects a fact about set theory. It states that
“addition” is used when the two sets we are counting, are
disjoint. Applying this rule to counting the cognitive
complexity implies that the total cognitive complexity of two
blocks of software code should be computed from the sum of
the amount of the cognitive complexity of each block if and
only if to comprehend each block does not require the
understanding of the other block at all.

III. TOTAL COGNITIVE WEIGHTS OF BASIC CONTROL

STRUCTURES

In 2003, Wang and Shao [1] proposed cognitive functional
size (CFS) as a software complexity measure based on Wc -
the total cognitive weights of Basic Control Structures
(BCS’s) of software. Wc is defined as the total sum of
cognitive weights of its q linear blocks composed in
individual BCS’s. Since each block may consist of ‘m’ layers
of nesting BCS’s, and each layer with ‘n’ linear BCS’s,

 q m n
Wc = [Wc(j,k,i)] (1)
 j=1 k=1 i=1

where weights Wc (j,k,i) of BCS’s were initially proposed
as in TABLE I.

TABLE I. COGNITIVE WEIGHTS (WC) OF BCS’S

Category BCS Wi

Sequence Sequence (SEQ) 1

Branch If–Then-Else (ITE) 2

Case (CASE) 3

Iteration For-do (Ri) 3

Repeat-until (R1) 3

While-do (R0) 3

Embedded
Component

Function Call (FC) 2

Recursion (REC) 3

Concurrency Parallel (PAR) 4

Interrupt (INT) 4

Wc has been a remarkable breakthrough in software
engineering that inspires tremendous new ideas for measuring
the software because it is independent from implementation
technologies, easy to calculate, and based on a lot of sound
Cognitive Informatics principles. Many cognitive complexity
measures have been proposed based on Wc , for example :

Wang’s CFS [1] is defined as

CFS = (Ni + No) * Wc (2)

Kushwaha and Misra’s CICM [3] is defined as

CICM = WICS * Wc (3)

where WICS is the weighted information count of the
software derived from:

 LOCS
WICS = {#(identifiers and operators in the kth. line) / (LOCS-k)} (4)
 k=1

Wang’s modified Cc(S) [2] is defines as

Cc(S) = f (data objects) * Wc (5)

where f (data objects) is the function that counts the number
of global and local data objects such as inputs, outputs, data
structures, and internal variables.

IV. ALGEBRAICALLY EQUIVALENCE TOTAL COGNITIVE

WEIGHTS

Based on the calculation of the total cognitive weights of
BCS’s described in section 2, the Distributive Property in
Algebra, i.e. “a (b + c) = ab + ac”, can be used to re-arrange
the terms into an alternative way to calculate the Wc .

Program A{

 Statement1;

 If (condition1){...} else {...};

 While (condition2){

 For {…};

 Statement2;
 Statement3;

 While (condition3){
 If (condition4) {...}
 }

 }

}

Fig. 1. BCS’s structure of sample program

World Academy of Science, Engineering and Technology
Vol:2 2008-09-29

401

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
 V

ol
:2

, N
o:

9,
 2

00
8

w
as

et
.o

rg
/P

ub
lic

at
io

n/
11

56
4

This rule indicates that “multiplication” is used when the
two sets we are counting, are dependent on each other.
Applying this rule to counting the cognitive complexity
implies that the total cognitive complexity of two blocks of
software code should be calculated from the product of the
amount of the cognitive complexity of each block if and only
if the understanding of a particular block of code requires the
preceding comprehension of the other block.

The rule of sum [10] states that “the number of ways to do a
task in one of the two ways is the sum of the number of ways
to do these tasks if they cannot be done simultaneously”.

This rule reflects a fact about set theory. It states that
“addition” is used when the two sets we are counting, are
disjoint. Applying this rule to counting the cognitive
complexity implies that the total cognitive complexity of two
blocks of software code should be computed from the sum of
the amount of the cognitive complexity of each block if and
only if to comprehend each block does not require the
understanding of the other block at all.

III. TOTAL COGNITIVE WEIGHTS OF BASIC CONTROL

STRUCTURES

In 2003, Wang and Shao [1] proposed cognitive functional
size (CFS) as a software complexity measure based on Wc -
the total cognitive weights of Basic Control Structures
(BCS’s) of software. Wc is defined as the total sum of
cognitive weights of its q linear blocks composed in
individual BCS’s. Since each block may consist of ‘m’ layers
of nesting BCS’s, and each layer with ‘n’ linear BCS’s,

 q m n
Wc = [Wc(j,k,i)] (1)
 j=1 k=1 i=1

where weights Wc (j,k,i) of BCS’s were initially proposed
as in TABLE I.

TABLE I. COGNITIVE WEIGHTS (WC) OF BCS’S

Category BCS Wi

Sequence Sequence (SEQ) 1

Branch If–Then-Else (ITE) 2

Case (CASE) 3

Iteration For-do (Ri) 3

Repeat-until (R1) 3

While-do (R0) 3

Embedded
Component

Function Call (FC) 2

Recursion (REC) 3

Concurrency Parallel (PAR) 4

Interrupt (INT) 4

Wc has been a remarkable breakthrough in software
engineering that inspires tremendous new ideas for measuring
the software because it is independent from implementation
technologies, easy to calculate, and based on a lot of sound
Cognitive Informatics principles. Many cognitive complexity
measures have been proposed based on Wc , for example :

Wang’s CFS [1] is defined as

CFS = (Ni + No) * Wc (2)

Kushwaha and Misra’s CICM [3] is defined as

CICM = WICS * Wc (3)

where WICS is the weighted information count of the
software derived from:

 LOCS
WICS = {#(identifiers and operators in the kth. line) / (LOCS-k)} (4)
 k=1

Wang’s modified Cc(S) [2] is defines as

Cc(S) = f (data objects) * Wc (5)

where f (data objects) is the function that counts the number
of global and local data objects such as inputs, outputs, data
structures, and internal variables.

IV. ALGEBRAICALLY EQUIVALENCE TOTAL COGNITIVE

WEIGHTS

Based on the calculation of the total cognitive weights of
BCS’s described in section 2, the Distributive Property in
Algebra, i.e. “a (b + c) = ab + ac”, can be used to re-arrange
the terms into an alternative way to calculate the Wc .

Program A{

 Statement1;

 If (condition1){...} else {...};

 While (condition2){

 For {…};

 Statement2;
 Statement3;

 While (condition3){
 If (condition4) {...}
 }

 }

}

Fig. 1. BCS’s structure of sample program

World Academy of Science, Engineering and Technology
Vol:2 2008-09-29

401

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
 V

ol
:2

, N
o:

9,
 2

00
8

w
as

et
.o

rg
/P

ub
lic

at
io

n/
11

56
4

Human Comprehension Models (Nakamura et al, 2003)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

42

¨  Comprehension ~ mental simulation of a program

¨  Model the brain, pen & paper as a simple CPU

¨  CPU performance is driven by misses
¤  cache misses

¤  TLB misses

¤  prediction

¨  Measure misses with small sizes of memory

Human Comprehension Models (Nakamura et al, 2003)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

43

Table 2. Conventional metrics for func in programs A1 and A2
Max # of # of # of McCabe Halstead Halstead Ave. Live Ave. Span

Program LOC Nest Statements Variables Operators CYCL Length Volume Knots Variables Size
A1 73 7 47 8 67 22 368 1730 6 6.894 3.656
A2 40 5 29 9 56 15 290 1394 4 6.379 2.925

(or , respectively). Next, we define opera-
tions to the MS-queue.

dequeue(q): Remove . Then, the next element be-
comes .

enqueue(q,e): Insert an element as the tail of when
. If , execute first,

then insert . Finally, becomes .

is queue(q,e): Return true if an element exists in . Oth-
erwise, return false.

refresh(q,e): If is true, delete from the
queue. Then, execute .

We regard an MS-queue as a simple but intuitive
model of human short-term memory. Each MS-element

represents a chunk, which is the information unit stored
in short-term memory. represents the number of
chunks currently memorized, and represents a capacity
of short-term memory. The operation models
to forget the oldest chunk. corresponds to
that the information is memorized as the newest chunk.

returns a state whether is remembered or
not. simulates a situation that a chunk that
is still remembered is refreshed.

3.3 Execution trace for mental simulation

In addition to modeling short-term memory itself, we
need to know how information is incoming to short-term
memory. In mental simulation, we try to execute the pro-
gram as exactly as the computer does. Hence, it is reason-
able to use the program trace [2] to characterize the infor-
mation flow. For this purpose, we introduce a specific trace,
called AR-trace, which focuses assignments and references
of variables.

For each appearance of a variable in a given program,
an AR-action is defined as a triplet ,
where is a (current) value of , and is ei-
ther reference or assignment. For a program and a given
input , an AR-trace is a sequence of AR-actions occurring
in accordance with execution of with respect to .

Figure 2 shows an example of (a) a program (fragment)
and (b) the corresponding AR-trace. Traversing from the
beginning to the end derives the AR-trace consisting of the

i = 1 ;
j = 2 ;
A[1] = i + 4 ;

j = A[i] - j ;

i 1 assignment
j 2 assignment
i 1 reference
A[1] 5 assignment
i 1 reference
A[1] 5 reference
j 2 reference
j 3 assignment

(a) (b)

Figure 2. Example of AR trace

ordered AR-actions. Note that the input is not especially
needed in this example, and that every AR-trace is uniquely
determined for given and 2 .

It is not very difficult to obtain the AR-trace automat-
ically, from given program and input . Our idea is to
embed a print statement as a monitoring code [2] imme-
diately after each appearance of a variable, which is per-
formed by a simple analysis of stack operations at the as-
sembler code level. The monitoring code outputs an AR-
action at run-time when execution reaches there. Thus, exe-
cuting the modified with respect to outputs an AR-trace.

3.4 Virtual mental simulation model (VMSM)

Using an MS-queue and an AR-trace for given pro-
gram and input , we imitate the process of mental sim-
ulation for and . Figure 3 shows the proposed virtual
mental simulation model (VMSM). In the figure, let be a
variable storing an integer, and let be a length of .

The proposed VMSM takes an AR-action one-by-one
from the given AR-trace . Depending on the type of the
AR-action, one of sub-routines Reference or Assignment
is executed.

The sub-routine Reference models the cognitive activity
CA1 (See Section 3.1). It contains two abstract proce-
dures: recall(e,i) and backtrack(v,i). Accord-
ing to CA1, if the referred variable is still memorized (i.e.,

is true), the value of the variable is recalled
through a chunk (denoted by recall(e,i)). Then, the
memory for is refreshed via . While, if the

2This is because our target here is sequential programs

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)
1530-1435/03 $17.00 © 2003 IEEE

Step1: Initialize to be empty, and .

Step2: If go to Step 5.

Step3: For -th AR-action of , if
is reference, then go to Reference. If

is assignment, then go to Assignment.

Step4: . Go to Step2.

Step5: End mental simulation.

Reference: Let . If is:

true: Execute recall(e,i). Then,
, and return.

false: Execute backtrack(v,i). Then,
, and return.

Assignment: Let . Execute
calc righthand(v,i). Then, ,
and return.

Figure 3. Virtual mental simulation model
(VMSM)

variable is forgotten, a backtrack of simulation to obtain the
variable’s value occurs (i.e., backtrack(v,i)). After
getting the value, the information is newly memorized via

.
The sub-routine Assignment corresponds to the cogni-

tive activity CA2. As seen in the example in Section 3.1, the
assignment does not require to recall the value. Instead, we
have to calculate right-hand value of the assignment state-
ment. The values of the all right-hand variables must have
been obtained through the previous reference AR-actions.
Hence, we purely apply operators to the operands, which is
abstracted by calc righthand(v,i). The calculated
value is newly memorized via .

The details of the abstract procedures (recall,
backtrack and calc righthand) are not specifically
given here. In order to achieve our goal, it is sufficient to
have a cost calculation method for each of them, which will
be discussed in the next subsection.

Note that, as the virtual simulation proceeds, the older
MS-elements are dequeued due to the limited capacity of
. This reflects the cognitive activity CA3.

Figure 4 shows how the VMSM () works for the
AR-trace in Figure 2(b). In the figure, a box represents an
MS-element, a pair of parallel lines depicts an MS-queue,
and an arrow depicts a transition caused by an AR- action.

i
1

j
2

i
1

j
2

i
1

i
1

A[1]
5

i
1

A[1]
5

i
1

A[1]
5

A[1]
5

j
2

j
2

j
5

calc_righthand((i,1),1)
enqueue((i,1),1)

calc_righthand((j,2),2)
enqueue((j,2),2)

recall((i,1),3)
refresh((i,1),3)

calc_righthand((A[1],5),4)
enqueue((A[1],5),4)

recall((i,1),5)
refresh((i,1),5)

recall((A[1],5),6)
refresh((A[1],5),6)

backtrack(j,7)
enqueue((j,2),7)

calc_righthand((j,5),8)
enqueue((j,5),8)

Figure 4. Example of VMSM execution

We assume that an MS-element is enqueued from right and
dequeued to left.

3.5 Cost functions for VMSM

In order to calculate the cost for mental simulation, we
assign a weighted cost function to each abstract proce-
dure in the VMSM. Note that there are three abstract pro-
cedures recall, backtrack and calc righthand.
We consider that these are the dominant factors that influ-
ence the simulation cost.

Cost for recall

recall(e,i) involves a cognitive activity to recall the
value of a variable memorized in short-term memory. Since
the information is still remembered as a chunk , the value
can be obtained relatively easily and fast. So, the cost taken
for this is inexpensive (compared with the cost for back-
track).

We suppose that the same amount cost is taken for each
recall(e,i), regardless of the position of in the MS-
queue . This comes from our definition of the MS-element,
stating that all chunks (MS-elements) have a isomorphic
structure 3.

Thus, for each execution of recall(e,i), a constant
value is accumulated as the cost. For simplicity, we define
a dynamic metric RCL as the number of recall(e,i)
executed through a VMSM run.

Cost for backtrack

backtrack(v,i) contains a backtrack of simulation
from -th AR-action in order to obtain the current value of
forgotten variable . It can be considered that the cost heav-
ily depends on whether the variable is a constant variable
or not.

The constant variable is a variable to which a value is as-
signed only once (initialized) during entire execution. Since
the initialized value never changes, we just jump back to

3There is no hierarchy or dependency between chunks in our model.

Proceedings of the Ninth International Software Metrics Symposium (METRICS’03)
1530-1435/03 $17.00 © 2003 IEEE

Combine all of them (Anckaert et al, 2007)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

44

1.  code & code size
¤  e.g., #instructions, weighted by "complexity"

2.  control flow complexity

3.  data flow complexity
¤  sizes slices

¤  sizes live sets, working sets

¤  sizes points-to sets

¤  fan-in, fan-out (Oviedo)

¤  data structure complexities (Munson and Khoshgoftaar, 1993)

4.  data
¤  application-specific

static -> graphs

dynamic -> traces

Object-Oriented Quality Metrics (Bansiya & Davis, 2002)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

45

¨  QMOOD: Quality Model for Object-Oriented Design
¤  abstraction

¤  encapsulation

¤  coupling

¤  cohesion

¤  polymorphism

¤  complexity

¤  design size

¤  ...
¨  Weighted averages:

¤  understandability

¤  maintainability

Example: class hierarchy flattening (Foket et al, 2014)

11 June 2014 : Advanced Software Protection: Integration, Research and Exploitation

46

Object

MediaStream

- data : byte[]
- KEY : byte[]
decode(byte[]) : byte[]
+ getRawBytes() : byte[]

Player

main(String[]) : void+
+ play(AudioStream) : void
+ play(VideoStream) : void

AudioStream

audioBuffer : int[]
decode(byte[]) : byte[]
decodeSample() : byte[]

VideoStream

videoBuffer : int[][]
decode(byte[]) : byte[]
decodeFrame() : byte[]

MP3File

readFile() : void

XvidStream

decodeFrame() : byte[]
DTSStream

decodeSample() : byte[]

MP4File

readFile() : void

decodeSample() : byte[]
MPGAStream

MediaFile

filePath : String
mediaStreams : MediaStream[]
readFile() : void
+ getStreams() : MediaStream[]

public class Player {
 public void play(AudioStream as) {
 /* send as.getRawBytes() to audio device */
 }
 public void play(VideoStream vs) {
 /* send vs.getRawBytes() to video device */
 }
 public static void main(String[] args) {
 Player player = new Player();
 MediaFile[] mediaFiles = ...;
 for (MediaFile mf : mediaFiles)
 for (MediaStream ms : mf.getStreams())
 if (ms instanceof AudioStream)
 player.play((AudioStream)ms);
 else if (ms instanceof VideoStream)
 player.play((VideoStream)ms);
 }
}
public class MP3File extends MediaFile {
 protected void readFile() {
 InputStream inputStream = ...;
 byte[] data = new byte[...];
 inputStream.read(data);
 AudioStream as = new MPGAStream(data);
 mediaStreams = new MediaStream[]{as};
 return;
 }
}
public abstract class MediaStream {
 public static final byte[] KEY = ...;
 public byte[] getRawBytes() {
 byte[] decrypted = new byte[data.length];
 for (int i = 0; i < data.length; i++)
 decrypted[i] = data[i] ^ KEY[i];
 return decode(decrypted);
 }
 protected abstract byte[] decode(byte[] data);
}

Example: class hierarchy flattening (Foket et al, 2014)

11 June 2014 : Advanced Software Protection: Integration, Research and Exploitation

47

« interface » Common
+ decode(byte[]) : byte[]
+ decodeFrame() : byte[]
+ decodeSample() : byte[]
+ getRawBytes() : byte[]
+ play(Common) : void
+ play1(Common) : void
+ readFile() : void
+ getStreams() : Common[]

XvidStream
- videoBuffer : int[][]
- data : byte[]
- KEY : byte[]
+ decode(byte[]) : byte[]
+ decodeFrame() : byte[]
+d decodeSample() : byte[]
+ getRawBytes() : byte[]
+d play(Common) : void
+d play1(Common) : void
+d readFile() : void
+d getStreams() : Common[]

MP3File
- filePath : String
- mediaStreams : Common[]
+d decode(byte[]) : byte[]
+d decodeFrame() : byte[]
+d decodeSample() : byte[]
+d getRawBytes() : byte[]
+d play(Common) : void
+d play1(Common) : void
+ readFile() : void
+ getStreams() : Common[]

- filePath : String
- mediaStreams : Common[]

MediaFile

+d decode(byte[]) : byte[]
+d decodeFrame() : byte[]
+d decodeSample() : byte[]
+d getRawBytes() : byte[]
+d play(Common) : void
+d play1(Common) : void
+d readFile() : void
+ getStreams() : Common[]

- data : byte[]
- KEY : byte[]

MediaStream

+d decode(byte[]) : byte[]
+d decodeFrame() : byte[]
+d decodeSample() : byte[]
+ getRawBytes() : byte[]
+d play(Common) : void
+d play1(Common) : void
+d readFile() : void
+d getStreams() : Common[]

Player
+ main(String[]) : void
+d decode(byte[]) : byte[]
+d decodeFrame() : byte[]
+d decodeSample() : byte[]
+d getRawBytes() : byte[]
+ play(Common) : void
+ play1(Common) : void
+d readFile() : void
+d getStreams() : Common[]

MP4File
- filePath : String
- mediaStreams : Common[]
+d decode(byte[]) : byte[]
+d decodeFrame() : byte[]
+d decodeSample() : byte[]
+d getRawBytes() : byte[]
+d play(Common) : void
+d play1(Common) : void
+ readFile() : void
+ getStreams() : Common[]

AudioStream
audioBuffer : int[]
- data : byte[]
- KEY : byte[]
+ decode(byte[]) : byte[]
+d decodeFrame() : byte[]
+d decodeSample() : byte[]
+ getRawBytes() : byte[]
+d play(Common) : void
+d play1(Common) : void
+d readFile() : void
+d getStreams() : Common[]

VideoStream
videoBuffer : int[][]
- data : byte[]
- KEY : byte[]
+ decode(byte[]) : byte[]
+d decodeFrame() : byte[]
+d decodeSample() : byte[]
+ getRawBytes() : byte[]
+d play(Common) : void
+d play1(Common) : void
+d readFile() : void
+d getStreams() : Common[]

MPGAStream
- audioBuffer : int[]
- data : byte[]
- KEY : byte[]
+ decode(byte[]) : byte[]
+d decodeFrame() : byte[]
+ decodeSample() : byte[]
+ getRawBytes() : byte[]
+d play(Common) : void
+d play1(Common) : void
+d readFile() : void
+d getStreams() : Common[]

DTSStream
- audioBuffer : int[]
- data : byte[]
- KEY : byte[]
+ decode(byte[]) : byte[]
+d decodeFrame() : byte[]
+ decodeSample() : byte[]
+ getRawBytes() : byte[]
+d play(Common) : void
+d play1(Common) : void
+d readFile() : void
+d getStreams() : Common[]

public class Player implements Common {
 public byte[] merged1(Common as) {
 /* send as.getRawBytes() to audio device */
 }
 public Common[] merged2(Common vs) {
 /* send vs.getRawBytes() to video device */
 }
 public static void main(String[] args) {
 Common player = CommonFactory.create(…);
 Common[] mediaFiles = ...;
 for (Common mf : mediaFiles)
 for (Common ms : mf.getStreams())
 if (myCheck.isInst(0, ms.getClass()))
 player.merged1(ms);
 else if (myCheck.isInst(1, ms.getClass()))
 player.merged2(ms);
 }
}
public class MP3File implements Common {
 public byte[] merged1() {
 InputStream inputStream = ...;
 byte[] data = new byte[...];
 inputStream.read(data);
 Common as = CommonFactory.create(…);
 mediaStreams = new Common[]{as};
 return data;
 }
}
public class MediaStream implements Common {
 public static final byte[] KEY = ...;
 public byte[] getRawBytes() {
 byte[] decrypted = new byte[data.length];
 for (int i = 0; i < data.length; i++)
 decrypted[i] = data[i] ^ KEY[i];
 return decode(decrypted);
 }
 public byte[] decode(byte[] data){ … }
}

Object-Oriented Quality Metrics (Bansiya & Davis, 2002)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

48

-12.0

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

avrora batik eclipse fop h2 jython luindex lusearch pmd sunflow tomcat xalan

CHF + OFI CHF + IM(10) + OFI CHF + IM(20) + OFI CHF + IM(30) + OFI CHF + IM(40) + OFI CHF + IM(50) + OFI

QMOOD understandability

90% of classes transformed 25% of classes transformed

dominating term

!10%%

0%%

10%%

20%%

30%%

40%%

50%%

60%%

abstrac1on%encapsula1on% coupling% cohesion% polymorphism%complexity% design%size%

(legend:%see%Fig.%10)%
Series1%

Series2%

Series3%

Series4%

Series5%

Series6%

abstrac3on

encapsula3on

coupling
cohesion

polymorphism complexity

design'size

breakdown

Overview

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

49

¨  ASPIRE in a nutshell

¨  Modelling attacks

¨  Evaluation Criteria

¤ Metrics of complexity

¤ Resilience

¨  Theory versus practice: involving the humans

Resilience (Collberg et al, 1997)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

50

Abstract Interpretation (Dalla Preda, Giacobazzi et al)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

51

¨  Abstract domains model program properties

Abstract interpretation computes properties

¨  Domains are partially ordered in terms of concreteness

¨  Obfuscating transformation is less potent if it preserves more

concrete properties

¨  Automatic deobfuscation of opaque predicates, e.g., f(x) | nZ

¨  Not clear how this scales ...

Abstract Interpretation (Dalla Preda, Giacobazzi et al)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

52

c = a * b;
d = c + 3;

c = a * b;
p = algebraic_function(a,b,c,x,y,z);
if (p == 0)
 d = c + 3;
else
 a = c - d;

c = a * b;
p = check_aliasing_in_a_graph(a,b,c,g,h,k);
if (p == false)
 d = c + 3;
else
 a = c - d;

var1 = var2 op var3 + const

Tool-based metrics

11 June 2014 : Advanced Software Protection: Integration, Research and Exploitation

53

¨  Use attacker’s tools and heuristics
1.  Model effort/time in terms of input size

2.  Compute output size

3.  Compute relevance of output
n  false positives/negatives

n  receiver operator curves (ROC)

n  recall and precision

n  pruning factors

¨  Major problems:
¤  predicting tool output

¤  generallity of the results

Example 1: Disassembly Thwarting (Linn & Debray, 2003)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

54

¨  Confusion factor

with A = ground truth set of instruction addresses
and P = set determined by static disassembly

compress gcc go ijpeg li m88ksim perl vortex Mean
Program

0.75

0.80

0.85

0.90

0.95

1.00

fr
ac

tio
n

of
 c

an
di

da
te

s c
on

ve
rt

ed

0.70
0.80
0.90
0.95
1.00

Thresholds

(a) Fraction of jumps converted to branch function calls

compress gcc go ijpeg li m88ksim perl vortex Mean
Program

1.0

2.0

3.0

4.0

5.0

6.0

slo
w

do
w

n
fa

ct
or

0.70
0.80
0.90
0.95
1.00

Thresholds

(b) Slowdown in execution speed

Figure 6: Effect of “hot code threshold” on branch function conversion and execution speed

(Sections 3.4.1 and 3.4.2). We expect to have additional transfor-
mations, such as jump table spoofing (Section3.4.4), implemented
in the near future.

4. EXPERIMENTAL EVALUATION
We evaluated the efficacy of our techniques using the SPECint-

95 benchmark suite. Our experiments were run on an otherwise
unloaded 2.4 GHz Pentium IV system with 1 GB of main memory
running RedHat Linux 8.0. The programs were compiled with gcc
version egcs-2.91.66 at optimization level -O3. The programs were
profiled using the SPEC training inputs and these profiles were used
to identify any hot spots during our transformations. The final per-
formance of the transformed programs were then evaluated using
the SPEC reference inputs. Each execution time reported was de-
rived by running seven trials, removing the highest and lowest times
from the sampling, and averaging the remaining five.

We experimented with three different “attack disassemblers” to
evaluate our techniques. The first of these is the GNU objdump util-
ity which employs a straight-forward linear sweep algorithm. The
second, which we wrote ourselves, is a recursive disassembler that
incorporates a variation of speculative disassembly (see Section 2).
In addition we also provide the recursive disassembler with extra
information about the address and size of each jump table in the
program as well as the start and end address of each function. The
results obtained from this disassembler therefore serve as a lower
bound estimate of the extent of obfuscation achieved. Our third dis-
assembler is IDA Pro [13], a commercially available disassembly
tool that is generally regarded to be among the best disassemblers
available.

For each of these, the efficacy of obfuscation was measured by
computing “confusion factors” for the instructions, basic blocks,

and functions. Intuitively, the confusion factor measures the frac-
tion of program units (instructions, basic blocks, or functions) in
the obfuscated code that were incorrectly identified by a disassem-
bler. More formally, let A be the set of all actual instruction ad-
dresses, i.e., those that would be encountered when the program
is executed, and P the set of all perceived instruction addresses,
i.e., those addresses produced by a static disassembly. A P is the
set of addresses that are not correctly identified as instruction ad-
dresses by the disassembler. We define the confusion factor CF to
be the fraction of instruction addresses that the disassembler fails
to identify correctly:6

CF A P A .

Confusion factors for functions and basic blocks are calculated
anologously: a basic block or function is counted as being “in-
correctly disassembled” if any of the instructions in it is incorrectly
disassembled. The reason for computing confusion factors for ba-
sic blocks and functions as well as for instructions is to determine
whether the errors in disassembling instructions are clustered in a
small region of the code, or whether they are distributed over sig-
nificant portions of the program.

As mentioned in Section 3.4.1, we transform jumps to branch
function calls only if the jump does not occur in a “hot” basic block.
The first questions we have to address, therefore, are: how are hot
basic blocks identified, and what is the effect of different choices of
what constitutes a “hot” block on the extent of obfuscation achieved
and the performance of the resulting code? To identify the “hot,” or

6We also considered taking into account the set P A of addresses
that are erroneously identified as instruction addresses by the disas-
sembler, but rejected this approach because it “double counts” the
effects of disassembly errors.

Confusion factor (%)
PROGRAM LINEAR SWEEP (OBJDUMP) RECURSIVE TRAVERSAL COMMERCIAL (IDA PRO)

Instructions Basic blocks Functions Instructions Basic blocks Functions Instructions Basic blocks Functions
compress95 43.93 63.68 100.00 30.04 40.42 75.98 75.81 91.53 87.37
gcc 34.46 53.34 99.53 17.82 26.73 72.80 54.91 68.78 82.87
go 33.92 51.73 99.76 21.88 30.98 60.56 56.99 70.94 75.12
ijpeg 39.18 60.83 99.75 25.77 38.04 69.99 68.54 85.77 83.94
li 43.35 63.69 99.88 27.22 38.23 76.77 70.93 87.88 84.91
m88ksim 41.58 62.87 99.73 24.34 35.72 77.16 70.44 87.16 87.16
perl 42.34 63.43 99.75 27.99 39.82 76.18 68.64 84.62 87.13
vortex 33.98 55.16 99.65 23.03 35.61 86.00 57.35 74.55 91.29
Geo. mean 39.09 59.34 99.75 24.76 35.69 74.43 65.45 81.40 84.97

Figure 7: Efficacy of obfuscation: confusion factors (θ 1 0)

“frequently executed,” basic blocks, we start with a (user-defined)
fraction θ (0 0 θ 1 0) that specifies what fraction of the total
number of instructions executed at runtime should be accounted for
by “hot” basic blocks. For example, θ 0 8 means that hot blocks
should account for at least 80% of all the instructions executed by
the program. More formally, let the weight of a basic block be
the number of instructions in the block multiplied by its execution
frequency, i.e., the block’s contribution to the total number of in-
structions executed at runtime. Let tot instr ct be the total number
of instructions executed by the program, as given by its execution
profile. Given a value of θ, we consider the basic blocks b in the
program in decreasing order of execution frequency, and determine
the largest execution frequency N such that

∑
b:freq b N

weight b θ tot instr ct

Any basic block whose execution frequency is at least N is consid-
ered to be hot.

The effect of varying the hot code threshold θ on performance
(both obfuscation and speed) is shown in Figure 6. Figure 6(a)
shows the fraction of candidates that are converted to branch func-
tion calls at different thresholds; this closely tracks the overall con-
fusion factors achieved. Figure 6(b) shows the concomitant degra-
dation in performance. It can be seen, from Figure 6(a), that most
programs have a small and well-defined hot spot, and as a result
varying the threshold from a modest 0.70 to a value as high as 1.0
does not dramatically affect the number of candidates converted.
The benchmark that is affected the most is gcc, and even here over
79% of the candidates are converted at θ 1 0. On average, about
91% of the candidates are converted at θ 1 0. However, as il-
lustrated in Figure 6(b), varying the hot code threshold has a sig-
nificant effect on execution speed. For example, at θ 0 70 the
programs slow down by a factor of 3.67 on average, with the li
benchmark experiencing the largest slowdown, by a factor of 5.14.
However, as θ is increased the slowdown drops off quickly, to a fac-
tor of 3.14 at θ 0 9 and 1.62 at θ 1 0. In summary, choosing a
threshold θ of 1.0 still results in most of the candidate blocks in the
program being converted to branch function calls without excessive
performance penalty. For the purposes of this paper, therefore, we
give measurements for θ 1 0.

Figure 7 shows the efficacy of our obfuscation transformations
for both of the disassembly methods discussed in Section 2. The
confusion factors achieved for linear sweep disassembly are quite
modest: on average, 39% of the instructions, 59% of the basic
blocks, and nearly 100% of the functions are incorrectly disassem-
bled. For recursive traversal, the confusion factors are somewhat
lower because in this case the disassembler can understand and deal
with control flow somewhat better than with linear sweep and as a

EXECUTION TIME (SECS)
PROGRAM Original Obfuscated Slowdown

T0 T1 T1 T0
compress95 34.49 34.44 1.00
gcc 23.27 23.23 1.00
go 53.17 53.08 1.00
ijpeg 40.13 40.15 1.00
li 26.50 42.91 1.62
m88ksim 28.18 30.02 1.07
perl 28.62 37.71 1.32
vortex 48.84 49.05 1.00
Geo. mean 1.13

Figure 8: Effect of obfuscation on execution speed (θ 1 0)

last resort actually reverts to linear sweep for the speculative dis-
assembly of undisassembled code. Nevertheless, we find that, on
average, over 25% of the instructions in the program incur disas-
sembly errors. As a result, over 35% of the basic blocks and close
to 74% of the functions, on average, are incorrectly disassembled
using this disassembly method. This is achieved at the cost of a
13% penalty in execution speed (see Figure 8).

The recursive traversal data reported in Figure 7 are actually
quite conservative since these were gathered using our own recur-
sive disassembler which, as mentioned before, is supplied with ex-
tra information to avoid unduly optimistic results. To evaluate the
efficacy of our techniques in a more realistic situation, we used a
commercial disassembly tool, IDA Pro version 4.3x [13], which is
widely considered to be the most advanced disassembler available.
The results of this experiment are reported in Figure 7. It can be
seen that this tool fails on most of the program: close to 65% of the
instructions, and about 85% of the functions in the program, are
disassembled incorrectly. Part of the reason for this high degree of
failure is that IDA Pro only disassembles addresses that (it believes)
can be guaranteed to be instruction addresses. This has two effects:
first, large portions of the code that are reached by branch function
addresses are simply not disassembled, being presented instead to
the user as a jumble of hex data; and second, the location imme-
diately following a branch function call is treated as an address to
which control returns, and this causes some junk bytes to be erro-
neously disassembled. Overall, this shows that our techniques are
effective even against state-of-the-art disassembly tools.

Finally, Figure 9 shows the impact of obfuscation on code size,
both in terms of the number of instructions (which increases, for
example, due to branch flipping), as well as the number of bytes
occupied by the text section. The latter includes the effects of the
new instructions inserted as well as all junk bytes added to the pro-
gram. Overall, it can be seen that there is a 20% increase in the

Example 2: Patch Tuesday (Coppens et al, 2013)

11 June 2014 : Advanced Software Protection: Integration, Research and Exploitation

55
binary v1 binary v2

vulnerability

foo() v1

GUI diffing tool

foo() v2

manual code
inspection

Exploit Wednesday

BinDiff on Patch Tuesday

11 June 2014 : Advanced Software Protection: Integration, Research and Exploitation

56

BinDiff on Patch Tuesday

11 June 2014 : Advanced Software Protection: Integration, Research and Exploitation

57

57

0% 90% 99% 99.9% 100%

0%

20%

40%

60%

80%

100%

R
ec

al
l

Pruning

BinDiff on Patch Tuesday
58

Software Diversification

11 June 2014 : Advanced Software Protection: Integration, Research and Exploitation

59

binary v1

src v1

compiler

binary v2

diversifying compiler

src v2

Bindiff on Patch Tuesday

11 June 2014 : Advanced Software Protection: Integration, Research and Exploitation

60

BinDiff on Diversified Code

61

0% 90% 99% 99.9% 100%

0%

20%

40%

60%

80%

100%

R
ec

al
l

Pruning

Other tools
62

bzip2 & &png_beta&
png_debian &soplex&recall& recall&

TurboDiff& BinDiff&

0%& 20%& 40%& 60%& 80%& 100%&0%& 20%& 40%& 60%& 80%& 100%&

a&

b&

e&

f&

g&

g&

g&

pruning&factor&
0%& 90%& 99%& 99.9%& 100%&

pruning&factor&
0%& 90%& 99%& 99.9%& 100%&

h&

i&

set&1:&&
filter&completely&
idenGcal&blocks&

d&set&1':&
filter&matched&&
instrucGons&

set&2:&filter&&
completely&idenGcal&
and&mutated&blocks&

set&1&&
+&heur&1&

set&2&
+&heur&1&

set&1&&
+&heur&3&

set&2&&
+&heur&3&

set&1&&
+&heur&2&

set&2&
+&heur&2&

set&2&&
+&heur&1,&2&&

set&2&+&&
heur&1,&2,&5&

set&1'&&
+&heur&4&

set&1'&&
+&heur&1&

set&1'&&+&
&heur&1,&4&

set&1'&+&heur&3&

set&1'&&+&
heur&1,&3&

set&1'&+&&
heur&2&

set&1'&&+&
heur&2,&4&

set&1'&&+&&
heur&1,&2,&4&

set&1'&+&&
heur&1,&2,&4,&5&

c&
h&

Fig. 4: Pruning factors (bars) and recalls (lines) obtained on undiversified binaries

however, because all syntactic changes in this use case are semantic changes. When such a minimal
security fix involving only changed constants is combined with other (non-related) fixes as in png debian,
the patch includes many more syntactic mutations, which prevents it from being used as a shortcut.

Considering only the combinations of tools and heuristics with recalls over 60%, the highest pruning
factors obtained with BinDi↵ are 99.988% (i), 99.986% (j) and 99.909% (e). As the fractions of
irrelevant instructions in those cases are 99.997%, 99.986%, and 99.923% resp., BinDi↵ proves to be able
to prune more than 99.98% of all irrelevant instructions for those three use cases.

This demonstrates, for the first time, that for some types of patches and undiversified code, di�ng
tools and heuristics are indeed highly valuable cracker tools. For other types of patches, however, they
are much less e↵ective. Moreover, as a cracker does typically not know beforehand which types of patches
have been applied, he will be hindered by not being able to fine-tune his heuristics.

Diversification

To study the impact of diversification, we used the diversifier Proteus [1] that comes with the free and
open Diablo link-time rewriting framework (http://diablo.elis.ugent.be). This tool supports a number

7

25 Years of Software Obfuscation –
Can It Keep Pace with Progress in Code Analysis?
(Schrittwieser et al, 2013)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

63

Scenarios

Das Kompetenzzentrum SBA Research wird im Rahmen von COMET – Competence Centers for Excellent Technologies durch
BMVIT, BMWFJ, das Land Wien gefördert. Das Programm COMET wird durch die FFG abgewickelt.

www.ffg.at/comet

25 Years of Software Obfuscation –
Can It Keep Pace with Progress in Code Analysis?

Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder,
Edgar Weippl

f�9G�RTGUGPV�C�PQXGN�ENCUUKƂECVKQP�QH�TGCN�NKHG�CVVCEM�UEGPCTKQU�KP�VJG�
 context of code obfuscation, derived from a careful analysis of past
 security incidents involving obfuscated programs

f�9G�ƂTUV�FKUVKPIWKUJ�DGVYGGP�XCTKQWU�CPCN[UKU�VGEJPKSWGU�VJCV�CP�
 attacker is willing to employ during his attack; then we deal with
 different aims of an attacker.

Results

Conclusions

f�While, at least in theory, completeness of code analysis seems possible
 (and most of the analysis approaches introduced in academia indeed
� YQTM�HQT�UOCNN�CPF�URGEKƂE�GZCORNGU���NCTIG�TGCN�YQTNF�RTQITCOU�ECP�DG
� EQPUKFGTGF�UKIPKƂECPVN[�JCTFGT�VQ�CPCN[\G�

f�A major limiting factor for code analysis is that the high complexity of
 analysis problems often exceeds resource constrains available for the
 analyst, thus making it fail for complex programs.

f�6JGTGHQTG��XGT[�UKORNG�QDHWUECVKQP�VGEJPKSWGU�ECP�UVKNN�DG�SWKVG�
� GHHGEVKXG�CICKPUV�CPCN[UKU�VGEJPKSWGU�GORNQ[KPI�RCVVGTP�OCVEJKPI�QT�
 static analysis, which explains the unbroken popularity of obfuscation
 among malware writers.

f�Dynamic analysis methods, in particular if assisted by a human analyst,
 are much harder to cope with; this makes code obfuscation for the
 purpose of intellectual property protection highly challenging.

Figure 1: Analysis of the strength of code obfuscation classes in different attack scenarios

.&���.QECVKPI�&CVC��.%���.QECVKPI�%QFG��'%���'ZVTCEVKPI�%QFG��7%���7PFGTUVCPFKPI�%QFG��

Survey Motivation

f�Code obfuscation has always been a highly controversially discussed
 research area

f�While theoretical results indicate that provably secure obfuscation in
 general cannot be achieved, many application areas (e.g., malware,
� EQOOGTEKCN�UQHVYCTG��GVE���UJQY�VJCV�EQFG�QDHWUECVKQP�KU�KPFGGF�
 employed in practice

f�Still, it remains unclear to what extent today's code obfuscation state of
 the art can keep up with the progress in code analysis and where we
 stand in the arms race between attackers and defenders

f�Combining these two concepts, we arrive at attack scenarios, which are
 analyzed in the context of various types of code obfuscation.

f�As not all combinations are reasonable (e.g., pattern matching provides
� KPHQTOCVKQP�QP�VJG�EQFG�DWV�ECPPQV�DG�WUGF�HQT�GZVTCEVKPI�EQFG���C�VQVCN�
 of 14 scenarios must be considered.

Table 1: Code analysis categories and attacker’s aims

��

25 Years of Software Obfuscation –
Can It Keep Pace with Progress in Code Analysis?
(Schrittwieser et al, 2013)

64

Scenarios

Das Kompetenzzentrum SBA Research wird im Rahmen von COMET – Competence Centers for Excellent Technologies durch
BMVIT, BMWFJ, das Land Wien gefördert. Das Programm COMET wird durch die FFG abgewickelt.

www.ffg.at/comet

25 Years of Software Obfuscation –
Can It Keep Pace with Progress in Code Analysis?

Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder,
Edgar Weippl

f�9G�RTGUGPV�C�PQXGN�ENCUUKƂECVKQP�QH�TGCN�NKHG�CVVCEM�UEGPCTKQU�KP�VJG�
 context of code obfuscation, derived from a careful analysis of past
 security incidents involving obfuscated programs

f�9G�ƂTUV�FKUVKPIWKUJ�DGVYGGP�XCTKQWU�CPCN[UKU�VGEJPKSWGU�VJCV�CP�
 attacker is willing to employ during his attack; then we deal with
 different aims of an attacker.

Results

Conclusions

f�While, at least in theory, completeness of code analysis seems possible
 (and most of the analysis approaches introduced in academia indeed
� YQTM�HQT�UOCNN�CPF�URGEKƂE�GZCORNGU���NCTIG�TGCN�YQTNF�RTQITCOU�ECP�DG
� EQPUKFGTGF�UKIPKƂECPVN[�JCTFGT�VQ�CPCN[\G�

f�A major limiting factor for code analysis is that the high complexity of
 analysis problems often exceeds resource constrains available for the
 analyst, thus making it fail for complex programs.

f�6JGTGHQTG��XGT[�UKORNG�QDHWUECVKQP�VGEJPKSWGU�ECP�UVKNN�DG�SWKVG�
� GHHGEVKXG�CICKPUV�CPCN[UKU�VGEJPKSWGU�GORNQ[KPI�RCVVGTP�OCVEJKPI�QT�
 static analysis, which explains the unbroken popularity of obfuscation
 among malware writers.

f�Dynamic analysis methods, in particular if assisted by a human analyst,
 are much harder to cope with; this makes code obfuscation for the
 purpose of intellectual property protection highly challenging.

Figure 1: Analysis of the strength of code obfuscation classes in different attack scenarios

.&���.QECVKPI�&CVC��.%���.QECVKPI�%QFG��'%���'ZVTCEVKPI�%QFG��7%���7PFGTUVCPFKPI�%QFG��

Survey Motivation

f�Code obfuscation has always been a highly controversially discussed
 research area

f�While theoretical results indicate that provably secure obfuscation in
 general cannot be achieved, many application areas (e.g., malware,
� EQOOGTEKCN�UQHVYCTG��GVE���UJQY�VJCV�EQFG�QDHWUECVKQP�KU�KPFGGF�
 employed in practice

f�Still, it remains unclear to what extent today's code obfuscation state of
 the art can keep up with the progress in code analysis and where we
 stand in the arms race between attackers and defenders

f�Combining these two concepts, we arrive at attack scenarios, which are
 analyzed in the context of various types of code obfuscation.

f�As not all combinations are reasonable (e.g., pattern matching provides
� KPHQTOCVKQP�QP�VJG�EQFG�DWV�ECPPQV�DG�WUGF�HQT�GZVTCEVKPI�EQFG���C�VQVCN�
 of 14 scenarios must be considered.

Table 1: Code analysis categories and attacker’s aims

��

Discussion

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

65

¨  What program fragments matter?

¨  What representation to use?
¤ Sound vs unsound
¤ Static vs. dynamic vs. hybrid

¨  Depends on level of expertise, application,
type of assets, threat on the asset, attack step

Reverse-engineering obfuscated programs (Debray et al, 2014)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

66

¨  no obfuscation-specific assumptions
¤  treat programs as input-to-output transformations

¤  use semantics-preserving transformations to simplify execution
traces

¨  dynamic analysis to handle runtime unpacking

Taint analysis
(bit-level)

Control flow
reconstruction

Semantics-
preserving

transformations /
simplifications

in
pu

t
 p

ro
gr

am

co
nt

ro
l

flo
w

gr

ap
h

map flow of values
from input to output

reconstruct logic of
simplified computation

Trace simplification

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

67

un
pa

ck

un
pa

ck

output

output

input

input

instructions “tainted” as propagating
values from input to output

execution trace input-to-output computation
(further simplified)

us
ed

 to
 c

on
st

ru
ct

 c
on

tr
ol

 fl
ow

 g
ra

ph

"Semantic-preserving" simplification

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

68

¨  Quasi-invariant locations: locations that have the same value at each use.

¨  Their transformations (currently):
¤  Arithmetic simplification

n  adaptation of constant folding to execution traces
n  consider quasi-invariant locations as constants

n  controlled to avoid over-simplification

¤  Control simplification

n  E.g., convert indirect jump through a quasi-invariant location into a direct
jump

¤  Data movement simplification

n  use pattern-driven rules to identify and simplify data movement.

¤  Dead code elimination

n  need to consider implicit destinations, e.g., condition code flags.

Example: Themida Emulation Obfuscation

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

69

original obfuscated (cropped) deobfuscated

Discussion

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

70

¨  What program fragments matter?

¨  What representation to use?
¤ Sound vs unsound
¤ Static vs. dynamic vs. hybrid

¨  Depends on level of expertise, application,
type of assets, threat on the asset, attack step

Overview

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

71

¨  ASPIRE in a nutshell

¨  Modelling attacks

¨  Evaluation Criteria

¤ Metrics of complexity

¤ Resilience

¨  Theory versus practice: involving the humans

Experiments with Human Subjects

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

72

¨  What is the real protection provided?

¤  For identification/engineering

¤  For exploitation

¨  Which protection is better?

¨  Against which type of attacker?

¨  How fast do subjects learn to attack protections?

¨  Which attack methods are more likely to be used?

¨  Which attack methods are more likely to succeed?

Experiments with Human Subjects

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

73

¨  Very hard to set up and get right

¤ with students: cheap but representative?

¤ with experts: expensive, but controlled?

¤ what to test? (Dunsmore & Roper, 2000)

n  maintenance

n  recall

n  subjective rating

n  fill in the blank

n  mental simulation

¤ How to extrapolate

How not to do it (Sutherland, 2006)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

74

that some limited collaboration on experimental
results would emulate real world conditions pres-
ent during actual software exploitation activities.
Test subjects were provided with Program Set B
during the afternoon session of the reverse engi-
neering experiment. The experiment developers
were again present to observe any interactions
between test subjects.

To further observe the test subject activities
during the execution of the reverse engineering
experiment, the test developers employed an
automated screen capture tool (Camtasia) to pro-
vide a permanent record of activities. The reverse
engineering experiment platform involved an
Intel-based computer executing Linux Redhat 7.2
within a VMWare virtual environment hosted on
Windows NT4. This enabled the complete experi-
mental environment to be retained for future
analysis and included Bash histories of command
line instructions, and all temporary and history
files arising from Internet accesses. The screen
captures, Bash histories, temporary and history
files coupled with the initial questionnaire and
tutorial worksheets, provide a detailed accounting
of the test subject activities.

At the completion of Program Set B the test
subjects were provided an exit questionnaire to
enable post-experiment assessment. The exit
questionnaire assessed the amount of materials
supplied on the reading list that were actually used
by test subjects during the experiment along with
general comments pertaining to the various stages
of the reverse engineering experiment.

Results

The measurements collected during the reverse
engineering experiment are analyzed to validate
the two assertions defined in the beginning of this
paper (section Assertions).

Education/technical ability

The first assertion to be validated by the experi-
mental results concerned whether the use of
a statistical model could illustrate the relationship
between education and technical ability of the
software exploiter and their ability to successfully
reverse engineer a software product. This assertion

Table 1 Reverse engineering experiment framework

Session Event Test
object

Program
function

Task Duration
(min)

Total
duration (min)

Morning
session

Initial assessment
Program Set A
(debug option enabled)

1 Hello World Static 15 35
Dynamic 10
Modify 10

2 Date Static 10 30
Dynamic 10
Modify 10

3 Bubble Sort Static 15 45
Dynamic 15
Modify 15

4 Prime Number Static 15 45
Dynamic 15
Modify 15

Lunch

Afternoon
session

Program Set B
(debug option disabled)

5 Hello World Static 10 30
Dynamic 10
Modify 10

6 Date Static 10 30
Dynamic 10
Modify 10

7 GCD Static 15 45
Dynamic 15
Modify 15

8 LIBC Static 15 45
Dynamic 15
Modify 15

Exit questionnaire

An empirical examination of the reverse engineering process for binary files 225

How not to do it (Sutherland, 2006)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

75

is validated through analysis of the initial question-
naire and tutorial worksheet responses. The edu-
cation/technical ability (Fig. 1, ‘ability’) is derived
from the initial questionnaire responses for each
test subject and is normalized to values between
0 and 3 (Table 2) based on their experience with
operating systems, platforms, and the range of
commands used during the reverse engineering
experiment. The ability to successfully reverse
engineer a software product (Fig. 1, ‘score’) is de-
rived from the tutorial worksheet responses for
each test subject and is normalized by applying
a consistent grading scheme per question response
(Table 2) then averaging over all of the responses
(3 tasks! 8 test objects) for that particular test
subject. The education/technical ability and the
ability to successfully reverse engineer a software
product values are plotted against the test sub-
ject’s identification number. Although the two

graphs do not coincide one-for-one, a correlation
coefficient of 0.7236642 was computed illustrating
a statistically significant relationship between the
educational/technical ability of the software ex-
ploiter and their ability to successfully reverse en-
gineer the binary code file of a software product.
This result provides validation evidence for the first
experiment assertion.

Complexity/size metric

The second assertion to be validated by the
experimental results concerned the relationship
between the complexity of the binary code file to
the complexity of the human readable source
code. This assertion is validated through correla-
tion of the tutorial worksheet responses (regarding
the reverse engineering of the eight test objects)
versus the application of Halstead and McCabe
metrics on the human readable source code (six
software programs that when compiled produced
the eight test objects). The tutorial worksheet
responses for the static, dynamic, and modifica-
tion tasks were normalized using the grading
scheme (Table 2) then averaged to produce the
mean grade per test object (3 tasks! 10 test sub-
jects). The Halstead and McCabe metrics were
computed using the source code for each of the
test objects. The mean grade per test object is
correlated with each of the individual metric items
to determine the extent of any dependencies
(Tables 3 and 4).

The statistical analysis reveals that there are no
significant positive correlations between the
source code metrics and the ability of the software
exploiter to successfully reverse engineer a soft-
ware product. The lack of correlation illustrates
that source code artefacts that contribute to size
and complexity metrics do not impact the reverse
engineering process applied to binary code files.
For example, the amount of branching (decision
points) within a source code file is the basis of
the McCabe cyclomatic complexity metric and
has significant bearing on unit-level testing of
the software module. Comparatively, branching
instructions (jump instructions) within a binary
code file are easily disassembled and understood
by the software exploiter.

Conclusion

The reverse engineering experiment as defined
within this paper represents a framework for the
experimental collection of measurement data in

2.5

2

N
o

rm
al

iz
ed

 D
at

a

1.5

Score

1

0.5

0

Test Subject
1 2 3 4 5 6 7 8 9 10

Ability

Figure 1 Grading scheme used to normalize responses.

Table 2 Grading scheme used to normalize
responses

Grade Description

0 The test subject has failed to
answer the questions, or the
answer is completely incorrect.

1 The test subject has failed to demonstrate
an adequate understanding of the problem.
There is some factual information presented,
but there may be significant errors. The
answer provided by the test subject
lacks sustentative matter.

2 Demonstrates an adequate understanding
of the major issues and the complexity of
the issues involved. The answer provided by
the test subject is correct, but it may
contain minor errors.

3 Demonstrates an excellent understanding
of the problem and the complexity of the
issues involved.

226 I. Sutherland et al.

How not to do it (Sutherland, 2006)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

76

a consistent and repeatable fashion. The 10 test
subjects participating in the actual reverse
engineering experiment, although representing
a relatively small data set, provide the basis of
a preliminary assessment as to the primary factors
that affect the software reverse engineering pro-
cess. The reverse engineering experiment provides
quantitative evidence that there is a relationship
between the education/technical ability of the
software exploiter and their ability to successfully
reverse engineer a software product. This evi-
dence provides the foundation for modelling
of this relationship using existing predictive mod-
els. Development and maturation of a reverse
engineering model that characterizes the software

exploitation process will enable commercial soft-
ware product developers to quantitatively predict
the time following product deployment when it is
anticipated that a software exploiter would have
achieved a given exploitation end goal.

The reverse engineering experiment also pro-
vides quantitative evidence that industry accepted
source code size and complexity metrics are not
suitable for characterizing the size and complexity
of binary code files pursuant to estimating the
time required to perform software exploitation
activities. Literary research conducted at the
commencement of this project did not identify
binary size and complexity metrics that could have
been used instead of the source code size and

Table 3 Source code metrics debug enabled

Source program Hello World Date Bubble Sort Prime Number Correlation

Test object 1 2 3 4

Mean grade
per test object

1.483 1.300 0.786 0.867

Metric

Lines of code 6 10 9 21 !0.5802
Software lengtha 7 27 14 33 !0.3958
Software vocabularya 6 14 11 15 !0.5560
Software volumea 18 103 48 130 !0.4006
Software levela 0.667 0.167 2.5 0.094 !0.4833
Software difficultya 1.499 5.988 5.988 10.638 !0.7454
Efforta 27 618 120 1435 !0.3972
Intelligencea 12 17 19 15 !0.6744
Software timea 0.001 0.001 0.001 0.001 0
Language levela 8 2.86 7.68 1.83 0.1909
Cyclomatic complexity 1 1 1 3 !0.4802
a Halstead metrics.

Table 4 Source code metrics debug disabled

Source program Hello World Date GCD LIBC Correlation

Test object 5 6 7 8

Mean grade per test object 1.350 1.558 1.700 1.008

Metric

Lines of code 6 10 49 665 !0.3821
Software lengtha 7 27 40 59 !0.3922
Software vocabularya 6 14 20 21 !0.0904
Software volumea 18 103 178 275 !0.4189
Software levela 0.667 0.167 0.131 0.134 !0.1045
Software difficultya 1.499 5.988 7.633 7.462 0.0567
Efforta 27 618 2346 5035 !0.5952
Intelligencea 12 17 17 19 !0.1935
Software timea 0.001 0.001 0.2 0.4 !0.5755
Language levela 8 2.86 2.43 2.3 !0.0743
Cyclomatic complexity 1 1 3 11 !0.7844
a Halstead metrics.

An empirical examination of the reverse engineering process for binary files 227

How to do it?
(Tonella et al, 2007; Ceccato et al, 2014; Scandariato et al, 2013)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

77

Static Analysis vs. Penetration Testing (Scandariato, 2013)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

78

¨  Subjects described in detail

Fig. 1. Seniority of the participants

Fig. 2. Roles covered in the industry

one in software engineering and the other in computer security.
The program is often selected by professionals who, after a
few years in the software industry, are seeking a higher degree
to advance in their career. Most of these students are taking
evening classes while working full time as software developers.

We surveyed the background of the participants by means
of a questionnaire administered at the beginning of the exper-
iment. As shown in Figure 1, seven participants have at least
one year of experience as employees in the software industry
and four have a seniority that is greater than three years.
Figure 2 describes the roles covered by the participants in their
occupation. All of them have worked as developers, and as
many as seven also have experience as software designers. Four
of the participants also reported some experience as testers,
which is a useful asset for the tasks they carried out in the
experiment, especially for penetration testing. There are more
roles than participants, since participants may work in multiple
different roles over the course of their career.

We also investigated the programming skills and security
expertise of the participants, and the results are reported in
Figure 3. Good Java programming skills are important for the
static analysis task as the code needs to be inspected in order to
validate the warnings produced by the analysis tool. Two thirds

Fig. 3. Skill levels of the participants

of our participants claimed to be skilled Java programmers,
although we did not test their skills directly. Concerning their
security knowledge, the participants are not complete novices,
although two thirds admit to having limited expertise and only
one third claimed adequate security skills.

In summary, despite their enrollment in a degree program,
the participants have a profile which is closer to that of
professionals than of students. Indeed, they have substantial
industrial experience and advanced development skills. Clearly,
the participants are not entirely representative of the population
of security analysts, due to their sub-optimal security skills.
However, they have the necessary maturity to substantiate
the validity of the results of this work, which focuses on
professionals beginning their activity in a security team.

C. Experimental Objects

For this experiment, we needed to select two approximately
equivalent applications that were written in a language with
which the students were familiar. We also needed vulnerabili-
ties found in the applications to be of types that the students
had studied. In order for the applications to be approximately
equivalent, we selected them from the same application do-
main: weblogs written in Java. In order for the experiment
to be authentic, we decided to use open source applications
that were currently in use instead of using applications created
solely for the purposes of this experiment.

We selected two weblog applications for the experi-
ment: Apache Roller (roller.apache.org) and Pebble (pebble.
sourceforge.net). Both Roller and Pebble are comprehensive
blogging platforms, with support for templates, feeds, multiple
users, threaded comments, and plugins. Both applications are
currently in development and have a history of vulnerabilities
recorded in public databases. The applications are approxi-
mately of the same size and complexity.

1) Pebble: Pebble 2.6.3, the version used in the experiment,
consists of 56,168 executable lines of code as measured by
Fortify SCA. Version 2.6.4 is the current version (not available
at the time of the experiment) and 37 versions of Pebble have
been released since version 1.0 was released in 2003. Pebble
stores its data in XML files rather than in a SQL database.

453

Static Analysis vs. Penetration Testing (Scandariato, 2013)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

79

¨  Training and experiment described in detail

Fig. 4. Design of the experiment

• URL: the URL through which the vulnerability is
exploitable.

• Input Field: the input field(s) used to exploit the
vulnerability.

• Input Data: the input data that is necessary to exploit
the vulnerability.

• Description: the nature of the vulnerability and what
impact it would have on the application. The partici-
pants should also state any assumptions that are made
in determining that this is a vulnerability.

The above documentation contains all the information that is
necessary to replicate the attack described by the participant.

E. Design of the Experiment

As shown in Figure 4, the experiment is organized in two
laboratories. In the first lab, five randomly chosen participants
analyzed the Pebble application by means of static analysis,
while the other four analyzed the same application via penetra-
tion testing. In the second lab, the Apache Roller application
was analyzed, and participants were assigned to the treatment
they did not apply in the previous lab.

In summary, we chose a paired comparison design (each
participant is administered both treatments) but we deemed
that randomizing the order of the treatments would have
not been enough to counter the learning effect and, hence,
used two objects, i.e., applications. The two objects can be
considered equivalent for the sake of the experiment, as the
two applications provide the same functionality (blogging) and
have similar feature sets. The two applications also have a
comparable size of about 60,000 executable lines of code.
Furthermore, they have the same maturity as both have about
10 years of development history. We also assume that the two
applications have the same complexity. This assumption has
been validated by means of a specific question in the ques-
tionnaire that we administered at the end of the experiment.
To the question “Did you find that the two applications were
of comparable complexity?”, the participants replied that they
agreed: the median answer is 3 (‘agree’) on a 4-value scale
ranging from 1 (strongly disagree) to 4 (strongly agree).

TABLE I. TERMINOLOGY.

Measure Definition Formula Wish
TP True positive An actual vulnerability is correctly

reported by the participant (a.k.a.
correct result)

high

FP False positive A vulnerability is reported by the
participant but it is not present in
the code (a.k.a. error, incorrect re-
sult, false alarm)

low

TOT Reported vul-
nerabilities

The total number of vulnerabilities
reported by the participant

TP + FP –

TIME Time The time (in hours) that it takes the
participant to complete the task

low

PREC Precision Percentage of the reported vulner-
abilities that are correct

TP / TOT high

PROD Productivity Number of correct results produced
in a unit of time

TP / TIME high

F. Hypotheses

According to the goals mentioned at the beginning of this
section, we are interested in both the quality of the analysis
results and the productivity of the analyst. The quality is
primarily characterized by the number of correct results (the
actual vulnerabilities that are found) as more results mean
a more complete analysis and, consequently, a more secure
application. Another important aspect is the number of errors
(false alarms) as they result in a waste of resources for
both the analysis team and the quality assurance team that
is tasked with the bug fixing. As summarized in Table I, the
correct results are called true positives (TP) and the errors are
called false positives (FP). Next to the total number of true
positives, we quantify the quality by means of the precision
(PREC), i.e., the ratio of correct results over the total amount
of vulnerabilities reported. The measure of precision takes
into account the number of errors but it scales them with
respect to the total amount of results. This corresponds to the
reasonable assumptions that it is more likely to make mistakes
if more work is done. The productivity (PROD) is quantified
with respect to only correct results. Therefore, it is calculated
as the number of true positives produced per hour.

According to the above definitions, we refine the overall
research goals into the following three null hypotheses. First,
we wonder whether, on average, the two techniques produce
the same amount of true positives.

HTP
0 : µ{TPSA} = µ{TPPT}

Assuming that the discovered vulnerabilities have a compara-
ble importance, a technique that unearths more vulnerabilities
is clearly to be preferred. Note that in our experiment, the
task of the participants is to focus on the vulnerabilities of
highest importance (as defined by OWASP) and therefore, the
above-mentioned assumption holds in this study.

Moreover, we are interested in knowing whether, on
average, the two techniques have the same precision.

HPREC
0 : µ{PRECSA} = µ{PRECPT}

A more precise technique implies that less “garbage” is present
in the analysis results, and therefore less effort is wasted when
the recommendations of the analysis report are followed in
order to fix the security flaws.

Finally, we question whether, on average, the two
techniques yield the same productivity.

455

Static Analysis vs. Penetration Testing (Scandariato, 2013)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

80

¨  Rigorous statistical analysis of the results

Fig. 4. Design of the experiment

• URL: the URL through which the vulnerability is
exploitable.

• Input Field: the input field(s) used to exploit the
vulnerability.

• Input Data: the input data that is necessary to exploit
the vulnerability.

• Description: the nature of the vulnerability and what
impact it would have on the application. The partici-
pants should also state any assumptions that are made
in determining that this is a vulnerability.

The above documentation contains all the information that is
necessary to replicate the attack described by the participant.

E. Design of the Experiment

As shown in Figure 4, the experiment is organized in two
laboratories. In the first lab, five randomly chosen participants
analyzed the Pebble application by means of static analysis,
while the other four analyzed the same application via penetra-
tion testing. In the second lab, the Apache Roller application
was analyzed, and participants were assigned to the treatment
they did not apply in the previous lab.

In summary, we chose a paired comparison design (each
participant is administered both treatments) but we deemed
that randomizing the order of the treatments would have
not been enough to counter the learning effect and, hence,
used two objects, i.e., applications. The two objects can be
considered equivalent for the sake of the experiment, as the
two applications provide the same functionality (blogging) and
have similar feature sets. The two applications also have a
comparable size of about 60,000 executable lines of code.
Furthermore, they have the same maturity as both have about
10 years of development history. We also assume that the two
applications have the same complexity. This assumption has
been validated by means of a specific question in the ques-
tionnaire that we administered at the end of the experiment.
To the question “Did you find that the two applications were
of comparable complexity?”, the participants replied that they
agreed: the median answer is 3 (‘agree’) on a 4-value scale
ranging from 1 (strongly disagree) to 4 (strongly agree).

TABLE I. TERMINOLOGY.

Measure Definition Formula Wish
TP True positive An actual vulnerability is correctly

reported by the participant (a.k.a.
correct result)

high

FP False positive A vulnerability is reported by the
participant but it is not present in
the code (a.k.a. error, incorrect re-
sult, false alarm)

low

TOT Reported vul-
nerabilities

The total number of vulnerabilities
reported by the participant

TP + FP –

TIME Time The time (in hours) that it takes the
participant to complete the task

low

PREC Precision Percentage of the reported vulner-
abilities that are correct

TP / TOT high

PROD Productivity Number of correct results produced
in a unit of time

TP / TIME high

F. Hypotheses

According to the goals mentioned at the beginning of this
section, we are interested in both the quality of the analysis
results and the productivity of the analyst. The quality is
primarily characterized by the number of correct results (the
actual vulnerabilities that are found) as more results mean
a more complete analysis and, consequently, a more secure
application. Another important aspect is the number of errors
(false alarms) as they result in a waste of resources for
both the analysis team and the quality assurance team that
is tasked with the bug fixing. As summarized in Table I, the
correct results are called true positives (TP) and the errors are
called false positives (FP). Next to the total number of true
positives, we quantify the quality by means of the precision
(PREC), i.e., the ratio of correct results over the total amount
of vulnerabilities reported. The measure of precision takes
into account the number of errors but it scales them with
respect to the total amount of results. This corresponds to the
reasonable assumptions that it is more likely to make mistakes
if more work is done. The productivity (PROD) is quantified
with respect to only correct results. Therefore, it is calculated
as the number of true positives produced per hour.

According to the above definitions, we refine the overall
research goals into the following three null hypotheses. First,
we wonder whether, on average, the two techniques produce
the same amount of true positives.

HTP
0 : µ{TPSA} = µ{TPPT}

Assuming that the discovered vulnerabilities have a compara-
ble importance, a technique that unearths more vulnerabilities
is clearly to be preferred. Note that in our experiment, the
task of the participants is to focus on the vulnerabilities of
highest importance (as defined by OWASP) and therefore, the
above-mentioned assumption holds in this study.

Moreover, we are interested in knowing whether, on
average, the two techniques have the same precision.

HPREC
0 : µ{PRECSA} = µ{PRECPT}

A more precise technique implies that less “garbage” is present
in the analysis results, and therefore less effort is wasted when
the recommendations of the analysis report are followed in
order to fix the security flaws.

Finally, we question whether, on average, the two
techniques yield the same productivity.

455

Fig. 4. Design of the experiment

• URL: the URL through which the vulnerability is
exploitable.

• Input Field: the input field(s) used to exploit the
vulnerability.

• Input Data: the input data that is necessary to exploit
the vulnerability.

• Description: the nature of the vulnerability and what
impact it would have on the application. The partici-
pants should also state any assumptions that are made
in determining that this is a vulnerability.

The above documentation contains all the information that is
necessary to replicate the attack described by the participant.

E. Design of the Experiment

As shown in Figure 4, the experiment is organized in two
laboratories. In the first lab, five randomly chosen participants
analyzed the Pebble application by means of static analysis,
while the other four analyzed the same application via penetra-
tion testing. In the second lab, the Apache Roller application
was analyzed, and participants were assigned to the treatment
they did not apply in the previous lab.

In summary, we chose a paired comparison design (each
participant is administered both treatments) but we deemed
that randomizing the order of the treatments would have
not been enough to counter the learning effect and, hence,
used two objects, i.e., applications. The two objects can be
considered equivalent for the sake of the experiment, as the
two applications provide the same functionality (blogging) and
have similar feature sets. The two applications also have a
comparable size of about 60,000 executable lines of code.
Furthermore, they have the same maturity as both have about
10 years of development history. We also assume that the two
applications have the same complexity. This assumption has
been validated by means of a specific question in the ques-
tionnaire that we administered at the end of the experiment.
To the question “Did you find that the two applications were
of comparable complexity?”, the participants replied that they
agreed: the median answer is 3 (‘agree’) on a 4-value scale
ranging from 1 (strongly disagree) to 4 (strongly agree).

TABLE I. TERMINOLOGY.

Measure Definition Formula Wish
TP True positive An actual vulnerability is correctly

reported by the participant (a.k.a.
correct result)

high

FP False positive A vulnerability is reported by the
participant but it is not present in
the code (a.k.a. error, incorrect re-
sult, false alarm)

low

TOT Reported vul-
nerabilities

The total number of vulnerabilities
reported by the participant

TP + FP –

TIME Time The time (in hours) that it takes the
participant to complete the task

low

PREC Precision Percentage of the reported vulner-
abilities that are correct

TP / TOT high

PROD Productivity Number of correct results produced
in a unit of time

TP / TIME high

F. Hypotheses

According to the goals mentioned at the beginning of this
section, we are interested in both the quality of the analysis
results and the productivity of the analyst. The quality is
primarily characterized by the number of correct results (the
actual vulnerabilities that are found) as more results mean
a more complete analysis and, consequently, a more secure
application. Another important aspect is the number of errors
(false alarms) as they result in a waste of resources for
both the analysis team and the quality assurance team that
is tasked with the bug fixing. As summarized in Table I, the
correct results are called true positives (TP) and the errors are
called false positives (FP). Next to the total number of true
positives, we quantify the quality by means of the precision
(PREC), i.e., the ratio of correct results over the total amount
of vulnerabilities reported. The measure of precision takes
into account the number of errors but it scales them with
respect to the total amount of results. This corresponds to the
reasonable assumptions that it is more likely to make mistakes
if more work is done. The productivity (PROD) is quantified
with respect to only correct results. Therefore, it is calculated
as the number of true positives produced per hour.

According to the above definitions, we refine the overall
research goals into the following three null hypotheses. First,
we wonder whether, on average, the two techniques produce
the same amount of true positives.

HTP
0 : µ{TPSA} = µ{TPPT}

Assuming that the discovered vulnerabilities have a compara-
ble importance, a technique that unearths more vulnerabilities
is clearly to be preferred. Note that in our experiment, the
task of the participants is to focus on the vulnerabilities of
highest importance (as defined by OWASP) and therefore, the
above-mentioned assumption holds in this study.

Moreover, we are interested in knowing whether, on
average, the two techniques have the same precision.

HPREC
0 : µ{PRECSA} = µ{PRECPT}

A more precise technique implies that less “garbage” is present
in the analysis results, and therefore less effort is wasted when
the recommendations of the analysis report are followed in
order to fix the security flaws.

Finally, we question whether, on average, the two
techniques yield the same productivity.

455

Static Analysis vs. Penetration Testing (Scandariato, 2013)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

81

¨  Rigorous statistical analysis of the results

contained in one of the FPR files. The participant has made an
evaluation of whether the warning is correct (i.e., a vulnerabil-
ity is indeed present in the code) or bogus. The security expert
has produced an independent assessment of the warnings in the
FPR files and his judgment is assumed to be correct. Given
the seniority level of the subject and his expertize with static
analysis, we have no reason to doubt it. Using this ‘reference
solution’, the labeling of the participant can be classified as a
true positive (TP, the warning is a vulnerability for the expert
and the participant concurs) or false positives (FP, the warning
is not a vulnerability for the expert but the participant believes
it is). The other cases are out of scope in this experiment, as
it is harder to compare to penetration testing.

For penetration testing, it is straightforward to validate
the reports of the participants. The report contains the list of
vulnerabilities discovered by the participant, each associated
with the parameters (link to the entry point, input, and so on)
that describe how to exploit the vulnerability. The security
expert has to mount the attack as it is described in the report
and verify whether it is successful (TP, true positive) or not
(FP, false positives).

The time has been tracked by means of Kimai (kimai.org,
which is a simple, online time-sheeting tool. At the beginning
of the experiment, the participants have been given a personal
login to the time tracking tool. After having logged in, the
participant had to select the activity he/she was busy with.
The time tracking could be started and paused by means of a
single button. We have pre-configured the Kimai tool with two
activities. The first activity refers to the discovery of the first
vulnerability. The second activity refers to finishing the task
after the first vulnerability has been discovered. Hence, the
total time (TIME) spent on a task is the sum of the time spent
on the two activities. The tool did not allow the participants
to define other activities. We have already used this tool in
other experiments and found that it is both very usable and
non-invasive. Also, notice that one supervisor was monitoring
the correct usage of the Kimai tool during the experiment.
Therefore, the time measures that we obtained from the logs
of Kimai are accurate.

The opinion of the participants about the two techniques
and the related tools have been extracted from the exit ques-
tionnaire and will be discussed in Section VII.

VI. DATA ANALYSIS

In order to enable the replication of this study, all the data
used in this paper is available online [11]. The data analysis is
performed with R. Given the limited sample size, the analysis
presented in this section makes use of non parametric tests.
In particular, the location shifts between the two treatments
are tested by means of the Wilcoxon signed-rank test for
paired samples. The same test is used to analyze the exit
questionnaire. A significance level of 0.05 is always used. The
95% confidence intervals are computed by means of the one-
sample Wilcoxon rank-sum test. The association between two
variables is studied by means of the Spearman rank correlation
coefficient. A correlation is considered only if the modulus
of the coefficient is at least 0.70 and the p-value of the
significance test is smaller than 0.05.

Fig. 5. Boxplot of reported results (TOT), correct results (TP) and false alarms
(FP)

A. True Positives (HTP
0)

The left-hand side of Figure 5 summarizes the results
concerning the total number of reported vulnerabilities (TOT),
which appears to be quite different in the two treatments.
With static analysis (SA), the participants reported an average
of 14.8 vulnerabilities (standard deviation of 13.3, confidence
interval of [5, 30]). With penetration testing (PT) the average
is 3.1 vulnerabilities, which is much lower, and the standard
deviation is 2.0 (confidence interval of [2, 5]). The location
shift is not statistically significant (p-value>0.05).

As shown by the box-plot in middle of Figure 5, there is
an imbalance also for the number of correct results (TP). With
static analysis, the participants discovered an average of 9.7

confirmed vulnerabilities (standard deviation of 7.9, confi-
dence interval of [4.5, 18.5]). With penetration testing they
discovered only 2.2 confirmed vulnerabilities on average,
with a standard deviation of 1.7 and a confidence interval
of [1, 4]. The location shift is statistically significant (p-
value=0.0249). The left-hand side of Figure 6 shows that static
analysis has produced more correct results in both the Pebble
and the Apache Roller applications.

We can reject the null hypothesis HTP
0 and conclude that

static analysis produces, on average, a higher number of
correct results than penetration testing.

This conclusion is not surprising. Reviewing the applica-
tion code with the support of a security scanner can be seen
as a check-list based approach, where the participants have to
skim through a list of suggestions made by the tool. Usually,
these approaches are superior as far as the true positives
are concerned. Penetration testing, instead, does not enjoy a
similar level of guidance and it is easier for less experienced
participants to get ‘stuck’. However, having a list of warnings
in the static analysis technique might be somewhat limiting as
the scope of the analysis is bounded by the alarms produced
by the tool. The vulnerabilities reported using static analysis
were, of course, similar. Instead, vulnerabilities reported using
penetration testing differed among participants. In our study,
though, penetration testing did not find novel application-

457

Static Analysis vs. Penetration Testing (Scandariato, 2013)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

82

¨  Rigorous statistical analysis of the results

contained in one of the FPR files. The participant has made an
evaluation of whether the warning is correct (i.e., a vulnerabil-
ity is indeed present in the code) or bogus. The security expert
has produced an independent assessment of the warnings in the
FPR files and his judgment is assumed to be correct. Given
the seniority level of the subject and his expertize with static
analysis, we have no reason to doubt it. Using this ‘reference
solution’, the labeling of the participant can be classified as a
true positive (TP, the warning is a vulnerability for the expert
and the participant concurs) or false positives (FP, the warning
is not a vulnerability for the expert but the participant believes
it is). The other cases are out of scope in this experiment, as
it is harder to compare to penetration testing.

For penetration testing, it is straightforward to validate
the reports of the participants. The report contains the list of
vulnerabilities discovered by the participant, each associated
with the parameters (link to the entry point, input, and so on)
that describe how to exploit the vulnerability. The security
expert has to mount the attack as it is described in the report
and verify whether it is successful (TP, true positive) or not
(FP, false positives).

The time has been tracked by means of Kimai (kimai.org,
which is a simple, online time-sheeting tool. At the beginning
of the experiment, the participants have been given a personal
login to the time tracking tool. After having logged in, the
participant had to select the activity he/she was busy with.
The time tracking could be started and paused by means of a
single button. We have pre-configured the Kimai tool with two
activities. The first activity refers to the discovery of the first
vulnerability. The second activity refers to finishing the task
after the first vulnerability has been discovered. Hence, the
total time (TIME) spent on a task is the sum of the time spent
on the two activities. The tool did not allow the participants
to define other activities. We have already used this tool in
other experiments and found that it is both very usable and
non-invasive. Also, notice that one supervisor was monitoring
the correct usage of the Kimai tool during the experiment.
Therefore, the time measures that we obtained from the logs
of Kimai are accurate.

The opinion of the participants about the two techniques
and the related tools have been extracted from the exit ques-
tionnaire and will be discussed in Section VII.

VI. DATA ANALYSIS

In order to enable the replication of this study, all the data
used in this paper is available online [11]. The data analysis is
performed with R. Given the limited sample size, the analysis
presented in this section makes use of non parametric tests.
In particular, the location shifts between the two treatments
are tested by means of the Wilcoxon signed-rank test for
paired samples. The same test is used to analyze the exit
questionnaire. A significance level of 0.05 is always used. The
95% confidence intervals are computed by means of the one-
sample Wilcoxon rank-sum test. The association between two
variables is studied by means of the Spearman rank correlation
coefficient. A correlation is considered only if the modulus
of the coefficient is at least 0.70 and the p-value of the
significance test is smaller than 0.05.

Fig. 5. Boxplot of reported results (TOT), correct results (TP) and false alarms
(FP)

A. True Positives (HTP
0)

The left-hand side of Figure 5 summarizes the results
concerning the total number of reported vulnerabilities (TOT),
which appears to be quite different in the two treatments.
With static analysis (SA), the participants reported an average
of 14.8 vulnerabilities (standard deviation of 13.3, confidence
interval of [5, 30]). With penetration testing (PT) the average
is 3.1 vulnerabilities, which is much lower, and the standard
deviation is 2.0 (confidence interval of [2, 5]). The location
shift is not statistically significant (p-value>0.05).

As shown by the box-plot in middle of Figure 5, there is
an imbalance also for the number of correct results (TP). With
static analysis, the participants discovered an average of 9.7

confirmed vulnerabilities (standard deviation of 7.9, confi-
dence interval of [4.5, 18.5]). With penetration testing they
discovered only 2.2 confirmed vulnerabilities on average,
with a standard deviation of 1.7 and a confidence interval
of [1, 4]. The location shift is statistically significant (p-
value=0.0249). The left-hand side of Figure 6 shows that static
analysis has produced more correct results in both the Pebble
and the Apache Roller applications.

We can reject the null hypothesis HTP
0 and conclude that

static analysis produces, on average, a higher number of
correct results than penetration testing.

This conclusion is not surprising. Reviewing the applica-
tion code with the support of a security scanner can be seen
as a check-list based approach, where the participants have to
skim through a list of suggestions made by the tool. Usually,
these approaches are superior as far as the true positives
are concerned. Penetration testing, instead, does not enjoy a
similar level of guidance and it is easier for less experienced
participants to get ‘stuck’. However, having a list of warnings
in the static analysis technique might be somewhat limiting as
the scope of the analysis is bounded by the alarms produced
by the tool. The vulnerabilities reported using static analysis
were, of course, similar. Instead, vulnerabilities reported using
penetration testing differed among participants. In our study,
though, penetration testing did not find novel application-

457

contained in one of the FPR files. The participant has made an
evaluation of whether the warning is correct (i.e., a vulnerabil-
ity is indeed present in the code) or bogus. The security expert
has produced an independent assessment of the warnings in the
FPR files and his judgment is assumed to be correct. Given
the seniority level of the subject and his expertize with static
analysis, we have no reason to doubt it. Using this ‘reference
solution’, the labeling of the participant can be classified as a
true positive (TP, the warning is a vulnerability for the expert
and the participant concurs) or false positives (FP, the warning
is not a vulnerability for the expert but the participant believes
it is). The other cases are out of scope in this experiment, as
it is harder to compare to penetration testing.

For penetration testing, it is straightforward to validate
the reports of the participants. The report contains the list of
vulnerabilities discovered by the participant, each associated
with the parameters (link to the entry point, input, and so on)
that describe how to exploit the vulnerability. The security
expert has to mount the attack as it is described in the report
and verify whether it is successful (TP, true positive) or not
(FP, false positives).

The time has been tracked by means of Kimai (kimai.org,
which is a simple, online time-sheeting tool. At the beginning
of the experiment, the participants have been given a personal
login to the time tracking tool. After having logged in, the
participant had to select the activity he/she was busy with.
The time tracking could be started and paused by means of a
single button. We have pre-configured the Kimai tool with two
activities. The first activity refers to the discovery of the first
vulnerability. The second activity refers to finishing the task
after the first vulnerability has been discovered. Hence, the
total time (TIME) spent on a task is the sum of the time spent
on the two activities. The tool did not allow the participants
to define other activities. We have already used this tool in
other experiments and found that it is both very usable and
non-invasive. Also, notice that one supervisor was monitoring
the correct usage of the Kimai tool during the experiment.
Therefore, the time measures that we obtained from the logs
of Kimai are accurate.

The opinion of the participants about the two techniques
and the related tools have been extracted from the exit ques-
tionnaire and will be discussed in Section VII.

VI. DATA ANALYSIS

In order to enable the replication of this study, all the data
used in this paper is available online [11]. The data analysis is
performed with R. Given the limited sample size, the analysis
presented in this section makes use of non parametric tests.
In particular, the location shifts between the two treatments
are tested by means of the Wilcoxon signed-rank test for
paired samples. The same test is used to analyze the exit
questionnaire. A significance level of 0.05 is always used. The
95% confidence intervals are computed by means of the one-
sample Wilcoxon rank-sum test. The association between two
variables is studied by means of the Spearman rank correlation
coefficient. A correlation is considered only if the modulus
of the coefficient is at least 0.70 and the p-value of the
significance test is smaller than 0.05.

Fig. 5. Boxplot of reported results (TOT), correct results (TP) and false alarms
(FP)

A. True Positives (HTP
0)

The left-hand side of Figure 5 summarizes the results
concerning the total number of reported vulnerabilities (TOT),
which appears to be quite different in the two treatments.
With static analysis (SA), the participants reported an average
of 14.8 vulnerabilities (standard deviation of 13.3, confidence
interval of [5, 30]). With penetration testing (PT) the average
is 3.1 vulnerabilities, which is much lower, and the standard
deviation is 2.0 (confidence interval of [2, 5]). The location
shift is not statistically significant (p-value>0.05).

As shown by the box-plot in middle of Figure 5, there is
an imbalance also for the number of correct results (TP). With
static analysis, the participants discovered an average of 9.7

confirmed vulnerabilities (standard deviation of 7.9, confi-
dence interval of [4.5, 18.5]). With penetration testing they
discovered only 2.2 confirmed vulnerabilities on average,
with a standard deviation of 1.7 and a confidence interval
of [1, 4]. The location shift is statistically significant (p-
value=0.0249). The left-hand side of Figure 6 shows that static
analysis has produced more correct results in both the Pebble
and the Apache Roller applications.

We can reject the null hypothesis HTP
0 and conclude that

static analysis produces, on average, a higher number of
correct results than penetration testing.

This conclusion is not surprising. Reviewing the applica-
tion code with the support of a security scanner can be seen
as a check-list based approach, where the participants have to
skim through a list of suggestions made by the tool. Usually,
these approaches are superior as far as the true positives
are concerned. Penetration testing, instead, does not enjoy a
similar level of guidance and it is easier for less experienced
participants to get ‘stuck’. However, having a list of warnings
in the static analysis technique might be somewhat limiting as
the scope of the analysis is bounded by the alarms produced
by the tool. The vulnerabilities reported using static analysis
were, of course, similar. Instead, vulnerabilities reported using
penetration testing differed among participants. In our study,
though, penetration testing did not find novel application-

457

Static Analysis vs. Penetration Testing (Scandariato, 2013)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

83

¨  Threats to validity discussed

¤  conclusion validity
n  conclusions about the relationship among variables based on the data

¤  internal validity
n  causal conclusion based on a study is warranted

¤  external validity
n  generalized (causal) inferences

¤  ...

Effectiveness & effeciency source code obfuscation
(Ceccato et al, 2014)

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

84

¨  Compare identifier renaming with opaque predicates

¨  All positive aspects seen before

¨  Much more extensive experiment

¨  And still they screw up somewhat ...

Clear code fragment chat program

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

85 Page 3 of 23client/clear-decompiled/pdf/ChatApplet.java

Page 3 of 23client/clear-decompiled/pdf/ChatApplet.java

 131 tab.setUserList(strList);
 132 }

 134 public void addUserToList(String strRoomName, String strUser)
 135 {
 136 RoomTabItem tab = getRoom(strRoomName);
 137 if(tab != null)
 138 tab.addUserToList(strUser);
 139 }

 141 public void removeUserFromList(String strRoomName, String strUser)
 142 {
 143 RoomTabItem tab = getRoom(strRoomName);
 144 if(tab != null)
 145 tab.removeUserFromList(strUser);
 146 }

 148 public void joinRoom(String strName, String strUserList)
 149 {
 150 int index = textTabPane.indexOfTab(strName);
 151 if(index == -1)
 152 {
 153 RoomTabItem tab = new RoomTabItem(this, handler, strName);
 154 textTabPane.addTab(strName, tab);
 155 tab.setUserList(strUserList);
 156 textTabPane.setSelectedComponent(tab);
 157 } else
 158 {
 159 textTabPane.setSelectedIndex(index);
 160 }
 161 }

 163 public void addString(String strRoomName, String strMessage)
 164 {
 165 TabItem tab = getTabItem(strRoomName);
 166 if(tab != null)
 167 tab.appendBasicString(strMessage);
 168 }

 170 public void addServerString(String strRoomName, String strMessage)
 171 {
 172 TabItem tab = getTabItem(strRoomName);
 173 if(tab != null)
 174 tab.appendServerString(strMessage);
 175 }

 177 public void setRoomList(String strList)
 178 {
 179 roomListData.clear();
 180 String roomArray[] = strList.split(";");
 181 for(int x = 0; x < roomArray.length; x++)
 182 roomListData.addElement(roomArray[x]);

 184 }

 186 public void createPrivateMessage(String strUser)
 187 {
 188 String privateTab = (new StringBuilder()).append(
 strPrivateMessageAppend).append(strUser).toString();
 189 int index = textTabPane.indexOfTab(privateTab);
 190 if(index == -1)
 191 {
 192 PrivateTabItem tab = new PrivateTabItem(handler, strUser);
 193 textTabPane.addTab(privateTab, tab);
 194 textTabPane.setSelectedComponent(tab);

Fragment with renamed identifiers

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

86

Page 3 of 23client/obf-decompiled/pdf/ChatApplet.java

Page 3 of 23client/obf-decompiled/pdf/ChatApplet.java

 130 e1.d(s1);
 131 }

 133 public void g(String s, String s1)
 134 {
 135 e e1 = g(s);
 136 if(e1 != null)
 137 e1.e(s1);
 138 }

 140 public void h(String s, String s1)
 141 {
 142 e e1 = g(s);
 143 if(e1 != null)
 144 e1.f(s1);
 145 }

 147 public void j(String s, String s1)
 148 {
 149 int i1 = F.indexOfTab(s);
 150 if(i1 == -1)
 151 {
 152 e e1 = new e(this, C, s);
 153 F.addTab(s, e1);
 154 e1.d(s1);
 155 F.setSelectedComponent(e1);
 156 } else
 157 {
 158 F.setSelectedIndex(i1);
 159 }
 160 }

 162 public void k(String s, String s1)
 163 {
 164 h h1 = h(s);
 165 if(h1 != null)
 166 h1.k(s1);
 167 }

 169 public void l(String s, String s1)
 170 {
 171 h h1 = h(s);
 172 if(h1 != null)
 173 h1.l(s1);
 174 }

 176 public void c(String s)
 177 {
 178 H.clear();
 179 String as[] = s.split(";");
 180 for(int i1 = 0; i1 < as.length; i1++)
 181 H.addElement(as[i1]);

 183 }

 185 public void j(String s)
 186 {
 187 String s1 = (new StringBuilder()).append(E).append(s).toString();
 188 int i1 = F.indexOfTab(s1);
 189 if(i1 == -1)
 190 {
 191 g g1 = new g(C, s);
 192 F.addTab(s1, g1);
 193 F.setSelectedComponent(g1);
 194 } else

Fragment with opaque predicates

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

87

313 }
314 }
315 Node.getI().getLeft().swap(Node.getF().getLeft());
316 } else {
317

318 Node.getH().setLeft(Node.getG().getRight());
319 port = 5610;
320 }
321 if (Node.getF() != Node.getG()) {
322 Node.getH().getRight().swap(Node.getF().getLeft());
323 host = roomListData.toString() + "for";
324 } else {
325 Node.getH().getLeft().swap(Node.getG().getRight());
326 connect();
327 }
328 } catch (Exception e) {
329 if (Node.getF() != Node.getG()) {
330 addError(textTabPane.getTitleAt(0));
331 Node.getG().setRight(Node.getI().getLeft());
332 } else {
333 Node.getF().setLeft(Node.getF().getLeft());
334 e.printStackTrace();
335 }
336 }
337 }
338 if (Node.getH() == Node.getI()) {
339 Node.getF().getLeft().swap(Node.getH().getRight());
340 return;
341 } else {
342 host = host + textTabPane.getAlignmentX();
343 Node.getF().getRight().swap(Node.getI().getRight());
344 }
345 }
346

347 public void removeUserFromList(String strRoomName, String strUser) {
348 RoomTabItem tab = null;
349 if (Node.getI() != Node.getH()) {
350 Node.getI().getLeft().swap(Node.getI().getRight());
351 tab.transferFocusUpCycle();
352 } else {
353 Node.getF().swap(Node.getI());
354 tab = getRoom(strRoomName);
355 }
356 if (Node.getI() != Node.getH()) {
357 receiver.getClass().getAnnotations();
358 Node.getH().getRight().swap(Node.getG().getLeft());
359 } else {
360 if (tab != null)
361 if (Node.getI() != Node.getH()) {
362 Node.getF().setLeft(Node.getG().getRight());
363 roomList.clearSelection();
364 } else {
365 Node.getI().swap(Node.getH());
366 tab.removeUserFromList(strUser);
367 }
368 Node.getI().getLeft().swap(Node.getF().getRight());
369 }
370 }
371

372 public void addServerString(String strRoomName, String strMessage) {
373 TabItem tab = null;
374 if (Node.getH() != Node.getI()) {
375 JTabbedPane.isLightweightComponent(null);
376 Node.getG().getRight().swap(Node.getF().getLeft());
377 } else {
378 tab = getTabItem(strRoomName);
379 Node.getF().getRight().swap(Node.getG().getRight());
380 }
381 if (Node.getG() == Node.getF()) {
382 if (tab != null)
383 if (Node.getI() != Node.getH()) {
384 roomListData.add(tab.getComponentCount(), util);
385 Node.getI().setRight(Node.getG().getRight());
386 } else {
387 tab.appendServerString(strMessage);
388 Node.getH().getRight().swap(Node.getH().getLeft());
389 }
390 Node.getG().setRight(Node.getG().getLeft());

May 15, 08 18:28 Page 5/14ChatApplet.java
Printed by Mariano Ceccato

Thursday May 15, 2008 5/54

References

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

88

Paolo Tonella, Marco Torchiano, Bart Du Bois, Tarja Systä: Empirical studies in reverse engineering: state of the art and future
trends. Empirical Software Engineering 12(5): 551-571 (2007)

Iain Sutherland, George E. Kalb, Andrew Blyth, Gaius Mulley: An empirical examination of the reverse engineering process for
binary files. Computers & Security 25(3): 221-228 (2006)

Saumya K. Debray: Understanding software that doesn’t want to be understood: Reverse engineering obfuscated binaries,
Seminar 14241 - Challenges in Analysing Executables: Scalability, Self-Modifying Code and Synergy. http://www.dagstuhl.de/
en/program/calendar/semhp/?semnr=14241

Schrittwieser et al, 2013: 25 Years of Software Obfuscation – Can It Keep Pace with Progress in Code
Analysis? SBA Research. http://www.sba-research.org/wp-content/uploads/2012/03/
gesamte_Mappe_klein.pdf

Bart Coppens, Bjorn De Sutter, Koen De Bosschere: Protecting Your Software Updates. IEEE Security & Privacy 11(2): 47-54
(2013)
Bart Coppens, Bjorn De Sutter, Jonas Maebe: Feedback-driven binary code diversification. ACM TACO 9(4): 24 (2013)

Roberto Giacobazzi and Andrea Toppan: On Entropy Measures for Code Obfuscation.
Proceedings of the ACM SIGPLAN Software Security and Protection Workshop 2012

McCabe, T.J. A Complexity Measure. IEEE Transactions on Software Engineering,
vol.SE-2, no.4, pp.308-320, Dec. 1976 doi: 10.1109/TSE.1976.233837

Jagdish Bansiya and Carl G. Davis. 2002. A Hierarchical Model for Object-Oriented Design Quality Assessment. IEEE Trans.
Softw. Eng. 28, 1 (January 2002), 4-17. DOI=10.1109/32.979986 http://dx.doi.org/10.1109/32.979986

Christophe Foket, Bjorn De Sutter, Koen De Bosschere. Pushing Java Type Obfuscation to the Limit.
To appear in IEEE Trans. on Dependable en Secure Computing.

References

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

89

Mariano Ceccato, Massimiliano Di Penta, Paolo Falcarin, Filippo Ricca, Marco Torchiano, Paolo Tonella: A family of experiments
to assess the effectiveness and efficiency of source code obfuscation techniques. Empirical Software Engineering 19(4):
1040-1074 (2014)

Riccardo Scandariato, James Walden, Wouter Joosen: Static analysis versus penetration testing: A controlled experiment.
ISSRE 2013: 451-460

N. Wang, D. Fang, Y.X. Gu, Z. Tang, H. Wang. The Effectiveness Evaluation of Software Protection based on Attack
Modeling. In Proceedings of ACM SIGPLAN Software Security and Protection Workshop, 2012, 8 pages.

Woodward, M.R.; Hennel, M.A. and Hedley, D.(1979) “A Measure of Control Flow Complexityin Program Test”, IEEE Trans.
Software Eng., Vol. SE-5, No. 1, pp. 45 - 50

John S. Davis: Chunks: A basis for complexity measurement. Inf. Process. Manage. 20(1-2): 119-127 (1984)

Yingxu Wang, Jingqiu Shao: Measurement of the Cognitive Functional Complexity of Software. IEEE ICCI 2003: 67-74

Oviedo, Enrique I. : Control Flow, Data Flow, and Program Complexity, Proceedings of the Fourth International
COMPSAC. 146-152. New York: IEEE Computer Society, October 1980.

Sallie M. Henry, Dennis G. Kafura: Software Structure Metrics Based on Information Flow. IEEE Trans. Software Eng.
7(5): 510-518 (1981)

Warren A. Harrison and Kenneth I. Magel. 1981. A complexity measure based on nesting level. SIGPLAN Not. 16, 3 (March
1981), 63-74.

R. Basili, Gianluigi Caldiera, and Dieter H. Rombach. I: The Goal Question Metric Approach Victor R. Basili, Gianluigi Caldiera,
and Dieter H. Rombach. I, John Wiley & Sons, (1994)

References

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

90

Cullen Linn, Saumya K. Debray: Obfuscation of executable code to improve resistance to static disassembly. ACM
Conference on Computer and Communications Security 2003: 290-299

Mila Dalla Preda, Matias Madou, Koen De Bosschere, Roberto Giacobazzi: Opaque Predicates Detection by Abstract
Interpretation. AMAST 2006: 81-95

Mila Dalla Preda, Roberto Giacobazzi: Semantics-based code obfuscation by abstract interpretation. Journal of
Computer Security 17(6): 855-908 (2009)

C Collberg, C Thomborson, D Low: A taxonomy of obfuscating transformations. Technical Report, Department of
Computer Science, The University of Auckland, New Zealand, 1997

Christian S. Collberg, Clark D. Thomborson, Douglas Low: Manufacturing Cheap, Resilient, and Stealthy Opaque
Constructs. POPL 1998: 184-196

Bertrand Anckaert, Matias Madou, Bjorn De Sutter, Bruno De Bus, Koen De Bosschere, Bart Preneel: Program
obfuscation: a quantitative approach. QoP 2007: 15-20

Masahide Nakamura, Akito Monden, Tomoaki Itoh, Ken-ichi Matsumoto, Yuichiro Kanzaki, Hirotsugu Satoh: Queue-
Based Cost Evaluation of Mental Simulation Process in Program Comprehension. IEEE METRICS 2003: 351-

Halstead, Maurice H. (1977). Elements of Software Science. Amsterdam: Elsevier North-Holland, Inc. ISBN 0-444-00205-7.

Benjapol Auprasert and Yachai Limpiyakorn: Underlying Cognitive Complexity Measure Computation with
Combinatorial Rules. World Academy of Science, Engineering and Technology Vol:2 2008-09-29

 Grant Agreement No 609734

ISSISP 2014 - 30 July : Advanced Software Protection: Integration, Research and Exploitation

91

The project has received funding from the
European Union Seventh Framework Programme

(FP7/2007-2013) under grant agreement number 609734.

If you need further information, please contact the coordinator:
Bjorn De Sutter, Ghent University

Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium
Tel: +32 9 264 33 67 Fax: +32 9 264 35 94

Email: coordinator@aspire-fp7.eu
Website: http://www.aspire-fp7.eu

The information in this document is provided “as is”, and no guarantee or warranty is given that the information is fit
for any particular purpose. The user thereof uses the information at its sole risk and liability.

